
Distributed and Parallel Databases, 5, 327–355 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Protocols for Integrity Constraint Checking in
Federated Databases*

PAUL GREFEN grefen@cs.utwente.nl
Dept. of Computer Science, University of Twente, 7500 AE Enschede, The Netherlands

JENNIFER WIDOM widom@cs.stanford.edu
Dept. of Computer Science, Stanford University, Stanford, CA 94305, USA

Received October 8, 1996; Accepted April 25, 1997

Recommended by:Elisa Bertino

Abstract. A federated database is comprised of multiple interconnected database systems that primarily operate
independently but cooperate to a certain extent. Global integrity constraints can be very useful in federated
databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders
traditional constraint management techniques inapplicable. This paper presents a threefold contribution to integrity
constraint checking in federated databases: (1) The problem of constraint checking in a federated database
environment is clearly formulated. (2) A family of protocols for constraint checking is presented. (3) The
differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed
by the protocols, and processing and communication costs. Thus, our work yields a suite of options from which a
protocol can be chosen to suit the system capabilities and integrity requirements of a particular federated database
environment.

Keywords: integrity control, global integrity constraint, federated database, protocol

1. Introduction

The integration of multiple database systems has become one of the most important topics
in both the research and commercial database communities. Information servers are being
developed that provide integrated access to multiple data sources. Legacy database systems
and applications are being coupled to form enterprise-wide information systems. Large
workflow management applications require the routing of information through multiple,
autonomous local systems. The integration of autonomous database systems into loosely-
coupledfederationsrequires the development of novel database management techniques
specific to these environments. Many concepts and techniques from centralized or tightly-
coupled distributed databases are not directly applicable in a federated environment.

One important issue in federated database systems is checkingintegrity constraintsover
data from multiple sites in the federation. Integrity constraints specify those states of the
(global) database that are considered to be semantically valid. In a federated environment,
integrity constraints might specify that replicated information is not contradictory, that

* This work was supported at Stanford by ARPA Contract F33615-93-1-1339 and by equipment grants from
Digital Equipment and IBM Corporations. A short preliminary version of this work appeared in the proceedings
of the 1996 CoopIS conference.



328 GREFEN AND WIDOM

information is not duplicated, that certain referential integrity constraints hold, or that some
other condition is true over the data in multiple databases. Below, we describe an example
scenario involving cooperative hospital information systems with cross-system constraints.

In traditional centralized or tightly-coupled distributed databases, transactions form the
cornerstone of integrity constraint checking: Before a transaction commits, it ensures that
all integrity constraints are valid. If a constraint is violated, then the transaction may be
aborted, the constraint may be corrected automatically, or an error condition may be raised
[14]. Unfortunately, the lack of inter-site transaction mechanisms in federated databases
renders traditional constraint checking mechanisms inapplicable.

This paper addresses the problem of integrity constraint checking in federated databases;
we make a threefold contribution. First, the constraint checking problem is formulated
in the specific context of federated databases. In particular, an alternative notion of con-
straint checking correctness must be defined, since the transaction-based approach from
traditional environments is inappropriate. Then a family of constraint checking protocols
is developed along a number of protocol “dimensions.” Finally, the protocols in the family
are analyzed and compared with respect to the requirements of the component database
systems, the constraint checking properties guaranteed by the protocols, and the processing
and communication costs. By providing a family of protocols, rather than a single proto-
col, we permit a protocol in the family to be chosen and tailored for the capabilities and
requirements of a particular federated database environment.

1.1. Related Work

Most work addressing the problem of integrity constraint checking in multidatabase en-
vironments has considered tightly-coupled distributed databases in which global queries,
global transactions, and global concurrency control are present, e.g., [13, 24, 28]. Since
these approaches rely on global services that typically are unavailable in federated databases,
they are inappropriate for the environment we consider. Note that some approaches focus
on relaxing the traditional notion of transaction serializability for constraints in distributed
environments, e.g., [3, 11, 12], but some level of locking and global query facilities is still
expected.

