
VLDB Jouma~ 1, 127-179 (1992) Dennis McLeod, Editor 127
OVLDB

Federated Databases and Systems:

Part I - A Tutorial on Their Data Sharing

David K. Hsiao

Received July 11, 1990; revised version received June 13, 1991; accepted August 22, 1991.

Abstract. The issues and solutions for the interoperability of a class of heteroge-
neous databases and their database systems are expounded in two parts. Part I
presents the data-sharing issues in federated databases and systems. Part II, which
will appear in a future issue, explores resource-consolidation issues. Interoperabil-
ity in this context refers to data sharing among heterogeneous databases, and to
resource consolidation of computer hardware, system software, and support per-
sonnel. Resource consolidation requires the presence of a database system archi-
tecture which supports the heterogeneous system software, thereby eliminating
the need for various computer hardware and support personnel. The class of het-
erogeneous databases and database systems expounded herein is termed federated,
meaning that they are joined in order to meet certain organizational requirements
and because they require their respective application specificities, integrity con-
straints, and security requirements to be upheld. Federated databases and systems
are new. While there are no technological solutions, there has been considerable
research towards their development. This tutorial is aimed at exposing the need
for such solutions. A taxonomy is introduced in our review of existing research
undertakings and exploratory developments. With this taxonomy, we contrast and
compare various approaches to federating databases and systems.

Keywords: Interoperability of heterogeneous databases and systems (attribute-
based, hierarchical, network, relational, object-oriented); data-sharing techniques
(database conversion, schema transformation, transaction translation, data-
model-and-language-to-data-model-and-language mappings).

1. Introduction

A new class of heterogeneous databases and systems consisting of both new and old

existing systems is currently being developed. Until now, each of these databases and

systems had been used in a stand-alone environment for a specific application with a

David K. Hsiao, Ph.D., is Professor of Computer Science, Naval Postgraduate School, Monterey, CA.
(Reprint requests to Prof. Hsiao, Code CS/Hq, Bldg, Ha-221, Naval Postgraduate School, Monterey, CA
93943.)

128

particular integrity constraint and unique security requirement. They have been rather

efficient in their respective applications and effective in upholding their respective in-

tegrity constraints and security requirements. However, these databases and systems

are heterogeneous. In order to facilitate their respective application, integrity, and

security requirements, they must have their respective data models, data languages,

and database systems. They are also supported on different computer hardware, sys-

tem software, and professional personnel, since all the stand-alone environments are

distinct. What makes them into a class are:

. they all belong to an organization which requires data in various heterogeneous

databases to be shared so that new applications dealing with organizational

matters can be developed from the shared data, i.e., heterogeneous data meant

to be shared in the organization;

. they, on the other hand, have their own individual application specilicities and

must uphold the individual integrity constraints and security requirements, i.e.,

data-sharing among heterogeneous databases meant to be controlled by indi-

vidual database systems;

. these heterogeneous databases and systems of the organization must be consol-

idated if the data sharing and its access controls are to be effective and efficient,

i.e, controlled sharing of heterogeneous databases meant to be facilitated in a

single architecture instead of many separate and stand-alone environments.

Such a class of heterogeneous databases and systems is termed federated databases and

systems.

In this section we reveal the need for federated databases and systems. We report

the factors that have prompted the pending arrival of federated databases and systems

in Section 1. 2. In Section 1.3, we list the requirements for heterogeneous databases

and systems to be federated. However, the bulk of the tutorial deals with various

approaches towards a solution to controlled sharing of heterogeneous data (Section 2)
and various architectures for consolidating heterogeneous database-system resources

(in Part II). To this end, we propose a taxonomy for the purpose of examining various

approaches and architectures in terms of the requirements set forth in Section 1.3.

With this taxonomy, we are able to compare the merits and demerits of various

approaches and architectures. It is important to note that heterogeneous databases

and systems in a federation consist of both new, old, and older databases and systems.

This is a real-world database problem which we attempt to address. Thus, our sample

data models and data languages include new ones, such as the object-oriented; old

129

ones, such as the relational; and older ones, such as the hierarchical and the network.

It is also important to note that approaches and architectures examined herein are

mostly research proposals and exploratory developments. The technology for feder-

ated databases and systems is simply not here now. We hope this tutorial will prompt

more researchers and explorers into the field of federated databases and systems in

the coming decades.

Some colleagues working in the area of federated databases and systems term this

area the interoperability of heterogeneous databases and systems. Others term it the inter-
operability ofmultidatabase systems. Either terminology is acceptable to us. However,

some prefer the term integration over the term interoperability. We take issue with

the use of the term of integration, because integration means combining databases

and systems into a whole. In federated databases and systems, there are approaches

and architectures which require no combination of multiple databases and systems

into one. We may examine the integration issues of, for example, concurrency con-

trol mechanisms of various heterogeneous databases systems and database schemas

of various heterogeneous databases at some "lower" level. Integration will be used in

addressing these lower-level issues in the tutorial, but it will not be used to refer to the

new area of study known as federated databases and systems.

1.1 What is the Notion of Federated Databases and Systems? In a federa-
tion of heterogeneous databases, there is the need for data sharing among the diverse

databases, and for resource consolidation of all supporting software, hardware and

personnel, although each database has its own autonomy in terms of, for example, its

integrity constraint, application specificity, and security requirements. Thus, feder-

ated databases and systems deal with heterogeneous databases. They must provide

data sharing and resource consolidation without violating the autonomies of individ-

ual databases. In the following, we first report the proliferation of the heterogeneous

databases in an organization. We then propose controlled sharing of data among het-

erogeneous databases. The sharing is not only necessary, but controlled, so that the

autonomy of each database is upheld. Lastly, we explore the need for resource con-

solidation.

1.2 What Factors Prompted the Pending Arrival of Federated Databases and
Systems? There are several real-world factors which are elaborated in the following

sections, although database technologists and researchers may not be aware of their

concerted impact on the need for and arrival of federated databases and systems at

the moment.

130

1.2.1 The Replacement of Traditional Data Processing Practices with Modem Ho-
mogeneous Database Systems. In traditional data processing, data are stored on

tapes. A data processing task requires the manual handling of tapes and transactions.

To process data on tapes for a new query, data processing professionals must first write

the necessary transactions off-line and then run the new transactions against necessary

tapes manually. For routine data processing involving regular and standard transac-

tions, there are already considerable manual work which are not only error-prone, but

also labor-intensive. For ad hoc queries, their routines and practices are greatly af-

fected. There are more errors in developing the new transactions and in running them

against existing tapes. There are also more labor-intensive efforts on the part of data

processing professionals in developing new transactions and in handling tapes. The in-

troduction of modern database systems as replacements for traditional data processing

practices has greatly reduced labor-intensive and error-prone pitfalls. Since data are

stored on disks and managed by the database system automatically, there is no man-

ual handling of storage media. Regular and standard transactions are cataloged in

and executed by the database system routinely. There is also no need of any manual

handling of regular and standard transactions. For ad hoc queries, the modern data-

base system provides an ad hoc query capability. Thus, database professionals may

develop new transactions for queries on-line and query the existing database directly.

Finally, each modern database system is highly specialized to deliver the most effec-

tive and efficient on-line processing of a class of data processing tasks. For example,

the relational database system is particularly suitable for keeping records. Thus, data

processing tasks on payroll records, on employee records, and on other record collec-

tions may be taken over by the relational database system. Despite the diversity of

the record-keeping tasks and differences in the record type, the same relational data-

base system can handle them effectively and efficiently. Thus, the relational database

system is said to handle homogeneous databases of records, since all the records are

stored on the disks with the same format, i.e., the relational form, and are accessible

and manipulatable by transactions written in the same relational data language, e.g.,

SQL The sameness, i.e., homogeneity, in the data model and data language, is intro-

duced, of course, for the effective and efficient handling and processing of the intended

databases. For these reasons, the relational database system is termed a homogeneous

database system for record keeping.

There are other homogeneous database systems which are specialized in other dis-

tinct and major tasks beyond data processing of records. For example, the hierarchical

database system supports the hierarchical databases; the network database system the

network databases; the functional database system the functional databases; object-

oriented database system the object-oriented databases; and so on. The great prolifer-

131

ation of many homogeneous databases and database systems indicates that traditional

data processing (using tapes and relying on manual handling of tapes and transac-

tions) is disappearing. It also indicates that the homogeneous database systems not

only replace traditional data processing tasks, but also open up new database applica-

tions. Thus, database systems become an indispensable means in an organization for
handling information needs.

1.2.2 The Proliferation of Heterogeneous Databases in an Organization. Typically,

each department in an organization has its own information needs and focuses on

a specific database application. For example, the personnel department may use a

record-keeping database system to keep track of their employee records. The use of

a relational database system such as ORACLE to support the database, and writing

transactions in SQL to access and manipulate employee records have been in vogue.

The engineering department may focus on design specifications in terms of prod-

uct assemblies. Each assembly consists of many subassemblies, each subassembly

many components, each component many parts, each part many design specs, each

spec many figures and numbers. These design specs can best be organized as a hierar-

chical database of facts and figures supported by a hierarchical database system. Thus,
we may use, for example, an IBM IMS to support the hierarchical database and a data
language, DL/I, to write transactions for accessing and manipulating the database.

The inventory department, on the other hand, may wish to use a network data-

base to represent the many-to-many relationships among their inventory records. For

example, a part (therefore, a part record) may be supplied by (related to) several sup-

pliers (several supplier records); a supplier (a supplier record) on the other hand may

be supplying (related to) several parts (part records). Thus, in this example, there is a

many-to-many relationship between the part records and the supplier records. There

are many such many-to-many relationships in a real inventory collection, i.e., a net-

work database. Such databases can be supported by a network database system such
as Unisys DBMS 1100 and by transactions written in a network data language such as
CODASYL-DML.

The research-and-development department may want to experiment with a func-

tional database to support expert-system applications using a functional database sys-

tem such as CCA Local Database Manager and a data language such as CCA Daplex.

It may also desire to try an object-oriented database system and its object-oriented

data language on new applications in manufacture engineering. Many new and ex-
perimental object-oriented database systems and data languages, e.g., HP IRIS, have
been proposed and prototyped recently.

132

Databases, data languages, and database systems in different departments, al-

though homogeneous with respect to their own departments, are heterogeneous in the

organization; this is because they are based on different data models, data languages,

and database systems. If departments of an organization attempt to computerize all

their useful information into databases, using suitable database systems and employing

stylized data languages to write transactions for their highly specialized applications,

then it is inevitable that a proliferation of heterogeneous databases and systems will

result. As we enter the Information Age, the race towards computerized informa-

tion and the proliferation of heterogeneous databases, data languages and database

systems in an organization will be intensified. This proliferation is not reversible; nor

can the proliferation be restricted to one data model, to one data language, and to one

database system. In other words, the proliferation is on the heterogeneity of databases

and systems in all the departments, not just on a collection of homogeneous databases

and systems in a single department.

1.2.3 Data Sharing of Various Databases in the Organization. The effective use of

information scattered in different departments requires data sharing among the de-

partments for corporate planning and decision-making, marketing strategies, regula-

tory compliances, inter-departmental communications and coordinations, and other

multi-departmental activities. In fact, the effectiveness in sharing data within an or-

ganization may well be the most important surviving factor of the organization in the

Information Age. What would be the most expeditious way to share data among het-

erogeneous databases? There are three requirements in federated databases and sys-

tems.

. The first requirement is that the user must be able to access a heterogeneous

database as if it is the user's homogeneous database. In other words, the user

should not be required to learn the data model of the heterogeneous database.

Nor should the user be required to write transactions in the data language sup-

ported by the other database system of the heterogeneous database. Instead,

the user continues to view the heterogeneous database by way of the user's fa-

miliar data model and writes transactions against the database in the user's fa-

miliar data language. For example, a relational database user in the personnel

department may access a hierachical database in the engineering department

as if it is a relational database by writing SQL transactions for such accesses

and manipulations of the database. We term this requirement the transparent

access to heterogeneous databases.

133

.

.

The second requirement allows the owner of a database to share the data-

base with others without compromising the owner's integrity constraint, ap-

plication specificity, and security requirement. In other words, the autonomy

of the owner's database is upheld, despite the fact that multiple accesses and

manipulations are being made by users of other departments. We term this

requirement the local autonomy of each heterogeneous database.

The third requirement is that federated databases and systems are multimodel

and multilingual. By multimodel we mean that a database system in the fed-

eration supports various databases in many different data models. For exam-

ple, a multimodel database system may support relational databases, hierachi-

cal databases, network databases, functional databases, object-oriented data-

bases, and other model-based databases. By multilingual we mean that the

database system executes transactions each of which may be written in a distinct

data language for its corresponding model-oriented databases. For example, a

multilingual database system may execute SQL transactions against relational

databases, DL/I transactions against hierachical databases, CODASYI.,-DML

transactions against network databases, Daplex transactions against functional

databases, and transactions written in an object-oriented or new data language

against object-oriented or new databases, respectively. Without being multi-

model and multilingual, federated databases and systems will not be able to

support heterogeneous databases and systems which are the necessary condi-

tion of the federation.

