
ASTERIX: Scalable Warehouse-Style Web Data Integration

Sattam Alsubaiee, Alexander Behm, Raman Grover, Rares Vernica
Vinayak Borkar, Michael J. Carey, Chen Li

University of California, Irvine
{salsubai,abehm,ramang,vborkar,mjcarey,chenli}@ics.uci.edu, rares.vernica@hp.com

ABSTRACT
A growing wealth of digital information is being generated on a
daily basis in social networks, blogs, online communities, etc. Or-
ganizations and researchers in a wide variety of domains recog-
nize that there is tremendous value and insight to be gained by
warehousing this emerging data and making it available for query-
ing, analysis, and other purposes. This new breed of “Big Data”
applications poses challenging requirements against data manage-
ment platforms in terms of scalability, flexibility, manageability,
and analysis capabilities. At UC Irvine, we are building a next-
generation database system, called ASTERIX, in response to these
trends. We present ongoing work that approaches the following
questions: How does data get into the system? What primitives
should we provide to better cope with dirty/noisy data? How can
we support efficient data analysis on spatial data? Using real exam-
ples, we show the capabilities of ASTERIX for ingesting data via
feeds, supporting set-similarity predicates for fuzzy matching, and
answering spatial aggregation queries.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems; H.2.7 [DATABASE
MANAGEMENT]: Database Administration—Data warehouse and
repository

General Terms
Design, Management, Performance

Keywords
Data-intensive computing, Cloud computing, Semistructured data,
ASTERIX, Hyracks

1. INTRODUCTION
We started the ASTERIX project [1, 5] at UC Irvine approxi-

mately two and a half years ago. Our goal at the outset was to de-
sign and implement a highly scalable platform for information stor-
age, search, and analytics. By combining and extending ideas from
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semistructured data management, parallel database systems, and
first-generation data-intensive computing platforms (MapReduce
and Hadoop), ASTERIX was envisioned to be a parallel, semistruc-
tured information management system with the ability to ingest,
store, index, query, analyze, and publish very large quantities of
semistructured data. ASTERIX is well-suited to handle use cases
ranging all the way from rigid, relation-like data collections, whose
types are well understood and invariant, to flexible and more com-
plex data, where little is known a priori and the instances in data
collections are highly variant and self-describing.

Traditionally, there have been two major approaches to integrat-
ing data from disparate sources [7]: Data warehousing, and virtual
data integration (a.k.a. federation), both of which have been exten-
sively studied and implemented. ASTERIX follows a “web ware-
housing” philosophy where social and web data are ingested into
and analyzed in a single scalable platform. In this paper, we intro-
duce specific features of ASTERIX that emerged from this goal.

Figure 1 provides an overview of how the various software com-
ponents of ASTERIX map to nodes in a shared-nothing cluster. The
bottom-most layer provides storage facilities for managed datasets
based on LSM-trees, which can be targets of ingestion. Further up
the stack lies our data-parallel runtime called Hyracks [8]. It sits
at roughly the same level that Hadoop does in implementations of
other high-level languages such as Pig [17] or Hive [3] or Jaql [11].
The topmost layer of ASTERIX is a parallel DBMS, with a full,
flexible data model (ADM) and query language (AQL) for describ-
ing, querying, and analyzing data. AQL is comparable to languages
such as Pig, Hive, or Jaql, but ADM and AQL support both native
storage and indexing of data as well as access to external data (e.g.,
in HDFS). As part of the AQL compiler, we have developed Alge-
bricks, a model-agnostic, algebraic “virtual machine” for optimiz-
ing parallel queries. Algebricks is the target for AQL compilation,
but it can also be the target for other declarative data languages.

1.1 EXAMPLE SCENARIO
Consider the upcoming US presidential elections. The elections

are bound to generate a significant amount of online activity (tweets,
blogs, etc) and are expected to be extensively covered by news me-
dia. Each tweet or news article related to the event contributes to
a large information repository that can provide useful insights if
subjected to analysis. We will use a simple example based on the
election context to show the capabilities of ASTERIX.

The ASTERIX data model (ADM) is based on ideas from JSON
with additional primitive types as well as type constructors bor-
rowed from object databases [16]. Figure 2 shows how tweets and
CNN news articles can be represented as records using ADM. No-
tice that the record types shown in the figure are open types, sig-
nifying that the instances of this type will conform to its specifica-
tion but are allowed to contain arbitrary additional fields that vary
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Figure 1: ASTERIX system architecture.

from one instance to the next. The example also illustrates how
ADM includes features such as optional fields with known types
(location in TweetType), and nested collections of primitive
values (hashTags in TweetType).

create type TweetType
as open {
id: string,
username: string,
location: point? ,
text: string,
timestamp: string,
hashTags: {{string}}?