A few recent papers have addressed the issue of monitoring constraints in loosely-coupled,
distributed, and sometimes heterogeneous database environments. One class of work in-
volveslocal constraint checking—deriving tests whose success over one database implies
the validity of a multidatabase constraint [2, 17, 18]. Local tests optimize the constraint
checking process, but they still require a conventional (non-local) method when the local
test fails. As will be seen, in this paper we develop protocols that integrate local check-
ing with non-local methods. In [7], a framework and toolkit are described for constraint
management in loosely-coupled, highly heterogeneous environments. The focus in [7] is
on maintaining constraints across systems that have varying capabilities and varying “will-
ingness” to participate in constraint checking protocols, on describing the timing properties
associated with constraint checking, and on notions of “conditional consistency” that are
weaker than the form of consistency we consider.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 329

The issue of maintaining consistency of replicated data across loosely-coupled, seman-
tically heterogeneous databases has been considered in, e.g., [9, 10, 27]. Our constraint
checking problem can be seen as a special case (or first step) of that consistency maintenance
problem. In [9], a method is described that relies on active rules and persistent queues.
The approach is similar to the simplest case in our family of protocols. Similar issues
are addressed in [27], but no specific protocols are provided. In [10], an implementation
mechanism based on active rules is proposed for maintaining replication consistency.

A related problem is that of maintaining views over distributed data in loosely-coupled
systems, addressed in [31] in the context ofdata warehousing. In [31], algorithms are
presented for handling the anomalies that arise when materialized views are refreshed in an
asynchronous manner. The algorithms rely on view definitions andcompensating queries,
and thus are not directly applicable to our problem. However, they may become relevant as
we extend our protocols to handle more complex constraints or to incorporate consistency
repair.

Finally, we note that in the field of distributed (operating) systems there has been consid-
erable work in the area ofsnapshotsandconsistent global states; see e.g., [8, 5]. Although
this work appears highly related to the problem we are addressing, there are two significant
differences:

• The conditions to be evaluated in the distributed system setting arestable, meaning that
once a condition becomes valid, it stays valid. This property is not true of database
integrity constraints; in fact, our goal is to track constraints as they move from validity
to invalidity and vice-versa.

• Protocols for the distributed system setting are designed to obtain some (any) global
state, but not to obtain all global states. In contrast, to effectively monitor database
constraints it is necessary to monitor all global states, or at least a subset of those states
corresponding to consistency “checkpoints” (see Section 2.1).

1.2. Structure of the Paper

The structure of this paper is as follows. Section 2 formalizes the problem of integrity
constraint checking in federated databases. It provides necessary concepts and definitions,
describes the basic system architecture we address, discusses implementation aspects, and
defines the class of integrity constraints we deal with. In addition, a simple example
application is introduced. Section 3 presents the family of constraint checking protocols
we have developed. Section 4 analyzes the family of protocols presented in Section 3.
First, the “design space” for protocols is further inspected. Then the various protocols are
compared with respect to their requirements, properties, and costs. Finally, we describe
how the protocols can be extended to more general architectures. In Section 5 we conclude
and discuss future work.



330 GREFEN AND WIDOM

2. Preliminaries

This section presents preliminary material for the remainder of the paper. First, the concepts
used in our work are defined formally. Next, we present the basic architecture we consider—
a federation of two autonomous, relational databases, each with a component for constraint
checking—and we discuss implementation aspects of the architecture. Then we describe
the class of integrity constraints we consider. The section ends with the description of an
example application that is used to motivate our work.

Note that although we cast our work in the context of federations of relational databases,
the relational restriction is introduced primarily for concreteness and clarity. All of our def-
initions, protocols, and analyses adapt easily to other data models, as well as to federations
involving multiple data models.

2.1. Concepts and Definitions

We start with our definition of a federated relational database system.

Definition 1. A federated relational database systemF is a set ofn interconnected au-
tonomous database systems{S1, . . . , Sn}. Each autonomous database systemSi ∈ F
hosts a local databaseDi with schemaDi. A local databaseDi consists of relations
Ri1, . . . , R

i
ni with schemataRi1, . . . ,Rini . The set of all relation schemataRij in F is

called the global database schemaG of F . 2

A federated database system is often constructed by coupling a number of preexisting local
database systems, i.e., it is designed in a bottom-up fashion from a number of independent
local database designs.