Unless the aforementioned three requirements are met, data sharing among hetero-

geneous databases scattered in different parts of an organization, i.e., federation, will

not become effective. Here, the emphasis of requirements is on the effectiveness of

federated databases and systems.

1.2.4 Resource Consolidation of,Supporting Software, Hardware, and Personnel
Heterogeneous databases scattered in different departments in an organization are

likely supported respectively by different sets of computer hardware, database sys-

tems, and database professionals. Such supports are both inefficient and unaccount-

able. They are inefficient due to the duplication of hardware, software, and personnel

in supporting several, separate, and complete database systems and their databases.

They are unaccountable because if there is any difficulty in data sharing it is hard to

hold a particular department and its database system respons~le for the difficulty~

Consequently, communications and cooperations among the departments in terms of

data sharing will be hindered. The question is whether or not it is possible to come

134

up with an architecture for federated databases and systems so that inefficiency and

unaccountability of heterogeneous databases for data sharing will be resolved. In Part

II we review several architectures for federated databases and systems. Here, we first

spell out requirements for such an architecture.

The architecture of federated databases and systems must be special-purpose and

parallel. This requirement may overcome inefficiency and unaccountability issues. By

special-purpose we mean that the computer and its secondary storage are dedicated to

and specialized in the support of the databases and database-system software. Due to

the recent advances in computer technology, it is entirely cost-effective to construct

special-purpose computers for better database management performance than main-

frames and superminis. These special-purpose database computers are termed data-

base backcnds, or, for short, backends. The backend architecture must also be parallel.

Parallel backend architecture is termed the multibackend architecture. Specialization

and parallelism are the two most important architectural principles for the improve-

ment of the computer performance and efficiency.

By multibackend we mean that federated database systems, whether centralized

or distributed, have been off-loaded from the mainframe computers into specialized

backend computers. They can be supported by a single backend and its database store.

However, they are likely run on multiple backends and their respective database stores

where the backends, not database stores, are interconnected by way of a communica-

tion net. With identical backends, this architecture requires that the database-system

software is replicatable over the identical backends. However, the federated databases

are not replicated. They are required, nevertheless, to be clustered or partitioned. The

distribution of data aggregates in a cluster must induce parallel accesses to all the

aggregates in the cluster. Thus, the distribution and redistr~ution of federated data-

bases on existing and new database stores are required to be automatic. When the

number of the backends at a site is two or greater, the backends and their stores are

configured parallel to sustain the muln'ple-transactions-and-mul~ple-database-streams
(MTMD) operation. These requirements allow federated databases and systems to

be run more efficiently with built-in, processing-and-accessing parallelism, to be main-

tained by fewer personnel, to be supported with identical hardware, replicatable soft-

ware, and reconfigurable databases, and to be charged with the sole responsibility for

the support of federated databases and the database-system software.

It is important to note that, unlike the previous requirements for data sharing

which emphasize the effectiveness of federated databases and systems, these architec-
tural requirements emphasize efficiency of the federated databases and systems. The

architecture of the multibackend database system allows the user to scale the system
in terms of the number of backends and their stores, i.e., the degree of its parallelism,

135

for the performance gain and capacity growth of federated databases and systems.

For accountability, we require federated database systems to provide deadlock-

free accesses to their databases, although these accesses may have already met in-

tegrity constraints, application specificities, and security requirements. Otherwise,

concurrent accesses for authorized and necessary data will be indefinitely delayed or

deferred. Thus, the search for effective and efficient access and concurrency controls

in federated databases and systems is aimed to address the accountability issue. We

can also discuss in the following section the need of effective and efficient access and

concurrency controls in terms of their necessary role in upholding the local autonomy

of a federated database system and its databases.

1.2.5 Access and Concurrency Controls for Local Autonomies of Federated Data-
bases . To uphold the local autonomy of departmental databases in terms of integrity

constraint, application specificity, and security requirement, accesses to departmental

databases must be controlled. Thus, federated databases and systems are required

to provide access and concurrency control mechanisms for triggering the particular in-

tegrity constraint, for interfacing with the specific model/language software, for en-

forcing the necessary security requirement, and for controlling concurrent accesses to

heterogeneous databases of separate departments. The question is, therefore, what

would be the most effective and efficient architecture for the incorporation of neces-

sary access and concurrency control mechanisms into federated databases and systems.

These architectural issues will be addressed in Part II.

Here, we simply point out that effective and efficient access and concurrency con-

tro/s are the necessary condition for upholding autonomies of local databases and a

requirement for federated databases and systems to be truly effective in data sharing

and highly efficient in resource consolidation. Consequently, this requirement un-

derscores all the previous requirements of federated databases and systems. So, in

our examination of various approaches towards either data sharing or resource con-

solidation we must also examine these approaches in the light of their capability to

incorporate necessary access and concurrency control mechanisms.

1.3 Summary of Five Requirements for Federated Databases and Systems,
All solutions for and approaches to federated databases and systems presented in Part

I and II will be examined in terms of five requirements. For data sharing there is the
requirement of:

1. Transparent accesses to heterogeneous databases in the federation;

2. The local autonomy of each heterogeneous database;

136

3. Multimodel and multilingual capabilities of federated database systems.

For resource consolidation, there is the requirement of:

4. Multl'backend capability.

For upholding local autonomies of federated databases, there is the requirement of:

5. Effective and efficient access and concurrency control mechanisms.

2. Approaches to Data Sharing

There are several approaches towards data sharing among federated, heterogeneous

databases. In our examinations we refer to not only requirements for data sharing but

also for other issues.

2.1 Database Convers ion. To make a database available to a user who is not famil-

iar with the data model, this approach simply converts the database into an equivalent

database in the familiar data model of the user. For example, i f a relational database

user desires to access a hierachical database, a database converter may be employed

1. to access the hierachical database system for the intended database;

2. to make a copy of the hierachical database;

3. to transform the copy into an equivalent relational database;

4. to load the transformed database, i.e., the relational database, into a relational

database system;

5. to allow the relational database user to a c e , s the transformed database by way

of the relational database system.

In this approach, the database converter may be considered as a utility package of the

operating system that supports both hierachical and relational database systems. By

utilizing operating-system functions (calls), the database converter can then commu-

nicate with two different database systems for accessing one database and for storing

the other database. Further, the database converter can utilize the tools, files, and

other utility packages of the operating system for the conversion work.
However, the semantic equivalence of one database in one data model to the other

transformed database in the other data model is determined by the converter. Such

137

Figure 1. A Hierarchical Database

Course

Prereq ~ / / O f f e ~ g ~

Note the three segment types: Course, Prereq, and Offering. Each type has several at-
tributes enclosed in boxes. Prereq and Offering are called child segment types (children).
Course is called the parent or root segment type. Each type has one or more segments of
the same type. A segment consists of attribute values of the segment type (not shown in
this diagram).

Rules for the establishment of a hierarchical database:

1. Each parent segment may have zero or more child segments. In our example both
Prereq and Offering are potential parents, even though at this point they have no
child segment.

2. No two parent segments of any type or types may have a child segment in common.

These rules establish the hierarchy or tree of a database. Certain attributes of a segment

type are designated as the sequence field, which uniquely identifies individual segments in

a sequence of segments of the same type, In this sample database, Course#, Peourse#,

and Date are designated as sequence fields of their respective segments. For our conve-

nience, they are underlined in the data diagram.

determination is never unique. What is a semantic equivalent to one user may not

be a semantic equivalent to the other user, because typically the semantics of one

data model may be distinctly different from the semantics of the other data model.

If we want to stay in our own semantics, i.e., not to learn the semantics of the other

database and its data model, we need to accept the semantic equivalence provided by

the database converter on the semantics of the other database in the light of our own
data model and data semantics.

In Figures 1 and 2, we provide a sample of database conversion. Figure 1 uses

a data diagram to depict the logical organization of a hierarchical database. We also

refer to the database and its constructs with the terminology and semantics of the bier-

138

Figure 2. A Relational Database

Course (Course#, Title, Description)

Prereq (Course#, PCourse#, Title)

Offering (.Course#, Date, Location, Format)

The relational database is specified in the relational notation. There are three relations:
Course, Prereq, and Offering. Each relation has several attributes enclosed in parenthe-
ses. There may be one or more tuples of attribute values in the relation. However, tuples
are not shown in the parenthesized notation.

The rules of establishing a relational database are simple:
1. No two tuples of a relation have identical attribute values.
2. No tuple may have null attribute values.
3. No two relations of a database have identical attributes.

In addition, each relation may have aprimary key consisting of one or more attributes.
The attribute values of the key uniquely identify individual tuples of the relation. A relation
may also have one or more secondary keys which uniquely identify individual tuples in other
relations. For our convenience, we underline attributes that form the keys of a relation.

In this sample, two relations, Prereq and Offering, each have two attributes for their

keys, whereas the relation, Course, has only one attribute for its key. Furthermore, one of

the two keys of either Prereq or Offering is identical to the key of Course. These identical

keys are secondary and uniquely identify tuples in the Course relation. Other keys of these

relations are primary of their respective relations.

achical data model. Some explanations in generic terms are necessary, since we want

to relate the database and its constructs to the transformed database in Figure 2. In

Figure 2, the relational database which is equivalent to the hierarchical database in

Figure I is presented. Here, we use the relational terminology to refer to the logical

organization of the relational database and its constructs. We also use generic terms to

elaborate on the semantic equivalence of the two databases and their constructs. We

will not show the conversion algorithm which is the program logic of the database con-

verter. It is hoped that by illustrating the conversion process with this simple example

in Figures I and 2 we may be convinced that the database conversion approach to data

sharing is viable. In Table 1, we summarize all the necessary notions, constructs and

techniques for the conversion of a hierarchical database to an equivalent relational

database.

2.1.1 Transparent Accesses to Heterogeneous Databases in a Federation. The
database conversion approach to data sharing provides excellent transparent accesses

139

Table 1. Equivalence Table of Hierarchical and Relational Database
Constructs

Hierarchical Database Constructs

Attribute (field name)

Attribute value (field value)

Segment

Segment type

Sequence field

Parent segment

Parent segment type

Child segment

Child segment type

Root segment

Root segment type

Relational Database Constructs

Attribute (attribute name)

Attribute value (value)

Tuple

Relation

Key

Tuple with specific primary key value

Relation with primary key

Tuple with specific secondary key value

which is identical to one and only one

primary key value of the other tuple*

Relation with secondary key

which must be identical to a primary key

of the other relation

Tuple without any secondary key value

Relation without any secondary key

*There are subtle considerations:
1. In Figure 2 we simply replicate the specific primary key value of the parent tuple in

the child tuple of the other relation as its secondary key value. How do we know which
is primary and which are secondary if there are multiple keys in a relation? In imple-
mentation we can always concatenate the secondary-key attribute with the name of the
relation in which the attribute is primary. Thus the child relations become as follows: Pre-
req (Course.Course#, Precourse#, Title) and Offering (Course.Course#, Date, Location,
Format).

2. As the hierarchy of a database gets deeper (i.e., the number of levels is large), a relation
in the bottom of the hierarchy must all bear the primary keys of their parent, grandparent,
great-grandparent, and any ancestral parent as secondary keys of the relation. This is
necessary because we are using the keys to establish the hierarchy. On the other hand,
the hierarchy is maintained with buiit-in pointers from one segment to other segments.

3. With parental keys, we can access bottom relations directly, whereas in the hierarchicai

database it is necessary to traverse the hierarchy from its root.

to heterogeneous databases in the federation. As long as all the heterogeneous data-

bases which are n o t in the user's familiar data model have been converted into equiv-

alent databases in the user's familiar data model, the user may view all such databases

140

homogeneously and access them with transactions written in the user's familiar data

language. For example, in Figures 1 and 2 we have made a hierachical database avail-

able to the relational user by converting it into an equivalent relational database. Thus,

the presence of a hierachical-to-relational database converter may transform all the

other hierarchical databases into their relational equivalent. As far as the relational

user's concern, the existing collection of databases in the relational and hierarchical

data models becomes really a familiar collection of homogeneous relational databases.

The relational user can continue to write transactions in a familiar relational data lan-

guage, say, SQL, for the purpose of accessing the newly transformed databases. To the

relational user, accesses to transformed hierarchical databases are no different from

accesses to relational databases. We term such accesses transparent to the relational

u s e r .

What is necessary to accomplish the transparency, i.e., all databases are apparently

homogeneous to this user, is the presence of many database converters---one for each

unfamiliar data model of this user. Research results have indicated that it is possible

to convert a database in a semantically rich data model to an equivalent database in

a semantically less-rich data model. In the example on database conversion depicted

in Figures 1 and 2, we consider that the semantics of the hierarchical data model is

richer than the semantics of the relational data model. Thus, that example illustrates

the point advanced here. On the other hand, the conversion of a database in a seman-

tically rich data model to an equivalent database in a semantically richer data model

is straightforward, since semantic constructs of the former are likely subsumed by se-

mantic constructs of the latter. For example, a relational database may be converted

into an equivalent hierarchical database where every root segment type represents a

relation. Since root segment types in this example are without children, i.e., no child

segment types, they do not form hierachies. They nicely characterize a collection of

relations.