};

create type NewsType
as open {
id: string,
title: string,
description: string,
link: string,
topics: {{string}}?

};

Figure 2: Metadata definition for the running example.

Data storage in ASTERIX is based on the concept of a “dataset”,
a declared collection of instances of a given type. ASTERIX sup-
ports both system-managed datasets, which are stored and managed
by ASTERIX as partitioned LSM-based B+ trees with optional sec-
ondary indexes, and external datasets, where the data can reside in
existing HDFS files or collections of files in the cluster nodes’ local
file systems. More information about ADM can be found in [5].

2. DATA INGESTION/FEEDS
To amass data from services such as Twitter or CNN news, and

serve as an effective platform for tracking and analyzing social me-
dia activity, ASTERIX supports continuous data ingestion via data
feeds. Data can be collected from a wide variety of sources using
wrappers (adapters in ASTERIX) that abstract away the mecha-
nism of connecting with an external service, receiving data in either
push or pull mode, and transforming the data into ADM records
understood by ASTERIX. Continuously arriving data is persisted
in ASTERIX as a feed dataset. Feed datasets differ from regular
datasets only in where their data comes from; they are essentially
append-only datasets bundled with connections to a data provider.

Figure 3 shows AQL DDL statements to create a Twitter feed
and a CNN news feed. In the context of our running example,
the Twitter feed Tweets contains ADM records that conform to
the TweetType described in Figure 2. Similarly the CNN news
feed News contains instances of NewsType. Each feed has an
associated adapter and may be given adapter-specific configuration
parameters. The TwitterAdapter in the example is configured

with a time interval (seconds) between successive requests to the
remote Twitter service for fetching tweets.

To facilitate analysis on the received data, a user may specify a
pre-processing function which is applied to each feed record before
persisting it to a dataset. For example, the Twitter feed utilizes
a user-defined function addHashTagsToTweet that extracts all
hash tags1 in a tweet. The extracted hash tags are appended to the
feed record and used subsequently for further analysis (Sections 3
and 4). Similar pre-processing to extract topics is applied to each
news feed record. Like any ASTERIX dataset, a feed definition
also requires a partitioning clause that informs ASTERIX about
how to partition the receiving data. In our running example, we
simply hash partition both feed datasets by their id.

create feed dataset Tweets(TweetType)
using TwitterAdapter ("interval"="10")
apply function addHashTagsToTweet
partitioned by key id;

create feed dataset News(NewsType)
using CNNFeedAdapter("topic"="politics","interval"="600")
apply function getTaggedNews
partitioned by key id;

create index locationIndex on Tweets(location) type rtree;

begin feed Tweets;
begin feed News;

Figure 3: Feed definitions for the running example.

Once a data feed has been defined, data ingestion can be trig-
gered with a begin feed statement2 (as shown in Figure 3).
Feed datasets are first-class citizens; a user may write AQL queries
against them, create secondary indexes, etc. In our example, we
create an R-tree index on the location attribute of TweetType.

Runtime Execution: A feed ingestion workflow is a DAG ex-
ecuted as an ever-running parallel Hyracks job. The adapter asso-
ciated with the feed may run on multiple nodes. Each adapter in-
stance connects to the external feed source and receives data. The
output ADM records are spread across the cluster nodes based on
the partitioning criterion specified in the feed definition. Any pre-
processing (user-defined function) is applied at the recipient nodes
before the ADM instances are inserted in the local LSM-B+tree(s)
for that dataset. Secondary indexes are also updated if necessary.

Related Work: Data feeds may seem similar to streams from
the data stream management systems literature [2, 4] or to com-
plex event processing systems [13, 24]. There are several impor-
tant differences, however. Data feeds in ASTERIX are a “plumb-
ing” concept; they are simply the mechanism for having data arrive
into the ASTERIX system from external sources that produce data
continuously, and to have that data incrementally populate a per-
sisted dataset. To our knowledge, this will be the first system to
explore the challenges involved in building a feed ingestion facility
that deals with semi-structured data and employs partitioned paral-
lelism in order to scale the facility and couple it with high-volume
and/or parallel external data sources. The most closely related work
is the AT&T Bistro data feed management system [21], but the fo-
cus of that work is on routing large amounts of file-based data from
pre-determined feeds to the applications that need access to them.