How is it possible then to convert a database in a semantically rich data model to

an equivalent database in a semantically less-rich data model? Instead of repeating

the example in Figures 1 and 2, and enumerating and elaborating various conversion

processes and algorithms, we provide an analogy in data structures of programming

languages. We know that these data structures are semantically richer than the data

structure of the computer. Whereas data structures in programming languages deal

with constructs such as named variables, lists, arrays, trees, tables, and records, the

computer provides only primitive data constructs such as addressed bytes, half-words,

full-words, pages and blocks. Compilers of programming languages somehow manage

to convert rich data structures of programming languages into equivalent data struc-

tures of the computer, even though the computer data structure is more primitive,

141

i.e., semantically poor. Similarly, we can create equivalent databases in semantically

poor data models for databases in semantically rich models. For instances, the object-

oriented database has been converted into the equivalent relational database; the hier-

archical to the relational; the relational to the attribute-based; the hierarchical to the

attribute-based; the network to the attribute-based; the functional to the attribute-

based; the object-oriented to the attribute-based. (See Postscripts for citations.)

2.1.2 Multimodel and Multilingual Capabilities of Federated Database Systems.
Again, the data conversion approach to data sharing allows the federated databases

and their database systems to include heterogeneous databases in many different data

models and to support many different data languages on separate database systems for

accessing their own databases. Therefore, the multiplicities of data models and data

languages are a function of the number of the database converters available. With a

large number of database converters, data sharing via a large number of different data

languages on a large number of heterogeneous databases becomes a reality. However,

most commercial multimodel and multilingual database systems are bimodel and bilin-

gual. The limitation is caused by the following factor.

2.1.3 Local Autonomy of each Heterogeneous Database in the Federation. Data-

base converters by nature generate multiple copies of the same database. Although

the autonomy of an original database is safeguarded by the system which supports the

database, the copies in different data models are now supported on different database

systems. Consequently, it is difficult if not impossible to uphold the same integrity

constraint, application specificity, and security requirement of the database over its

copies by different systems. For example, if we update a hierarchical database via a

DL/I transaction on a hierarchical database system such as IBM IMS, then the update

must be carried out in the relational copy of the database by the relational database

system, say, DB2. Otherwise, the data integrity of the database will be violated. Si-

multaneous updates by different database systems on copies of the same database are

difficult to coordinate and control. Although the bimodel and bilingual capability of

the IBM's hierarchical-to-relational database converter, known as the extraction capa-

bility, allows simultaneous updates of a database and its copy, this capability has not

been extended to cover other constraints, specificities, and requirements. Nor has it
been extended beyond the hierarchical-to-relational conversion.

We have had difficulties in simultaneously updating replications of the same data-

base in a homogeneous and distributed database system such as CC~s SDD-1; the dif-

ficulties in updating simultaneously multiple copies in more than two heterogeneous

forms of the same database by heterogeneous and separate database systems are surely

142

insurmountable. Consequently, once a co W of a database is made for the other data-

base system, the autonomy of the database can be violated if the other database system

does not safeguard the copy. Even if the other database system is willing to safeguard

the integrity constraint, application specificity, or security requirement of the data-

base, there is the difficulty of the system to carry out the enforcement on the copy,

effectively.

One way to minimize the aforementioned difficulty is to ask a multimodel and

multilingual professional, who understands integrity constraint, application specificity,

and security requirement of the database in its native data-model form and native data-

language specification, to specify for other database systems and copies equivalent

constraints, specificities, and requirements in new data languages. Such a multimodel

and multilingual professional is hard to come by. The viability of local autonomies of

federated databases now rests with the availability of such an individual.

2.2 Database Schema and Transaction Translation. These two capabilities of

a database system offer more effective approaches towards data sharing among fed-

erated databases than the database conversion approach. Let us first review these

two capabilities. We then contrast their approaches with the database conversion ap-

proach.

2.2.1 The Role of Database Schemas in Federated Databases and Systems. In a
database system using database schemas, there is a schema for each database in the

system. A database schema consists of attributes, types, and other information about

attribute values of the database. It also contains information about the relationship

of attribute values in database aggregates such as keys, records, directories, files, and

others. Although a database schema indicates the logical organization of attribute

values as characterized by its data model, it does not specify the physical layout of

the database. Nor does it contain attribute values themselves. It is fair to say that by

looking at a database schema, we can tell the data model of the database. To this end,

we refer to the database schema of a relational database as the relational database
schema, for short, the relational schema. Thus, we create hierarchical schemas for

hierarchical databases, network schemas for network databases, functional schemas

for functional databases, and object-oriented schemas for object-oriented databases,

and so on.

There are contemporary database systems which have been implemented and in-

troduced as the schema-based database system. The CODASYL-schema-based net-

work database system is a good example. What we are proposing is that in such a

schema-based database system, we allow additional database schemas based on data

143

models other than the data model of the system to be created for a database. Th/s ca-
pability of having multiple database schemas in different data models for the same data-
base is essential for data sharing. Thus, instead of converting a database by making

another copy, as in the previous approach to data sharing, we either convert the data-

base schema to a new one or define a new database schema for the database. This

process is called the schema transformation or generation, i.e., there is a schema trans-
former or generator which defines a new database schema on the basis of a new data

model for the database. Database schemas allow the same database to be viewed in

different data models. For example, the hierarchical database depicted in Figure 1

may have a relational schema, in additional to the hierarchical schema, so that the hi-

erachical database may be viewed as a relational database as depicted in Figure 2. With

this hierarchical-to-relational schema transformation the relational database user can

now view the hierarchical database as if it is a homogeneous relational database.

Can the relational user then write the relational transactions, say, in SQL, for the

purpose of accessing and manipulating of the hierarchical database? The answer is

no. Viewing the database by way of a new database schema is one thing; accessing and

manipulating the database via the new schema is another. In the latter case, the host

database system must be able to understand the semantics of the new data language

associated with the new data model of the schema. In referring to the previous exam-

ple, the hierarchical database system must be able to understand SQL, in addition to

its hierarchical database language, say, DLA. In other words, the hierachical database

system must also be a relational database system. Contemporary database systems

are mostly monolingual each of which can only execute transactions written in the sole

data language of that system. To overcome this important shortcoming, we introduce

the concept of transaction translation in the following section.

2.2.2 The Need for Transaction Translations in Federated Databases and Systems.
With the schema transformation (or generation) capability, it makes sense now to pro-

vide the transaction translation capability. By transaction translation, we mean that

the database system which provides a new database schema can translate a transac-

tion written in a new data language in the new data model (of the database schema)

into an equivalent transaction in the data language of the database system (hosting the

database). Again, using the example in the previous section, we can now assume that

the hierarchical database system supports both relational and hierarchical database

schemas of the same database. The relational database user can now write the rela-

tional transactions in SQL, which are then translated into the equivalent hierarchical

transactions in DldI. The translated transactions can then be easily executed in the

hierarchical database system. The results in the hierarchical form can be viewed by

144

the relational user relationaUy via the relational schema.

We note that the transaction translation capability is not needed in the database

conversion approach to data sharing, because there are multiple, complete, mono-

model, and monolingual database systems in such a federation----one for each distinct

pair of data model and data language of the system. It is poss~le for each database

system with both schema transformation and transaction translation capabilities to be

multimodel and multilingual.

2.3 Architectures of Database Systems with Schema Transformation and
Transaction Translation Capabilities for Data Sharing, Using the schema-based
database system with the transaction translation capability, there are four different

ways, i.e., system architectures, to facilitate data sharing among federated, heteroge-

neous databases. They are termed

1. the single-model-and-language-to-single-model-and-language mapping,

2. the single-model-and-language-to-multiple-models-and-languages mapping,

3. the multiple-models-and-languages-to-single-model-and-language mapping,

4. the multiple-models-and-languages-to-multiple-models-languages mapping.

The notions and practicalities of these mappings in the light of the three requirements

of data sharing are examined in following sections. (See Section 1.3 for the three

requirements for data sharing.)

2.3.1 Single-Model-and-Language-to-Single-Model-and-Language Mapping. For
short, this approach is termed Single-ML-to-Single-ML mapping. In this mapping we

are concerned with the transformation of a database schema in one database model

into the database schema in another data model for the same database and the transla-

tion of transactions in one data language into equivalent transactions in another data

language. The mapping is used

�9 when one has a monomodel and monolingual database system in one depart-

ment and desires to support a database application based on data in a hetero-

geneous database in a different monomodel and monolingual database system

in another department;

�9 to refer to the data of the heterogeneous database by way of the user's familiar

data model and access and manipulate the database via the transaction written

in the user's familiar data language;

145

to allow the user to view the heterogeneous database as if it is a homogeneous

one, since a new schema in the user's familiar data model has been created for

the database;

to allows a user's transaction to be translated into the data language of the other

database system, causing the translated transaction to be executed against the

intended database there.

The results, i.e., output, of the transaction are, of course, in the form of the other data

model. However, the presence of the schemas here and there for the same database

allows the results to be transformed reversely from the other data-model form into the

familiar data-model form of the user.

Comparing the approach here with the database conversion approach in Section

2.1, we note one major difference: in the database conversion approach multiple

copies of a database are made and maintained, whereas in mapping only multiple

schemas are generated and maintained. The other major difference is that new soft-

ware must be developed for the conversion of a database in one data model to an

equivalent database in another data model. With this mapping we need the new soft-

ware instead for schema transformation and transaction translation without convert-

ing the database proper. In Figure 3, we depict two schemas---one hierarchical data-

base schema and one relational database schema for the same hierarchical database.

Comparing Figure 3 with Figures 1 and 2, we note the similarities. In addition, we

depict in Figure 4 two transactions--one hierarchical database transaction in DL/I

and an equivalent relational database transaction in SQL---against the same database

depicted by their corresponding schemas in Figure 3.

How many schema generators and transaction translators are needed in feder-

ated databases and systems with the Single-ML-to-Single- ML mapping in order to

achieve the maximum data sharing? Again, in referring to the previous example of a

federation of hierachical and relational databases and systems, there are two schema

generators: one for hierachical users of relational databases and one for relational

users of hierarchical databases. There are also two transaction translators: one for

the DI_~I-to-SQL translation and the other for the SQL-to-DL/I translation. In gen-

eral, we may conclude that if the heterogeneity of the federated databases is n, then

there are n(n-1) schema generators: one for each heterogeneous database, i.e., one to

make its databases looked like databases in other (n-l) data models and there are n

such heterogeneous databases. There are also n(n-1) transaction translators: two for

each pair of heterogeneous data languages.

146

Figure 3. Two Schemas for the Same Database

The hierarchical schema for the database depicted in Figure 1 is specified as follows:

((FILE, Course), (Course#, k-value), (Title, string), (Description, string))
((FILE, Prereq), (Pcourse#, k-value), (Title, string))
((FILE, Offering), (Date, k-value), (Location, string), (Format, string))

The relational schema for the relational database depicted in Figure 2 is specified as follows:

((FILE, Course), (Course#, k-value), (Title, string), (Description, string))
((FILE, Prereq), (Course.Course#, k-value), (Title, string))
((FILE, Offering), (Course. Course#, k-value), (Date, k-value),
(Location, string), (Format, string))

It is important to observe that, despite the fact that these two databases are in two different
models, respectively, their schema specifications are similar. In a schema specification,
we use a pair of parentheses to enclose a schema. We use a pair of angles to enclose
the attribute name and its value type. In addition to usual types, such as strings, integers,
characters, and floating-point numbers, there is the k-value for a value of the sequence field
or key. For the names of relations or segment types, the schema employs a special attribute:
FILE. Because a database is characterized by one or more schemas, it is composed of one
or more data aggregates, known to the database system as files.

We note that the absence of the anglized expression (Course.Course#, k-value) in

the hierarchical database system suggests that the "key" to the parent has been facilitated

physically by the pointer in the segment. On the other hand, the relational database does

not use pointers. The only way to "point" to the parent is by way of a key as specified in the

angUzed expression.

What is the necessary number of heterogeneous, schema-based, monomodel, and
monolingual database systems in federated databases and systems to achieve maxi-
mum data sharing? The answer to this question is straightforward; we follow the same
conclusion, i.e., to infer the heterogeneity, n, of the federated databases in the premise
as the number, m, of distinct and complete database systems in the federation. A fed-
eration of three heterogeneous databases and systems is depicted in Figure 5. In this
example, the heterogeneity is three, i.e., n = 3. Consequently, there are six (i.e., 3*2)
schema generators and six (3*2) transaction translators and three (re=n=3) database
systems. They are annotated in Figure 5 also.

147

Figure 4. Two Equivalent Transactions in Two Different Data Languages

Consider the following hierarchical transaction in DIJI:

GU Course (Title = Federated Databases and Systems)

Next GNP Prereq

GoTo Next

Consider the following relational transection in SQL:

SELECT Course#, Prereq.Title, Pcourse#

FROM Course, Prereq

WHERE Course.Course# -- Prereq.Course#

AND Course.Title = Federated Databases and Systems

Effects of the above two transactions should be the same, i.e., they should produce an

output of course numbers and titles of all the prerequisite courses for Federated Databases
and Systems.

There are subtle observations: 1. In the DIJI transaction, it is clear to the reader that

GNP means procuring every prerequisite course segment for the course entitled above. In

the SQLtransection, it is not so clearly stated, because no hierarchy of courses is reflected

by the order of statements. 2. One has to be subtle to note the difference between Pre-

req.Course# and Pcourse#; and between Course.Title and Prereq.Title. 3. The use of the

WHERE statement, Course.Course# = Prersq.Course#, may puzzle some novice users of

SQL.

We note that the Single-ML-to-Single-ML mapping provides excellent transpar-

ent accesses to heterogeneous databases in the federation. As depicted in Figure 5,

each user of local databases may view heterogeneous databases in other database sys-

tems as if they are homogeneous via their built-in schemas. The user can also write

transactions in the user's familiar language for the purpose of accessing and manipu-

lating data of other databases due to the presence of the transaction translators. As

long as the maximum number, n(n-1), of database schema transformers and the max-

imum number, n(n-1), of transaction translators are maintained in all the, n, hetero-

geneous database systems of the federation, no user will have any difficulty accessing
and manipulating data of federated databases.

148

Figure 5.
tems

A Federation of Three Heterogeneous Databases and Sys"

LOCATION Z

IlS

As the number, m, of heterogeneous database systems in a federation increases,

the number, n, of schema generators and transaction translators must increase also.

This increase may be significant, if we desire to provide maximum multimodel and

multilingual capabilities for federated database systems. If we let m be n, then the mul-

tiplicative significance is in the order of n*n. The large number of schema transform-

ers and transaction translators requires each heterogeneous database system to be-

come an operating-system-like database system for the management of its databases,

schemas, schema transformers, transactions, and transaction translators. Neverthe-

less, multimodel and multilingual capabilities can be realized in federated database

systems with the Single-ML-to-Single-ML mapping.

Since all the accesses to a database are facilitated locally by the local database

system and the shared data or databases have not been converted and copied onto the

other database systems, the local autonomy can be upheld easily and effectively by the

access and concurrency control mechanism of the local database system.

In this mapping, heterogeneous database schemas for the shared, local database

are managed by the local database system. Also in this mapping translated transactions

against the local database are executed in the local database system. Consequently, the

149

local database system can exercise controls over the viewing, access, and manipulation

of any of its databases.

However, as federated databases and systems, the lack of an overall access and

concurrency control mechanism for the federation is apparent. Thus, the remotely-

entered transactions being executed locally are treated as stand-alone transactions

independent from the transactions being executed in other federated database sys-

tems. The coordination and scheduling of inter-dependent transactions having been

remotely entered into and executed by the various federated database systems do not

exist. Consequently, the deadlock avoidance and detection may not be poss~le. In-

definite delays of remotely-entered transactions are also poss~le. As a multi-system

federation, the lack of such a global mechanism may be fatal to data sharing.

2.3.2 Multiple-Data-Models-and-Languages-to-Single-Model-and- Language Map-
ping. For short, we term this mapping Multiple-MLs-to-Single-ML mapping. Assum-

ing, for example, we have a relational database system with schema transformation and

transaction translation capabilities. We can generate, in addition to relational schemas

for its relational databases, hierarchical schemas for hierarchical users to access rela-

tional databases as if they are hierarchical databases, network schemas for network

users to access relational databases as if they are network databases, and so on. In

other words, the maximum data sharing is achieved in the relational database system

by providing (n-l) schema generators: one for each non-relational database schema,

and (n-l) transaction translators: one for each non-relational-to-relational transla-

tion. The complexity of federated databases and systems as opposed to the complex-

ity of those in the previous mapping is reduced by a factor of n. More specifically, the

number, m, of heterogeneous database systems in the federation is reduced to one

(i.e., m=l) . The number, n, of schema generators or transformers in the federation

is (n-l), not re(n-l) nor n(n-1) as in other mappings. The number, n, of transaction

translators in the federation is also (n-l). Since there is only one database system in

the federation, all the schema transformers and transaction translators reside in the

same database system, called the kernel database system. In fact, in this case the term,

federated databases and systems, is reduced to the term, federated databases and the

system. We note that the plural of"system" in the title of our tutorial becomes singular.

For this mapping, the impact of these two capabilities, i.e., schema transformation

and transaction translation, on both conventional and modern database systems is pro-

found. A conventional, schema-based, homogeneous database system can be modified

into the kernel database system of the federation and incoporate (n-l) schema gener-

ators and (n-l) transaction translators into the system in order to provide the user with

transparent accesses to heterogeneous databases in n different data models. Although

150

these databases are homogeneous in the data model of the kernel database system, the

heterogeneity is maintained and created over the homogeneous databases of the ker-

nel database system with the help of schemas, schema generators, transactions, and

transaction translators. The merits in using this approach to data sharing are many:

�9 We do not have to modify the other (n-l) database systems in the federation;

�9 we need only to create (n-l) sets of schemas and schema transformers, instead

of (n-1)(n-1) additional sets for other database systems;

* we need only to incorporate (n-l) transaction translators, instead of (n-1)(n-1)

additional translators for other database systems.

The only penalty in using this approach to data sharing in a federation of conventional

database systems is twofold: Existing heterogeneous databases residing on other data-

base systems must now be reorganized into equivalent databases in the data model of

the kernel database system. The reorganized databases and their associated schemas

must be loaded onto the database store of the kernel database system. All the con-

ventional database systems, except the newly modified kernel database system, must

be discarded.
For the modem federated databases and system, there is nothing to be reorganized

and reloaded, since databases, whether homogeneous or heterogeneous, are created

by the kernel database system. The mapping eliminates multiple, separate database

systems in the federation, i.e., the multi-system approach in the previous mapping; in-

stead, it relies on a single, kernel database system, whether centralized or distributed,

for the support of a collection of homogeneous databases. These databases can also

be viewed, accessed, and manipulated heterogeneously, because the kernel database

system provides additional schemas in other data models and translates transactions

in other data languages into the kernel data language of the system for execution. The

multiplicative reduction in the number of schema generators and transaction trans-

lators in this mapping makes this approach to data sharing extremely attractive. The

replacement of the conventional notion of using of a number of database systems, i.e.,

multi-system, in a federation with the modern notion of relying on only one kernel

database system in the federation, although attractive, requires new efforts. One is to

make a conceptual change from the multi-system approach to federated databases to

the kernel-system approach to federated databases. The other is concerned with the

design and implementation of the system architecture of the kernel database system
and its relationship with the schemas in different data models, schema transformers,

transactions in different languages, and transaction translators.

151

Figure 6. A Kernel Database System with its Model/Language
Interfaces r

|

O UDM : Us~ DataModel
Data Model UDL : UserDataLanguage

LIL : Language Interface Layer
I~vIS : Kca'ne, l Mapping System

O KC : Kernel Controller
Data Language 1~=8 : Kernel Formatting System

KDM : KernelData Model
KDr. : Kca'nel Data L a n ~ g e
KDS : KernelDataba.~ System

System Module

In Figure 6 we depict an experimental kernel database system which supports

homogeneous databases in the attribute-based data model and executes transactions

written in the attribute-based data language, ABDL. It supports heterogeneous data-

bases by way of schemas. At the present, it supports relational databases via relational
schemas, hierarchical databases via hierachical schemas, network databases via net-

work schemas, and functional databases via functional schemas. Designs have been
made to support the object-oriented databases with object-oriented schemas. Fur-
ther, it executes relational transactions in SQL against relational databases with the

help of the SQL-to-ABDL translator, hierarchical transactions in DL/I with the DI_/I-

to-ABDL translator, network transactions in CODASYL-DMLwith the CODASYL-

DML-to-ABDL translator, and functional transactions in Daplex with the Daplex-to-

152

Figure 7. A Relational Database in the Attribute-Based Form

A relational database specified in the relational notation:

Course(Course#, Title, Description)

Prereq(.Course.Course#, Pcourse#, Title)
Offering(Course.Course#, Date, Location, Format)

An equivalent attribute-based database specified in the attribute-based form:

((FILE, Course), (Course#, k-value), (Title, string), (Description, string>)
((FILE, Prereq), (Course.Course#, k-value), (Pcourse#, k-value), (Title, string>)
((FILE, Offering), (Course.Course#, k-value), (Date, k-value), (Location, string),

(Format, string))

Comparing the relational database, specified in the relational notation, and its equivalent

database, specified in attribute=based data model here, with the relational database in

Figure 2 and its schema in Figure 3, one notes that they are identical. This is not surprising,

because we use the same relational database. We use attribute-based notation to specify

not only the database illustrated here, but also any attribute-based data structure, such as

the schema, whether the schema is attribute-based or not. More specifically, in Figure 3

we use the attribute-based notation to specify both the relational and hierarchical schemas.

Thus, these two schemas, themselves, also form two attribute-based databases.

ABDL translator. Plans have been made to provide translators for transactions writ-
ten in an object-oriented data language so that they can be translated into ABDL The
pair of schema generator and transaction translator is termed the model/language in-
terface in Figure 6. Thus, there are the relational/SQL interface, the hierarchcal/DL/I
interface, the network/CODASYL-DML interface, and so on. Of course, we have the
native mode, i.e., the attribute-based/ABDL interface also. This experimental fed-
erated databases and system is therefore supported by an attribute-based database
system singularly, i.e., a kernel database system whose databases are in the attribute-
based data model and whose transactions are written in ABDL. The heterogeneity
of federated databases and transparent accesses to each heterogeneous database are
made possible by the model/language interfaces.

For example, a relational user creates a relational database in the federation by
using the data definition facilities of SQL to specify the database. The relational/SQL
interface of the kernel database system creates an equivalent attribute-based database
and its associated relational schema for the user. In Figure 7, we provide a database

153

Figure 8. Translating any SELECT-FROM Transaction in SQL into an
Equivalent RETRIEVE Transaction in ABDL

SELECT scL~'Ft_lL~

RETRIEVE

FR.OM table_name [WHERE boolean] [GROUP BY field_name]

query target_list ['BY attribute]

Translating any SELECT-FROM transaction with or without a WHERE or a GROUP-BY state-

ment in SQL to the equivalent RETRIEVE transaction in ABDL involves only two transla-

tion techniques: 1. By way of simple substitutions, denoted in S. 2. Simple composition,

denoted by C. Thus, SQL transactions can be readily translated into ABDL transaction in

real-time.

specification in SQL of a sample relational database, a relational database schema of

the sample database, and the logical organization of the database in attribute-based

form, i.e., the equivalent database in the attribute-based data model. If the relational

user desires to write an SQL transaction in order to access the relational database,

the relational/SQL interface is invoked again. In real-time the interface retrieves the

necessary relational schema, translates the SQL transaction into an equivalent ABDL

transaction, and executes the translated transaction against the equivalent attribute-

based database in the database store. If there are results to be routed to the relational

user, the relational/SQL interface uses the same relational schema, formats results

into the relational form from the attribute-based form, and routes relational results to

the relational user. Some sample SQL transactions for this database and their equiv-

alent ABDL transactions are included in Figure 8. We will not spell out algorithmic

details of the schema transformation and transaction translation of the relational/SQL

interface. (For more information, refer to Postscript.) As far as the relational data-

base user is concerned, this is apparently a relational database system. Transparent

accesses to federated databases have been achieved for the relational user.

154

Figure 9. Data-Diagram Specification of Hierarchical Database
and Attribute-Based Specification of Attribute-Based Database

As in Figure 7, we borrow the same hierarchical database specified in Figure 1 and its

schema specified in Figure 3 for this figure. Because the hierarchical database schema

is specified in the attribute-based notation, the schema itself is in an attribute-based data-

base. Further, it is the specification of an attribute-based database which is equivalent to

the hierarchical database specified in the data diagram.

CoRl'sc

I co=o# I i,,o I I

I I I IDa'ol Lo= on Format [

The following is an equivalent attribute-based database specified in the attribute-based

form:

((FILE, Course), (Course, k-value), (Title, string), (Description, string))
((FILE, Prereq), (Course.Course#, k-value), (Title,string))
((FILE, Offering), (Course.Course#, k-value), (Date, k-value),

(Location, string), (Format, string))

In Figure 9, we provide a database specification in DL/I as it is written by a hi-
erarchical user. The hierarchical schema of the database so specified, and the logical
organization of the equivalent attribute-based database are also depicted in Figure
9. In Figure 10, we illustrate the translation of hierarchical transactions in DL/I to
their ABDL equivalent. It is hoped that by these illustrations the role of the hierar-
chical/DL/I interface is clearly outlined. Again, considerable work on the translation
of DL/I transactions to their ABDL equivalent have been accomplished and imple-
mented for the interface. (The reader may refer to Postscripts for source informa-
tion.) With these illustrations, hierachical users have achieved transparent accesses to
federated databases.