3. FUZZY MATCHING
1Words beginning with #; hash tags in a tweet are symbolic of top-
ics associated with the tweet
2ASTERIX also provides suspend feed, resume feed and
end feed statements for controlling the lifecycle of a feed.



Having as a target use case the archiving, querying, and analysis
of semistructured data drawn from Web sources, it is evident that
data quality is an issue. Social network users often publish data
informally, and can post tweets from mobile devices, resulting in
many abbreviated keywords and typos. Fuzzy matching capabili-
ties need to be added to ASTERIX, and we are in the process of
adding fuzzy selection and join queries, described as follows.

Fuzzy Selection Queries: Many people mistype (perhaps pur-
posely) the name of a currently prominent politician “Rick Santo-
rum” as “Rick Sanitarium”. Therefore, when querying the system
for tweets about Rick Santorum, we should include similar matches
as well, e.g., using edit distance. One may even infer the sentiment
of the tweeter based on the misspelling. Currently, we are in the
process of adding support for fuzzy selection queries.

Fuzzy Join Queries: In addition, analyzing such data, e.g., to
make recommendations or to identify sub-populations and trends in
social networks, often requires the matching of multiple sets of data
based on set-similarity measures. For example, suppose a news
provider like CNN wants to optimize its web page layout by ana-
lyzing the success of past news stories. Apart from article-specific
measures, such an analysis could take into account the general im-
pact of news stories on certain combinations of topics on the Twitter
community. The AQL query in Figure 4 illustrates a possible query
formulation. Intuitively, the query returns the top ten most popu-
lar articles based on their relevance to topics mentioned in tweets.
The first part of the query (up to group by) generates all pairs of
tweets and news articles that have similar topics based on the Jac-
card similarity of their topic-lists. The ∼= operator means “simi-
lar to”, and has been qualified with set simfunction and set
simthreshold. The second part of the query counts the number
of related tweets per news article, and returns the top ten articles
with the highest tweet count.

set simfunction "jaccard"
set simthreshold "0.5f"

for $tweet in dataset(’Tweets’)
for $article in dataset(’News’)
where $tweet.hashTags∼=$article.topics
group by $a := $article.id with $article
order by count($article)
limit 10
return {"article": $article, "popularity": count($article)}

Figure 4: A set-similarity join to find the top ten most popular
news articles based on their relevance to topics in tweets.

Runtime Execution: Executing queries with set-similarity (or
string-similarity) predicates is challenging on large amounts of data.
First, the predicates themselves are expensive, rendering brute-force
solutions impractical. For example, computing the Jaccard similar-
ity requires the union and intersection of two sets, and the classic
edit distance algorithm uses dynamic programming, all of which
are computationally expensive. Second, standard divide-and-conquer
strategies based on hash partitioning are not directly applicable, be-
cause similar items may not have the same hash value. Currently,
ASTERIX can execute fuzzy joins efficiently based on principles
that we developed while studying how to perform fuzzy joins in
the context of Hadoop [23, 22] (without pre-existing indexes). We
have recently started implementing indexed support for such fuzzy
queries based on our earlier work in [6]. We expect to speed up
both selection and join queries with secondary indexes.

Related Work: There have been many studies on set-similarity
and string-similarity selection [15, 10], and join queries [20, 25],
some in the context of relational database systems [9]. Our work in

ASTERIX complements previous work in that we are extending the
core (single machine) techniques to implement end-to-end support
for set-similarity queries in a parallel database system, including
parallel joins and optimizations via distributed secondary indexes.

4. SPATIAL AGGREGATION
Large volumes of events and social data can be aggregated and

analyzed to derive knowledge valuable to businesses, governments,
and society. For instance, consider the case where the campaign
manager of a presidential candidate such as Mitt Romney wants to
know how potential voters are reacting to the Republican presiden-
tial primaries in a certain geographic area.

A useful piece of information is the level of voters’ interest in
the rival Rick Santorum in February/March, 2012 (close to Super
Tuesday of the primary election) in different geographical regions.
Such information is clearly valuable to the decision-making pro-
cess of the campaign. The increasing availability and popularity
of social data and event data make such information more readily
available and more real time. We can derive such knowledge by
doing a spatial aggregation on Twitter data as follows: We for-
mulate a query to find the tweets mentioning “Santorum” posted
from February 15, 2012 to March 1, 2012, group them on a grid
structure, and compute the number of such tweets in each cell in
the grid. By doing this spatial analysis, the campaign staff could
gain an understanding of the public opinion, and make informed
decisions such as broadcasting more political ads in certain areas.