Figure 10. A DL/I Transaction and its Equivalent ABDL Transaction

Consider the following hierarchical transaction in DL/I:

GU Course (Title = Federated Databases and Systems)

Next GNP Prereq

GoTo Next

The above DL/I transaction is translated into an ABDL transaction with two retrieve state-

ments. The place-holder for the output produced from the previous statement is marked

with a string of asterisks. With a place-holder, the output of one statement may become the

input of the next statement.

{ RETRIEVE

{RETRIEVE

((FILE = Course) and (Title = Federated Databases & Systems))

(Course#) BY Course#)

((FILE = Prereq) and (Course# = *****))

(Pcourse#, "Iatle) BY Pcourse#}

Similarly, we illustrate the working of the network/CODASYL-DML interface in

Figures 11 and 12. Thus, as far as network users are concerned, their accesses to

the federated databases and system are transparent. We will not illustrate the work-

ing of the functional/Daplex interface, although it has been implemented at this writ-

ing. Nevertheless, we illustrate the working of the object-oriented/OODL interface in

Figures 13 and 14. Although this interface has not been implemented, the proposed

design is presented herein at the suggestion of the referees of the paper. These are

efforts, e.g., of supporting an object-oriented-or-complex-data-model/data-language

interfaces on the attribute-based database system as their kernel.

The four previous examples of the relational, hierarchical, network or object-

oriented user to cream and access correspondingly a relational, hierachical, network or

object-oriented database in the federation do not refer to the possibilities that, for in-

stance, the relational user may desire to access the object-oriented database, relation-

ally. What we have illustrated are the interfaces that produce the following four types

of schemas: relational-to-attribute-based, hierachical-to-attribute-based, network-to-
attribute-based, and object-oriented-to-attribute-based. We have also illustrated ca-

pabilities of interfaces to provide four types of transaction translations: the SQL-to-

ABDL, the DL/I-to-ABDL, CODASYL-DML-to-ABDL, and OODL-to-ABDL Nev-

ertheless, we may need additional schema transformations or transaction translations

156

Figure 11. A Network Database and its Attribute-Based Equivalent
Following is a data-diagram specification of a network database. The many-to-many rela-

tionship between courses and offerings makes this a network database.

Couz'sc

I co= o. I Ti o I Do=p o~ I

Pr~q / Offer ing \ x~

I I rico I I D,,o I I Fo=at I
Following is an attribute-based specification of an attribute-based database (equivalent to

the above network database).

((FILE, Course),

((FILE, Prereq),

((FILE, Offering),

(DBKEY, key-value), (COURSE#,string),
(TITLE, string), (DESCRIPTION, string),
(MEM.DSchedule, owner-key-value),
(POS.DSchedule, sequence-value))
(DBKEY, key-value), (PCOURSE#, string),
(TITLE, string),
(MEM.Requirements, owner-key-value),
(POS.Requirements, sequence-value))
(DBKEY, key value), (DATE, integer),
(LOCATION, string), (FORMAT, string),
(MEM.CSchedule, owner-key-value),
(POS.CSchedule, sequence-value))

In order to capture network data constructs into the attribute-based database, a number

of conventions are introduced: 1. Instead of using attributes as keys, the network data-

base system uses a hashing algorithm to create a key for records. This system-generated

key is known as DBKEY of the record type. Thus, in the attribute-based specification of

the equivalent database, we make the key specification for each record type explicit. 2.

Owner-and-member relationship (parent-to-child relationship in the hierarchical database)

is facilitated by keys also. To distinguish from other keys, we concatenate the key attribute

with MEM. Key attributes are names of respective relationships. 3. Included in the net-

work data model is the position of a member record in a sequence of member records of

an owner. Thus, in addition to key-values for DBKEY and for "pointing" to the owner, we

introduce sequence-value. To distinguish the positional attribute from other attributes, we

concatenate the membership attribute with POS.

157

Figure 12. A CODASYL-DML Transaction and its ABDL Equivalent

Consider the following CODSAYL-DML statements:

MOVE Cleveland TO CITY IN SA

FINDANY SA USING CITY IN SA

Underlined, capitalized words are vocabularies of CODASYL-DML. Capitals without being

underlined are attributes or record types which are reflected in the network database. At-

tribute values are not capitalized, except in the case of character-string where the first letter

may be capitalized.

The following is an equivalent ABDL transaction of the above:

{ R E T R I E V E ((FILE = SA) and (CITY = Cleveland)) ALL BY DBKEY}

ALL is for the target list, indicating to list all the attribute values. (See Figure 8 for the syntax

of ABDL's RETRIEVE statement.) the BY-clause allows records retrieved to be sorted by

their DBKEY values.

or both, for instance, to allow the relational user to access an object-oriented database

relationally. Let us examine the necessary addition. As it turns out the addition in the

federated databases and system for this kind of mapping is minimal. The addition is

restricted to the addition of schema transformers. There is no need to add more trans-

action translators. Let us return to the previous example where a relational database

user desires to access a hierarchical database (actually, an attribute-based equivalent)

relationally. At this point of the example, the hierarchical-to-attribute-based schema

exists for the database. There is also two existing transaction translators - one cre-

ated earlier for the relational user, i.e., the SQL-to-ABDL translator, and the other

created also earlier for the hierarchical user, i.e., DL/I- to-ABDL translator. What

we need now is only a hierachical-to-relational schema transformer. With the new

schema transformer, we can then produce a relational schema for the intended hi-

erarchical database. This new schema is an intermediate schema which is fed to the

existing relational-to-attribute-based schema transformer. The output of the trans-

former is a relational schema of an attribute-based database which is equivalent to

the hierarchial database intended for the relational user. The presence of the new

relational-to-attribute-based schema for the hierachical database (i.e., an attribute-

based equivalent) enables the relational user to write SQL transactions for the pur-

pose of accessing and manipulating the hierarchical database (again, we recall it is an

158

F igu re 13. An Object-Oriented Database of Users

Object class: USERS

Attributes: USER IDENTIFIER

USER NAME

USER PASSWORD

Actions: Add-user

Drop-user

Change-password

Object class: R E G - - - U S E R S

Attributes: USER IDENTIFIER

USER NAME

USER PASSWORD

REGULAR-USER LIST

Actions: Add-user

Drop-user

Change-password

Verify-regular-user's-password

Object class: SUPERUSERS

Attributes: USER IDENTIFIER

USER NAME

USER PASSWORD

SUPERUSER LIST

Actions: Add-user

Drop-user

Change-password

Monitor-superuser's-access

Graphically, they are depicted in a two-level object-class hierarchy below:

Z /REGULAR-USERS

USERS

SUPERUSERS

We assume that named attributes in capital letters are defined in terms of primitive, built-

in attributes. We also assume that the named actions (methods) are defined in terms of
primitive, previously-defined actions of some given action composition rules. USERS are

the generalization of REGULAR-USERS and SUPERUSER$, the latter aspecialization of the

former. This is the inheritance property of the object-oriented data model.

159

Figure 14. Equivalent Attribute-Based Database for an Object-Oriented
Database

The following is the specification of an equivalent attribute-based database of the object-

oriented database depicted in Figure 13.

((FILE, USERS), (SKEY, key-value-for-the-generalized-object), (USER IDENTI-
FIER, key-value), (USER NAME, string), (USER PASSWORD, key-value), (Add-
user, key-value-for-an-action), (Drop-user, key-value-for-an-action), (Change-
password, key-value-for-an-action))

((FILE, REGULAR USERS),(GKEY, key-value-for-the-generalized-object),
(USER IDENTIFIER, key-value), (USER NAME, string), (USER PASSWORD,
key-value), (REGULAR-USER LIST, string), (Add-user, key-value-for-an-action),
(Drop-user, key-value-for-an-action), (Change-password, key-value-for-an-action),
(Verify-regular-user's-password, key-value-for-an-action))

((FILE, SUPERUSERS), (GKEY, key-value-for-the-generalized-object), (USER
IDENTIFIER, key-value), (USER NAME, string), (USER PASSWORD, key-value),
(SUPERUSER LIST, string), (Add-user, key-value-for-an-action), (Change-pass-
word, key-value-for-an-action),(Monitor-superuser's-action, key-value-for-an-
action))

We observe that the notion of generalization and specialization in the object-oriented data
model is realized in the attribute-based model by way of keys: GKEY for generalization and
SKEY for specialization. We also observe that there are two different key values. Key values
for attributes are intended for accesses to keyed attribute values. Key values for actions, on
the other hand, are intended not only for accesses to keyed actions, but also for executions
of the accessed actions.

Finally, we observe that there is no need to consider the translation of a transaction
written in an object-oriented data language (OODL) into an equivalent transaction in the
attribute-based data language (ABDL), because essential OODL constructs are embedded
in the object-oriented data model as actions (methods).

From this and previous figures, it is evident that an object-oriented/attribute-based inter-

face may be built for the purpose of supporting object-oriented databases on the attribute-

based database system as AB(Object-oriented) databases.

160

attribute-based equivalent in reality) as if it is a relational database. This subtle and

intriguing capability is termed the cross-model accessing capability. In Figure 15, we

illustrate the role of schemas and translators for the cross-model accessing capability in

the example. Let the heterogeneity of the federated databases be n, then, in addition to

(n-l) other-to-attribute-based transformers, there are (n-1)(n-2) cross-model schema

transformers. Although the number of transformers have increased noticeably, the

number of transaction translators remains the same, i.e., n.

The first type of transparent accesses to a heterogeneous database occurs when

a user creates a database in a data model which is not the native data model of the

system. For example, a relational database user desires to create a relational database

in the system whereas the native data model of the system is the attribute-based data

model. The system activates the relational/SQL interface which creates an equivalent

attribute-based database for the relational database specified by the user in SQL Let

us call the relational database, relational, and its equivalent attribute-based database,

AB(relational). The latter is, of course, heterogeneous to the relational user. How-

ever, due to the presence of the relational/SQL interface the relational user may view

the AB(relational) via the relational schema created for the database as if it is a rela-

tional database. Further, the relational user may write transactions in SQL which are

translated in real-time by the relational/SQL interface into equivalent transactions in

ABDL which in turn access the AB(relational). Thus, as far as the relational user is

concerned, the relational database is accessed by the user's SQL transactions. Trans-

parent accesses to the heterogeneous database, i.e., AB(relational), are achieved by

the presence of the interface. This type of transparent accesses allows the user to

create homogeneous databases in the user's familiar data model and to access these

databases with the user's familiar data language. The user is not required to learn the

data model and data language of the (kernel) database system in which the database

is created. Thus, the real database is heterogeneous to the user and homogeneous to

the system.

The second type of transparent accesses to a heterogeneous database occurs when

a user desires to share data of a database with others who are unfamiliar with the data

model of the database and the data language of the user. Obviously, the database is

heterogeneous to others. In order to make accesses to the heterogeneous database

transparent to others, the database system activates the appropriate schema trans-

former and model/language interface and creates the necessary schemas for other

users. For example (using the same example in the previous paragraph), if the re-

lational user desires to share data of the user's relational database with hierarchical

database users, the user may instruct the database system to provide transparent ac-

cesses to the database for hierarchical users. Since the system has cross-model capabil-

161

Figure 15. Cross-Model Accessing Capability

It is important to note that there are two existing model/language interfaces, Lli and LIj, in
this database system. Each model/language interface consists of a schema transformer
and a transaction translator. The schema transformer produces a schema of a database in
the user's familiar data model, say UDLi. The database is stored in the system's kernel data
model, KDM. The transaction translator translates the user's transaction from the user's
familiar data language into the system's kernel data language, KDL. The execution of the
user's transaction and access to the user's database are facilitated by the only database
system, the kernel database system (KDS).

To allow a user to access a heterogeneous database without learning the data model of
the database, the cross-modeling capability is provided. The model/language interface of

the heterogeneous database, say, LIj, provides the schema of the database as the input to
the database system. The system then produces a schema transformer which can transfer
the input schema into an equivalent schema of the heterogeneous database. The new
schema allows the user to view the database as if it is a homogeneous database in the
user's familiar data model, UDMi. The system also borrows the transaction translator of
the user's familiar data language, UDLi. The new schema transformer and the borrowed
transaction translater form the new model/language interface for the user. It is denoted as
Ll'i.

The subscripts i and j indicate the heterogeneity of data models and languages. With

the cross-model accessing capability, a user, i, can access and manipulate the database, j,

with the user's familiar data model, UDMi, and language, UDLi. The "price" for the system

to provide such a capability is rather small.

162

ity, it simply creates an additional schema for the AB(relational) database so that the

same database may be viewed as an equivalent AB(hierarchical) database. It is impor-

tant to note that there is only one database stored in the kernel-data-model form. The

database is seen differently in different models via different schemas for the same data-

base. Consequently, different data languages can be utilized to write transactions for

accesses and manipulations of the same database by way of their respective schemas.

This type of transparent accesses to heterogeneous databases in the federation allows

the user to continue in the user's familiar data model and language and to access other

heterogeneous databases as if they are homogeneous.

The multiplicity of data models and data languages supported in federated data-

bases are determined by the number of model/language interfaces available in the

system. They are also determined by the number and heterogeneity, n, of the hetero-

geneous databases in the federation. However, they are not determined by m hetero-

geneous database systems in the federation, since in this mapping there is only one
kernel database system, centralized or distributed, which "emulates" or "simulates"

heterogeneous and separate database systems.

Unlike the Single-ML-to-Single-ML mapping where the task of providing model/

language interfaces, i.e., schema transformations and transaction translations, is more

difficult, the task of providing model/language interfaces in this Multiple-MLs-to-

Single-ML mapping is easier. This is because in the former mapping we are concerned

with the schema transformation and transaction translation for each pair of m sepa-

rate and different database systems. There are m(m-1) such distinct model/language

interfaces at m different database systems.

On the other hand, in this mapping each pair of schema transformation and tram-

action translation is from a heterogeneous data model and language to the kernel data

model and language. Thus, if the heterogeneity of federated databases is n, there are

only n model/language interfaces and (n-1)(n-2) cross-model schema transformers in

the kernel database system. Such interfaces and transformers are also easier to facil-

itate, since they are all mapped into the same kernel data model and data language

in the same database system. Finally, they are easier to be managed and coordinated,

since they are activated by the same kernel database system (and not by m multiple

database systems as in the previous mapping).

Access and concurrency controls in this mapping rests with the kernel database

system. All the specifications for integrity constraints, application specificities, and

security requirements in any of data languages of the federation must be translated

into equivalent specifications in the kernel data language of the system. Again, the

translation is facilitated by the respective model/language interface. Thus, whether

or not the local autonomy of a heterogeneous database can be upheld depends on

163

two factors: (1) Can specifications written in a data language be faithfully translated

into equivalent specifications in the kernel data language of the system? (2) Will the

access and concurrency control mechanisms of the kernel database system be powerful

enough to carry out the intended constraints, specificities, and requirements?

The first factor is not unique to this mapping. In Section 2.3.1, we have pointed

out that if a user desires to access a heterogeneous database elsewhere in the feder-

ation, the user may specify the constraint, specificity, and requirement in the user's

familiar data language and submit them along with the user's transaction again writ-

ten in the user's familiar data language to the other system for execution. The schema

transformer and transaction translator of the other database system then translate the

specification and transaction into equivalent specification and transaction in the famil-

iar local data language of the other database system. Only transformed specifications

and translated transactions are executed by the other local database system. There,

the issue of "faithful" transformation and translation has been raised. If we replace

the words, other and lock with the word kernel, we face the same issue. In either case,

we have the benefit that the access and concurrency control mechanism rests with the

local or kernel database system.

How can we build a most powerful set of access and concurrency control mech-

anisms in the kernel database system so that all the access and concurrency control

specifications can be carried out by the same set of mechanisms? Here, the issue is

simpler than the one in Section 2.3.1, since in that section the mechanisms, if found,

must be duplicated or instrumented for all the other local database systems. Here, we

need only to build one for the kernel database system. The triggering mechanism for

the invocation of integrity constraints, the subschema mechanism for the specification

of application specificities, the query-modification mechanism for the access control

of secured data, and the concurrency control mechanism for concurrent accesses to

databases can be built into the kernel database system. Access and concurrency con-

trol mechanisms of the kernel database system, whether centralized or distributed,

becomes the access and concurrency control mechanism of federated databases and

the system. The need of a set of global mechanisms, as in the case of the multi-system

federation discussed in section 2.3.1, is not felt here. The access and concurrency con-

trol mechanism of the kernel-system of the federation is the "global" mechanism of

the federation.

For instance, by extending the attribute-based data model, the schemas of the

attributed-based databases, the kernel database system supports the multi-level se-

cured databases - -a requirement of the U.S. DoD. We also found that the query-

modification of the kernel database system can effectively and efficiently replace the

view mechanism used in the relational database system for the access control of rela-

164

tional databases. In other words, it is possible to translate the access control specifica-

tion in SQL based on the view mechanism into the equivalent specification in ABDL

based on the query-modification mechanism of the kernel database system and control

subsequent accesses to AB(relational) databases. (See Postscript for further informa-

tion.) Using the kernel database system to provide centralized or distributed access

and concurrency controls in a federation, to emulate heterogeneous databases and

systems in the federation, and to uphold their local autonomies with a set of kernel-

ized mechanisms suggests that this is a case of strongly federated databases and their

system with effective access and concurrency controls.

2.3.3 Single-Data-Model-and-Language-to-Multiple-Data-Models-and-Languages
Mapping. We use the term, for short, Single-ML-to-Multiple-MLs mapping. With a

user's familiarization of a universal data model and a universal data language, feder-

ated database systems allow the user to write transactions in the universal data lan-

guage for the purpose of accessing heterogeneous databases in the federation as if

they are in the universal data model. They are called universal because they are the

only pair of data model and data language that provides transparent accesses to each

and every heterogeneous database in the federation. For example, a relational data-

base user in this federation may not refer to a hierarchical database relationally. Nor

may the relational user to access the hierarchical database by writing a transaction in

SQL. Instead, in this approach to data sharing the relational user learns the universal

data model and language which allow the user to refer to the hierarchical data via the

universal data model and to access the hierarchical database by writing a transaction

in the universal data language.

It is also understood that none of the federated databases is in the universal data

model (thus, the data model is conceptual or virtual) and none of the existing data lan-

guages resembles the universal data language (thus, the language may be more user-

friendly and model-independent). The universal data model and language are pro-

vided to a user solely for the user's transparent accesses to heterogeneous databases

in the federation. For this reason, they are also called the global data model and global
data language of the federation. The mapping allows a user to view a heterogeneous

database via the global-data-model form and not to be aware of the data model of

the heterogeneous database. Accesses to the database can be facilitated by a trans-

action written in the global data language. The mapping translates the transaction

into an equivalent transaction in the data language of the database system hosting the

database. Since this is a multi-system federation, there are many different data lan-

guages. The mapping is capable of translating the same transaction in the global data

language into one or more equivalent transactions in one or more data languages of

165

heterogeneous database systems, respectively. In other words, the user needs to learn

only the universal, global data model and language for transparent accesses to all the

heterogeneous databases.

The CCgs Multibase, for example, provides a new data model and language with

certain simple and, yet, powerful expressions where the data model can characterize

data in a number of heterogeneous databases and the data language can retrieve them

for viewing, despite the fact that the user is not familiar with any of the data models

and languages of heterogeneous databases in the federation. Browsing and retrieval

of shareable data among heterogeneous databases are possible through Multibase. Its

mapping essentially translates each transaction written in Multibase into an equivalent

transaction in the data language of the heterogeneous database system which hosts the

database. The mapping also transforms the data structures specified in the Mult~ase

transaction into the data structures of the database in the data model of the database

system. As far as the Multibase user is concerned, all the heterogeneous databases in

various database systems of the federation are homogeneous, since they can be viewed

and retrieved in the Multibase form.

The transparency of heterogeneous databases in the federation is achieved for

those and only those Multibase users in the aforementioned example. In other words,

if one is to enjoy the benefit of transparent accesses to heterogeneous databases, one

must learn the data model and data language of Multibase. Otherwise, one cannot ac-

cess a heterogeneous database in one's familiar data model and data language, unless

those model and language happen to be the universal, global data model and language.

For example, a relational database user must learn Multibase for the purpose of ac-

cessing a hierarchical database in the federation. One may question the wisdom of

learning Multibase, in lieu of the hierarchical language, DL/I, in this example, because

the relational database user can certainly learn DL/I for greater manipulations of and

more direct accesses to the hierarchical database. The benefit of learning Multibase

is that Multibase can map its data structure to several equivalent ones, each of which

is in a distinct data model. Similarly, Multibase can translate a Multibase transaction

into several equivalent transactions, each of which is in a different data language. For

instances, a Multibase user may write a Multibase transaction to access a relational

database without using SQL and a hierarchical database without using DL/I. Trans-

parent accesses to heterogeneous databases for the Multibase user are achieved in

this mapping.

Whenever a new heterogeneous database, i.e., a database in a new data model or

data language, is introduced into the federation, it is necessary to extend the Multibase

capability by adding a new mapping--one that maps the Multibase data structures

to the ones in the new data model or the Multibase transaction into the equivalent

166

transaction in the new data language or both.

What about existing database users, for example, users of relational, hierarchical,

network, functional, and object-oriented databases who desire accesses to databases in

other data models? There are two methods: One is to learn the other data models and

their corresponding languages; the other is to learn Multibase. Thus, Mult~ase serves

as the global data model and language for the purpose of accessing the heterogeneous

databases in other localities. There is no need for the Mult~ase user to learn local

data models and languages in the federation which may be many.

Although the federation of heterogeneous databases by definition supports mul-

tiple data models and multiple data languages, the federation in terms of data sharing

among heterogeneous databases is monomodel and monolingual. To share data scat-

tered in heterogeneous databases, the user mustlearn a global data model and use a

global data language. An analogy can be found in Esperanto---an artificial language

proposed in 1887 for communications and diplomatic exchanges among all people

in the world. Obviously, Esperanto is a global language whereas English, Chinese,

and other natural languages are local languages. This mapping does not require each

database system to support the multimodel and multilingual capabilities. Instead, this

mapping requires each system to be bimodel and bilingual, i.e., to support both the

global and local data models and languages at each locality, i.e., the local database

system. Here, different localities, i.e., different heterogeneous database systems, have

different local data models and languages.

On issues of local autonomy, this mapping is similar to the Single-ML-to-Single-

ML mapping with perhaps one subtle difference. In the Single-ML-to-Single-ML

mapping, access and concurrency controls were specified in a local data language and

the enforcement of controls is facilitated by the local access and concurrency control

mechanism. However, there was the concern of the global coordination of concurrent

accesses to heterogeneous databases, since there was the lack of a global access and

concurrency control mechanism for the federation with the Single-ML-to-Single-ML

mapping.

Here, in the federation with the Single-ML-to-Multiple-MLs mapping, we have a

global data model and a global data language. The question is therefore whether or not

the specification for access and concurrency controls of heterogeneous databases can

be made in the global data model and language thereby obviating the lack of a global
mechanism in carrying out the global specification? The question can be re-phrased as
follows: whether or not the global specification of the access and concurrency control
requirements can be facilitated by a federation of heterogeneous, local access, and

concurrency control mechanisms? The answer is likely no, since the availability of

global specifications is no substitute for the absence of a global mechanism. Thus, in

167

this mapping, issues on deadlocks and indefinite delays over concurrent accesses to

heterogeneous databases by "global" transactions persist.

2.3. 4 Multiple-Data-Models-and-Languages-to-Multiple-Data-Models-and-Lan-
guages Mapping. Finally, we have, for short, Multiple-MLs-to-Multiple-MLs map-
ping. This is perhaps the most complicated approach to data sharing. It may be

considered as a two-stage mapping, or two mappings--one after the other. The first

one is a Multiple-MLs-to-Single-ML mapping which is followed by a Single-ML-to-

Multiple-MLs mapping. Since the single model and language used in the two mappings

are intermediate, the net result of the two mappings is therefore a Multiple-MLs-to-

Multiple-MLs mapping. Let us first elaborate the two-stage mapping process by way

of an example; we then suggest an intermediate data model and data language in the

process.

Access transparency is achieved in the same ways that the Multiple-MLs-to-Single-

ML mapping and the Single-ML-to-Multiple-MLs mapping have achieved their re-

spective transparent accesses to heterogeneous databases. The question here is how

the two mappings are combined in a back-to-back way. This is discussed in the fol-

lowing. The question--why is there the need of an intermediate data model and data

language for the mapping?--will be addressed later.

Unlike the Multiple-MLs-to-Single-ML mapping, where the semantics of the sin-

gle data model and language is more primitive than the semantics of each pair of the

multiple data models and languages, the single data model and language used in the

first stage of this mapping are rich in semantics. Very likely, all the data structures of

databases and language constructs of data languages of federated databases and sys-

tems are subsumed by the characterization and specification capabilities of the single

data model and language. This is the first difference in using the Multiple-MLs-to-

Single-ML mapping here.

The second difference is that there is not a kernel database system here to sup-

port the databases in the single data model and to execute transactions written in the

single data language. Like the global, universal data model and language discussed

in the Single-ML-to-Multiple-MLs mapping, the single data model and language is

conceptual and virtual. There is no database system, kernelized or not, to support

the model-based databases. In fact, there are no databases in the single data model
used in this mapping. The use of the single data model and language is solely for the

characterization and specification of the heterogeneous databases in the federation.

The second stage of the process is of the Single-ML-to-Multiple-MLs mapping.

Here, the semantic-rich, single data model and language are used as the global, uni-

versal data model and language of the mapping. Thus, the second stage of the pro-

168

cess is identical to the Single-ML-to-Multiple-MLs mapping discussed in Section 2.3.3.