Given the importance of spatial aggregation queries, we have
added capabilities for them in ASTERIX. Such a query specifies a
grid structure including a spatial range and a resolution and asks for
a density distribution (histogram) of data within the grid. The query
may optionally include a time interval and keywords and do an ag-
gregation on the data records satisfying these additional conditions.
A spatial aggregation query partitions data records into groups and
applies an aggregation function to all records in each group. Figure
5 shows a color-coded density grid on the map that visualizes the
results of a spatial aggregation query using the Google Maps API.

Figure 5: A visualization of the results of a spatial aggregation
query. The color of each cell indicates the tweet count.

Consider the AQL query in Figure 6 which spatially aggregates
election-related tweets. It starts by constraining tweets to a bound-
ing rectangle inside the US, a datetime window, and those contain-
ing the hashtag “Santorum”. The spatial-cell function deter-
mines which grid cell a tweet belongs to. This function receives the
location of the tweet, the origin of the bounding rectangle, and the
latitude and longitude increments (to specify the resolution of the
grid). It returns the cell (represented by a rectangle) that the tweet
belongs to. Those tweets are then grouped according to their con-
taining grid cells. Finally the count function is applied to each



group of tweets to return the final answer as pairs of cell and num-
ber of tweets (that satisfy the predicates) in that cell.

for $tweet in dataset(’Tweets’)
l e t $searchHashTag := "Santorum"
l e t $leftBottom := create-point(33.13,-124.27)
l e t $rightTop := create-point(48.57,-66.18)
l e t $latResolution := 3 .0
l e t $longResolution := 3 .0
l e t $region := create-rectangle($leftBottom,$rightTop)
where spatial-intersect($tweet.location, $region) and
$tweet.time > datetime("2012-02-15T00:00:00Z") and
$tweet.time < datetime("2012-03-01T23:59:59Z") and
some $hashTag in $tweet.hashTags

sat i s f i e s ($hashTag = $searchHashTag)
group by $c := spatial-cell($tweet.location,
$leftBottom, $latResolution, $longResolution)
with $tweet

return { "cell": $c, "count": count($tweet) }

Figure 6: Spatial aggregation query over tweets that were gen-
erated by US users close to Super Tuesday of the Republican
primary election, containing the hashtag “Santorum”.

Runtime Execution: Since ASTERIX provides rich spatial sup-
port, spatial aggregation queries are executed efficiently by using
a secondary R-tree index. Thus, all records outside of the query
bounding region are filtered quickly. One path that we are in-
vestigating to further boost performance is to incrementally pre-
aggregate the data into a spatial index (akin to a materialized view).

Related Work: There are existing studies on answering spatial
aggregation queries [18, 12], and spatio-temporal aggregation [19],
where their goal is to do an aggregation based on space and time
conditions simultaneously. Mathioudakis et al. [14] proposed a
framework to identify spatial burstiness assuming the space is de-
composed using a grid-based layout. Spatial Aggregation in AS-
TERIX is different from these earlier studies since we are interested
in finding the density distribution of spatial objects, possibly with
textual and temporal predicates. Moreover, in the ASTERIX sys-
tem, spatial aggregation queries are part of a general spatial frame-
work, where the goal is to support different types of useful spatial
queries rather than supporting specific queries in an ad-hoc way.

5. FUTURE/ONGOING WORK
In this paper, we presented three key features of the ASTERIX

system to warehouse and analyze social and Web data: Data feeds,
fuzzy matching, and spatial aggregation. We have described our
data feed mechanism for continuously ingesting data and showed
how ASTERIX can help with inferring useful information via fuzzy
matching and spatial aggregation. Currently, the ADM/AQL layer
of ASTERIX is able to run parallel queries – including lookups,
large scans, parallel joins (regular and fuzzy), and parallel aggre-
gates – for data stored in partitioned LSM B+ trees and indexed via
secondary indexes such as LSM-based R-trees. The system’s exter-
nal data access and data feed features are also operational. We plan
to offer a first open-source release of ASTERIX during the latter
part of 2012, and we are now seeking early partners who would like
to try ASTERIX on their favorite “Big Data” problems. Our ongo-
ing work includes hardening and documenting the ASTERIX code
base for initial public release, adding indexing support for fuzzy se-
lection queries, improving the performance of spatial aggregation,
adding support for continuous queries, extending AQL with win-
dowing features, and starting to work with a few early users and
use cases to learn by experience where we should go next.
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