A proposal has been made to use the entity-relationship data model and the entity-

relationship-based data language (called ER and ERL, respectively), as the single data

model and language of this mapping.

In the first stage, for example, if a relational database user desires transparent ac-

cesses to a hierarchical database, the user's relational specification of the shared data

in a hierarchical database will be transformed by the mapping into an equivalent ER

specification, i.e., in the ER data model and language, of the hierarchical database. To

access the hierarchical database, the user's relational transactions written, for exam-

ple, in SQL are translated into equivalent transactions in ERL, i.e., the ER data lan-

guage. Obviously, in this example, the relational-to-ER schema transformation and

the SQL-to-ERL transaction translation have taken place. If the heterogeneity of the

federated databases is n, then there are n sets of schema transformers and transaction

translators.

In the second and last stage for the same example, the ER schema and ERL trans-

actions created for the relational user are now converted into the equivalent hierar-

chical schema and DL/I transactions. Again, we need the schema transformer and

transaction translator--one for the ER-to-Hierarchical schema transformation and

the other for the ERL-to-DL/I transaction translation. Since there are n heteroge-

neous databases in the federation, there is the need of n sets of schema transformers

and transaction translators whose transformations and translations are from the ER

and ERL to the local data models and languages, individually. They are the reverse of

those n transformers and translators mentioned in the previous paragraph.

In summary, this mapping requires 2n, i.e., (n+n), sets of transformers and trans-

lators, as opposed to n(m-1) sets in the Single-ML-to-Single-ML mapping. The ad-

ditional benefit of this mapping is a significant saving of transformers and translators

over the multiplicative benefit of the latter mapping. On the other hand, the number,

2n, as opposed to the number, (n-l), of transaction translators in the Multiple-MLs-to-

Single-ML mapping is still two times greater, although it is much less then the number,

(n-1)(n-2), of schema transformers needed in the latter mapping. Finally, this map-

ping, although it utilizes a single data model and language in the two-stage process,

it has not reduced the multi-system federation to a kernel-system, i.e., single-system,

federation. There are still m heterogeneous database systems in the federation.

The Role of the Intermediate Data Model and Language. Although the use of an inter-
mediate data model and an intermediate data language in this mapping may reduce

the number of schema transformers and transaction translators needed for the max-

imum data sharing in the federation, the original intent for their usage is access and

169

concurrency controls. Since transparent accesses can only take place after the second

stage of the mapping process, the mapping can validate the access request against the

integrity constraint, application specificity, and security requirement of the given data-

base at the end of the first stage of the mapping process. To facilitate the validation,

the request, constraint, specificity, and requirements are all specified in, i.e., translated

into, the intermediate data model and language. As long as the transformation and

translation preserve the semantics of the user's request, constraint, specificity, and re-

quirement (specified in the user's data model and language) in the semantics of the

intermediate data model and language, the role of the intermediate data model and

language in access and concurrency controls of the two-stage process is important and

necessary.

We recall in Section 2.3.2, where the Multiple-MLs-to.Single-ML mapping has

been elaborated, there is also a common data model and language of federated data-

bases for access and concurrency controls; i.e., the kernel data model and kernel data

language, e.g., the attribute-based data model and ABDL. Here, for the Multiple-

MLs-to-Multiple-MLs mapping, we use a common data model and language also; i.e.,

the intermediate data model and language, e.g., the ER data model and ERL. How-

ever, there are two important and subtle differences elaborated in the following sec-

tions.

Multimodel and Multilingual Capabilities of Federated Database Systems. There can

be as many new data models and new data languages as in the other mappings, pro-

vialed that each time a new set of data model and language is introduced to the feder-

ation, two sets of schema transformer and transaction translator are incorporated into

the federated systems---one set for the new-ML-to-intermediate-ML transformation

and translation and the other for the intermediate-ML-to-new-ML transformation and

translation.

However, these multimodel and multiligual capabilities are provided with a more

elaborate process, i.e., in two stages whereas in the Single-ML-to-Single-ML map-

ping process there is only one stage. Even the cross-model accessing capability of the

Multiple-MLs-to-Single-ML mapping, although a two-stage process is required in the

schema transformation, does not require an additional stage for the transaction trans-

lation. This is the first difference of this mapping with others.

Local Autonomy of each Heterogeneous Database in the Federation. The use of a com-

mon, intermediate data model and language such as the ER data model and ERL (the

object-oriented data model and laguage have also been proposed for this purpose) is

desirable for the specification and validation of the access and concurrency controls.

170

However, unlike the access and concurrency control specification and validation of the

Multiple-MLs-to-Single-ML mapping where there is a kernel access and concurrency

control mechanism to enforce the specification and to perform the validation, there is

not an access and concurrency control mechanism, kernelized or not, present for the

ER and ERL specification and validation. To enforce the specification, the ER and

ERL must first be translated into the local data model and language of a local database

system. To perform the validation, the access and concurrency control mechanism of

the local database system must check the translated specification against data in the

local database. Thus, the autonomy of each local database is upheld by the local access

and control mechanism.

However, for concurrent accesses to databases in different localities and in differ-

ent database systems, the federation can not rely on a federation of local mechanisms.

In other words, it may be necessary to have a common data model and a common

data language to specify the integrity constraints, application specificities, and secu-

rity requirements. It is not sufficient if in the federation there is not a common access

and concurrency control mechanism, centralized or distributed, to enforce these spec-

ifications. The use of a federation of local mechanisms, in lieu of the common one,

will not be sufficient to have deadlock-free accesses to heterogeneous databases in the

federation. This is the second difference of between this mapping and the Multiple-

MLs-to-Single-ML mapping. In fact, this is the common issue in the multi-system

federation. On the other hand, the Multiple-MLs-to-Single-ML mapping does not

produce a multi-system federation; it, instead, produces a single-system.

2.4. A Summary of Issues and Approaches to Data Sharing. In Table 2, we tabu-

late the pros and cons of the five approaches to data sharing of the federated databases.

The pros and cons are highlighted against three requirements of data sharing: tram-

parent accesses to heterogeneous databases, multimodel and multilingual capabilities,

and the local autonomy of each heterogeneous database in the federation. Where their

approaches to one of requirements have about the same effectiveness, we try to show

their software complexities in their support of the effectiveness. Obviously, to achieve

the same effectiveness, we favor the approach with the least amount of software com-

plexity. In referring to Table 2, we prefer the Multiple-MLs-to-Single-ML mapping

for data sharing among federated, heterogeneous databases, because it has more pros

and less cons.

3. Concluding Remarks on Data Sharing

In Part I of this tutorial we have pointed out that the proliferation of heterogeneous

171

Table 2. Merits and Limitations of Five Database Systems

For DATA

SHARING

Database

Conversion

Approach

Single-ML

-to-

Single-ML

Mapping

Multiple-MLs

-to-

Single-ML

Mapping

Single-ML

-to-

Muitiple-MLs

Mapping

Multiple-MLs

-to-

Multiple-MLs

Mapping

Copies of same

databases y(demerit) n n n n

One-time data

base reload y(demerit) n y n n

Schema trans-

formation &

management n h(demerit) m I I

Transaction

transformation n h I(merit) I m

T & T process n one(merit) one one two

System multi- multi- kernel- multi- multi-

requirement system system system system system

Kernel or

intermediate

model/ language n n y(merit) n y

Learn new

model/ language n n n y(demerit) n

Muit imodel &

muitil ingual

capabilities I I h(merit) I h

Local

autonomy I h(merit) h h h

Access &

concurrency

controls I I(demerit) h I I

(y = yes; n = no or not applicable; I = low or not available; m = medium; h = high or highly
available. In the case of schema transformation and management, the h indicates a high degree
of software complexity which is a demerit. On the other hand, h in the case of muit imodel and
muitil ingual capabilities is a merit. To aid the reader, we place term "demerit" or "merit" after
either a y, h, or I.)

172

databases and database systems is likely to continue and accelerate. This is partly due

to our desire to replace traditional data processing with modern database systems.

It is also due to our desire to introduce new data-intensive and data-voluminous ap-

plications. As monomodel-and-monolingual database systems proliferate, it is likely

that in a large organization several monomodel-and-monolingual database systems for

diverse applications may be used for organizational information needs. The interop-

erability of these heterogeneous databases and database systems becomes necessary

for overall data sharing. It also creates the issues of software complexity, access con-

trois, and concurrency controls. In spite of these needs and issues, the organization

must uphold the local autonomies of individual database systems and their databases.

Otherwise, data sharing will be met with resistances.

In the context of these problems, needs, and complexities, a number of software

solutions for data sharing emerges: the Database Conversion approach, Single-ML-to-

Single-ML mapping, Multiple-MLs-to-Single-ML mapping, Single-ML-to-Multiple-

MLs mapping, and Multiple-MLs-to-Multiple-MLs mapping. These are software-

system solutions and are summarized in Table 2. In examining these solutions, the

most promising system architecture for data sharing in federated databases and sys-

tems appears to be based on the the Multiple-MLs-to-Single-ML mapping. The other

solutions have the following issues.

3.1. Technology Issues. To accommodate a high degree of heterogeneity in the fed-

eration, there is the necessity of running many heterogeneous database systems and

their databases in many separate computers as in the database conversion, Single-

ML-to-Single-ML, Single-ML-to-Multiple-MLs, and Multiple-MLs-to-Multiple-MLs

approaches. Our technology has not matured enough so that we can configure a large

number of computers (of the same or different makes) for data sharing. Consequently,

data sharing with any one of the aforementioned software solutions reduces the het-

erogeneity into a small number, e.g., all the present heterogeneous database systems

and their databases in a federation are either birnodel and bilingual.

The belief that a single, all-powerful, all-embracing data model and language can

provide transparent accesses to federated, heterogeneous databases and restrict trans-

parent accesses to those who would learn it (as in the Single-ML-to-Multiple-MLs

mapping) is not well grounded in technology. Consider the following historical anal-

ogy. The development of data structures and their programming languages has had

a longer history than the development of data models and their data languages. And

yet, we have not seen a single, all-powerful, all-embracing programming language and

its data structures which can replace or subsume the multitude of programming lan-
guages and their data structures. The requirement of every user to learn a powerful,

173

new set of data model and language will hinder our effort in data sharing. This kind

of transparent accesses to shareable databases is overly restrictive and cumbersome.

Going through an intermediate data model and language for the purpose of ac-

cessing heterogeneous databases and systems in the federation (as in Multiple-MLs-

to-Multiple-MLs mapping), although technologically feasible, requires a two-stage

mapping process and three sets of data models and languages. The software complex-

ity and mapping complications may prevent this mapping to be realized in federated

databases and systems.

The development of schema-based database systems, schema transformers, and

transaction translators is within the current state of the art. However, it is not clear

whether or not the technologist will strive for more schema-based database systems

with multimodel and multilingual capabilities. Some technologists are still produc-

ing stand-alone, monomodel, monolingual database systems and looking for an all-

powerful, all-embracing data model, data language, or database system for all present

and foreseeable database applications. To overcome their bias, it is necessary to have

a conceptual breakthrough, not just a technology breakthrough.

3.2. Research I s sues Although the database conversion approach to data sharing

is not the one researchers should pursue, this is the current thrust for developing fed-

erated databases and systems. We should assist in alleviating complications arising in

this area of research. Thus, some research topics on this approach are also articulated

here.

3.2.1. Simultaneous Accesses to Multiple Copies of the Same Database. For the
database conversion approach to data sharing where multiple copies of the same data-

base are generated for multiple, separate database systems, there is a need to inves-

tigate a multi-system mechanism for access and concurrency controls of simultane-

ous accesses and manipulations of copies of the same database. The research issue

becomes more complicated if these heterogeneous database systems and databases

(copies or otherwise) are supported by separate computers. Thus, instead of coming

up with a multi-system mechanism for a single computer, we now must come up with

a multi-system mechanism on multiple computers.

3.2.2. Schema Transformation, Schema Management, and Transaction Translation.
One issue of schema-based systems is schema transformation and the other is trans-

action translation.

In Multiple-MLs-to-Single-ML mapping, we may be searching for an "Meal" ker-

nel data model and language so that the necessary mapping efforts from the existing

174

and new data models and languages into kernels may be facilitated. Further, the ker-

nel data model and language are conducive to the construction of an efficient kernel

database system.

The transformation algorithms for a pair of data models and translation algorithms
for a pair of data languages must be worked out so that data and language semantics

are preserved.

For other mappings, we may look for an automatic transformer-and-translator (t&t)

generator. Since many pairs of schema transformer and transaction translator are

needed in the federation, the presence of a "compiler-compiler" will save consider-

able manual development work for such pairs. What we would like to have is a t&t

generator. By giving the formal specification of the data model of a database to the

t&t generator, the formal specification of the other data model, and the equivalence

table of data constructs (as illustrated in Table 1) equivalent in both data models, the

t&t generator can produce a schema transformer which will accept any schema of the

database and produce an equivalent schema in the other data model for the database.

By giving the formal specification of the data language of a database system to the t&t

generator, the formal specification of the data language of the other database system,

and the equivalence table of language constructs equivalent in both languages, the

t&t generator can produce a transaction translator which will accept any transaction

written in the data language of the database system and translate into an equivalent

transaction in the data language of the other database system.

The other issue may be schema and transaction management. As the number of

schemas and transactions increase greatly in the federation, any change in a database

may have an effect on the make-up of existing, individual schemas and transactions. In

other words, some of the schemas may have to be modified and transactions translated

again. The former issue is similar to the issue of view management in the relational

database system. We can certainly borrow or generalize some results from there. The

latter, can easily be resolved if we make our transaction translators to bereal-time trans-
lators and do not allow any transaction to be cataloged in its object-or-load-module

form. In this way, every transaction will have to be translated in real-time, no matter

how frequent or long they will be used by the database system. Our research is there-

fore to seek the most etlicient and effective real-time translation techniques. Together,

these issues are also referred to as the integration issues of schemas and transactions.

In Multiple-MLs-to-Single-ML mapping, there is an access and concurrency con-

trol mechanism in the kernel database systent Since all the heterogeneous databases

in the federation are supported by the kernel database system, the research issue is

therefore whether the kernel mechanism can uphold the individual autonomy of each

heterogeneous database of the federation.

175

In the other three mappings, the absence of a kernelized access and concurrency

control mechanism is evident. Further, they have resulted a multi-system architec-

ture. To avoid deadlocks or indefinite delays in concurrent accesses to heterogeneous

databases, we need some kind of coordination and scheduling among the autonomous

local controls. Can we forgo the construction of a kernelized, multi-system mechanism

for the coordination and scheduling, and rely solely on some kind of global specifi-

cations for local controls? If the answer is no, then what kind of "global" mechanism

or mechanisms should we propose? Or, is there no hope to coordinate autonomous

local controls in a multi-system environment by an overall mechanism? These are the

open questions.

Postscripts

The author would like to thank (Heimbigner, 1985) for the articulation of the notion

of federated architecture. Although the author is told that Manning and his colleagues

have used the term for distributed operating systems in a paper in 70's, the author is not

aware of that article. In any case, on the basis of (Hsiao, 1989), a precise definition and

necessary requirements for federated databases and systems are given in this tutorial for

the first time. An extended abstract of the tutorial is published in (Hsiao, 1990).

In order to review the entire field of federated databases and systems and cite

most of the past work on the subject matter, a taxonomy of issues and solutions is

needed, so that we may place our problems and results in perspective. The taxonomy

was first proposed in (Hsiao, 1989) and expanded herein. We make no citation of

papers on classical data models and languages such as relational data model and SQL

Nor do we make references to papers on commercial products, classical work, and

development efforts. We only refer to published research papers, technical reports,

and theses. Since the database conversion approach to data sharing is a part of the

present technology, we have no reference on it either. Thus, papers in the proceedings,

books, and journals cited below are for the other four mappings.

For the Single-ML-to-Multiple-MLs mapping, see (Rosenberg, 1982). For Mul-

tiple-MLs-to-Multiple-MLs mapping, read (Cardenas, 1987). For Multiple-MLs-to-

Single-ML mapping, see (Demurjian, 1985, 1987, 1988). Since the Single-ML-to-

Single-ML mapping is a special case of other mappings, there is no need to have its

own references. What we need are references on the many, specific schema transfor-

mations and transaction translations. On the relational data model and/or language

to/from the hierarchical data model and/or language, see (Meng, 1990). On the re-

lational data model/language to/from the network data model/language, see (Demo,

176

1985; Katz, 1982; Larson, 1983). On the functional data model/language to/from
the attribute-based data model/language, see (Buneman, 1979, 1984; Goisman, 1985;

Mack, 1992; Shipman, 1981). On the objected-oriented data model/language to/from

relational data model/language, see (King, 1984; Wu, 1989: Zaniolo, 1984). On the

objected-oriented data model/language to attribute-based data model/language, see

(Hogan, 1989). On the relational data model/language to attribute-based data model/
language, see (Kloepping, 1985; Rollins, 1984). On the hierarchical data model/lan-
guage to attribute-based data model and language, see (Benson, 1985; Weishar, 1984).

On the network data model/language to attribute-based data model/language, see

(Antony, 1985; Wortherly, 1985). On cross-model accessing capability, for instance,

accessing hierarchical databases with SQL transactions, see (Zawis, 1987).

On access and concurrency control mechanisms for federated databases and sys-

tems, see (Du, 1989a, 1989b; Elmagarmid, 1990). There are also several papers on

the same issue in (Gupta, 1989; Scheuermann, 1989). On the use of a kernel access

control mechanism for supporting external security requirements and policies such
as the relational views and the U.S. DoD multilevel security, the reader may refer to

(Hoppenstand, 1989, Hsiao, 1991).
There are many related issues on federated databases and systems, the reader is

encouraged to browse through some of the articles in (Gupta, 1989; Scheuermann,
1989), and some of the recent publications such as (Kamel, 1990; Wang, 1990).

It is important to note that the conclusion and references in this paper relate to

Part I of this tutorial on data sharing in federated databases and systems. Part II con-

cerns resource consolidation in federated databases and systems which has its own

conclusion and references. Part II will appear in a future issue of this journal.

Acknowledgments

The work reported here is supported by funds from NPS, NPMTC, and NRL. The

author would like to thank the referees for their recommended changes.

References

Antony, J.A. and Billings, A.J. Implementation of the Network/CODASY-DML Inter-

face for the Multilingual Database System, Master's Thesis in Computer Science,

Naval Postgraduate School, Monterey, CA, December 1985.
Benson, TE and Wentz, G.L Implementation of a Hierarchical/DL/I Interface for

the Multilingual Database System, Master's Thesis in Computer Science, Naval

Postgraduate School, Monterey, CA, June 1985:

177

Buneman, O.P. and Frankel, R.E. FQL---A Functional Query Language, Proceedings
of the 1979 ACM SIGMOD Conference, New York: ACM Press, 1979.

Buneman, O.E and Nildail, R. The Functional Data Model and its Uses for Interaction
with Databases, Conceptual Modeling, New York: Springer-Verlag, 19~

Cardenas, A.E Heterogeneous Distributed Database Management: The HDDBMS,
Proceedings of the IEEE, 75:5, 1987.

Demo, G.B. and Kundu, S. Analysis of the Context Dependency of CODASYL Find-
Statements with Application to Database Program Conversion, Proceedings of the
1985ACM SIGMOD Conference, New York: ACM Press, 1985.

Demurjian, S.A. and Hsiao, D.IC New Directions in Database-Systems Research and
Development, Proceedings of the International Symposium on New Directions in
Computing, Washington, D.C.: IEEE Computer Society Press, 1985.

Demurjian, S.A. and Hsiao, D.K. The Multilingual Database System, Proceedings of
the Third IEEE International Conference on Data Engineering, Los Angeles, CA,
1987.

Demurjian, S.A. and Hsiao, D.IC Towards a Better Understanding of Data Models
through the Multilingual Database Systems, IEEE Transactions on Software Engi-
neering, 14:7, 1988.

Du, W. and Elmagarrnid, A.IC Quasi Serializability: A Correctness Criterion for
Global Concurrency Control in InterBase, Proceedings of the Fifteenth International
Conference on Very Large Databases, Brisbane, Australia, 1989a.

Du, W. et al. Effects of Local Autonomy on Global Concurrency Control in Heteroge-
neous Distributed Database Systems, Proceedings of the Second International Con-
ference on Data and Knowledge Systems for Manufacturing and Engineering, New
York, 1989b.

Elmagarmid, A.K. and Du, W. A Paradigm for Concurrency Control in Heterogeneous
Distributed Database Systems, Proceedings of the Sixth IEEE International Confer-
ence of Data Engineering, Washington, D.C., 1990.

Goisman, EL. Design and Analysis of a Complete Functiona!/Daplex Interface for
the Multilingual Database System, Master's Thesis in Computer Science, Naval
Postgraduate School, Monterey, CA, December 1985.

Gupta, A., ed. Integration of Information Systems: Bridging Heterogeneous Data-
bases, The IEEE Press Selected Reprint Series, Washington, D.C.: IEEE Press,
1989.

Heimbigner, D. and McLeod, D. A Federated Architecture for Information Manage-
merit, ACM Transactions on Office Information ~stems, 3:3, 1985.

178

Hogan, T.R. Interconnection of the Graphics Language for Database System (GLAD)
to the Multilingual, Multimodel, and Multibackend Database System over an Eth-
ernet Network, Master's Thesis in Computer Science, Naval Postgraguate School,
December 1989.

Hoppenstand, G.S. and Hsiao, D.IC Secure Access Control with High Access Preci-
sion: An Efficient Approach to Multilevel Security. In: Landwehr, C.E., ed. Data-
base Security, II--Status and Prospects, New York: North-Holland, 1989.

Hsiao, D.IC and Kamel, M.N. Heterogeneous Databases: Proliferations, Issues, and
Solutions, IEEE Transactions on Knowledge and Data Engineering 1:1, 1989.

Hsiao, D.K., Kamel, M.N., and Wu, C.T. The Federated Databases and System-ANew
Generation of Advanced Database Systems, Proceedings of International Confer-
ence on Database and Systems Applications (DAXA 90), Vienna, Austria, 1990.

Hsiao, D.K., Kohler, M.J., and Stround, S.W. Query Modification as a Means of Con-
trolling Accesses to Multilevel Secure Databases. In: Landwehr, C.E., ed. Data-
base Security, VI--Status and Prospects, New York: North-Holland, 1991.

Kamel, M.N. and Hsiao, D.IC Interoperability and Integration Issues in Heteroge-
neous Database Environment, Proceedings of 1990 Navy Database Symposium
(Database 90), San Diego, CA, 1990.

Katz, R.H. and Wong, E. Decompiling CODASYL DML into Relational Queries,

ACM Transactions on Database Systems, 7:1, 1982.

King, R. A Database Management System Based on an Object-Oriented Model, Pro-
ceedings of the First Workshop on Expert Database Systems, Charleston, SC, 1984.

Kloepping, G.R. and Mack, J.E Implementation of a Relational/SQL Interface for
the Multilingual Database System, Master's Thesis in Computer Science, Naval
Postgraguate School, June 1985.

Larson, J.A. Bridging the Gap between Network and Relational Database Manage-

ment Systems, Computer, 16:9, 1983.
Mack, S.B. Implementation of a Functional/Daplex Interface for the Multilingual

Database System, Master's Thesis in Computer Science, Naval Postgraduate

School, March 1992.
Meng, W., et al. Transformation of Relational Queries to Hierarchical Queries, Tech-

nical Report, Department of Electrical Engineering and Computer Science, Uni-
versity of Illinois at Chicago, 1990.

Rollins, R. Design and Analysis of a Complete Relational/SQL Interface for the Mul-
tilingual Database System. Master's Thesis in Computer Science, Naval Postgrad-
uate School, Monterey, CA, June 1984.

Rosenberg, R.L. and Landers, T. An Overview of MULTIBASE. In: Schneider, H.J.,
ed. Distributed Databases, New York: North-Holland, 1982.

179

Scheuermann, P., Yu, C., Elmagarmid, A., Garcia-Molina, H., Manola, E, McLeod,
D., Rosenthal, A., and Templeton, M., eds. Position Papers of the 1989 NSF-
Sponsored Workshop on Heterogeneous Databases, The Northwestern University,
1989.

Shipman, D.W. The Functional Data Model and the Data Language Daplex, ACM
Transactions on Database Systems, 6:1, 1981.

Wang, Y.R. and Madnick, S.E. A Polygen Model for Heterogeneous Database Sys-
tems: The Source Tagging Perspective, Proceedings of the Sixteenth International
Conference on Very Large Data Bases, Barcelona, Spain, 1990.

Weishar, D.J. Design and Analysis of a Complete Hierarchical Interface for the Mul-
tilingual Database System, Master's Thesis in Computer Science, Naval Postgrad-
uate School, Monterey, CA, 1984.

Wortherly, C.R. Design and Analysis of a Network/CODASYL-DML Interface for
the Multilingual Database System, Master's Thesis in Computer Science, Naval
Postgraguate School, Monterey, CA, December 1985.

Wu, C.T. and D. K. Hsiao, Implementation of an Object-Oriented Data Language:
GLAD, Proceedings of the IFIP WG 2. 6 lrtsual Database Conference, Tokyo, Japan,
1989.

Zaniolo, C., et al. Object-Oriented Database Systems and Knowledge Systems, Pro-
ceedings of the First Workshop on Expert Database ~ystems, Charleston, SC, 1984.

Zawis, J. Design and Implementation of a Cross-Model Accessing Capability: Ac-
cessing Hierarchical Databases Relationally--for the Multimodel and Multilin-
gual Database System. Master's Thesis in Computer Science, Naval Postgraduate
School, Monterey, CA, December 1987.