In the following, we assume a global clock so that we can refer to global times in defining
certain concepts. The global clock is used for concept definition only—it is not a require-
ment of the federated database systems we consider. Also for definitional purposes, we
assume that each local database processes its updates in the context of local transactions.
However, many of the constraint checking protocols we present are also applicable to local
systems that do not support transactions.

Definition 2. Theuser-observablestate of a relationRij at global timet is the state ofRij
reflecting all and only those local update transactions committed beforet at siteSi. 2

Definition 3. Theglobal stateG of a global database schemaG at global timet is the set
of user-observable states of all relations inG at global timet. 2

Due to the lack of global transactions in a federated environment, it can be difficult or
impossible to observe the state of a global database at a single global time. If an application
or protocol does not read local states simultaneously, it may observe a global state that has
never actually existed. We call such an observed state aphantom state.

Definition 4. A phantom stateΦ of a global database schemaG observed by applicationA
at timet2 as a consequence of a request (or set of requests) byA at timet1 is a set of states



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 331

of all relations inG such that there exists not3 wheret1 < t3 < t2 and the global state of
G at timet3 is Φ. 2

The relevance of phantom states will become clear when we develop our protocols in Sec-
tion 3. Next, we turn to the definition of global integrity constraints, and we formalize our
notion of correctness in constraint checking.

Definition 5. A global integrity constraintI is a boolean expression over a global database
schemaG, i.e., a functionI: G → {true, false}. A global integrity constraint cannot be
expressed over a local database schemaDi ∈ G (otherwise the constraint would be local,
not global). Aconstraint checking protocolfor I is an algorithm for evaluatingI. 2

In centralized database systems or tightly-coupled distributed database systems, the tran-
sitions between database states are determined by transactions—atomic operations whose
intermediate states have no semantics beyond the transaction. Consequently, in these en-
vironments, integrity constraints generally are required to hold in the states immediately
preceding and following each transaction. Since federated environments consist of multiple,
autonomous database systems lacking global transactions, we must rely on other concepts
to determine the global database states that should satisfy the integrity constraints. We
define a notion of global states in which the federated system is “at rest.” Thesequiescent
statescorrespond roughly to the before and after transaction states in traditional database
systems, and are the states in which we want to ensure that integrity constraints are not
violated.

Definition 6. A federated database systemF is in aquiescent stateat timet if all local up-
date transactions submitted beforet have committed, and all constraint checking protocols
triggered by any updates beforet have completed. 2

It is important to note that, similar to the before and after transaction states in traditional
systems, quiescent states may not physically exist. However, the logical notion of such
states is appropriate for defining the correctness of integrity constraint checking. Two im-
portant properties of our constraint checking protocols are defined with respect to quiescent
states:safetyandaccuracy.

Definition 7. Consider a global database schemaG and a global integrity constraintI over
G. A constraint checking protocol forI is safeif the transition from any quiescent global
database stateG0 ∈ G that satisfiesI to any other quiescent stateG1 ∈ G that does not
satisfyI always results in the protocol raising an alarm.1 2

Definition 8. Consider a global database schemaG and a global integrity constraintI over
G. A constraint checking protocol forI is accurateif, after any quiescent global database
stateG0 at timet0, a protocol-generated alarm at timet2 implies the existence of a global
database stateG1 at timet1 such thatt0 < t1 ≤ t2 andG1 does not satisfyI. 2

That is, a protocol is safe if it detects every transition to a quiescent state in which the
constraint becomes violated. We assume that safety is required of any constraint checking
protocol that will be useful in practice. A safe protocol may be “pessimistic,” however, in
the sense that it raises too many alarms. (For example, a protocol that constantly raises



332 GREFEN AND WIDOM

alarms is, in fact, safe.) A protocol is accurate if, whenever an alarm is raised, there is in-
deed a state in which the constraint is violated. Although accuracy is a desirable feature of
a constraint checking protocol, it is not always necessary—in some environments a limited
number of “false alarms” is tolerable.

Our last definition involves the representation of database updates.

Definition 9. Consider a relationR in a local database system of a federation. WhenR is
modified, we use∆R to denote all modified tuples (inserted, deleted, or updated),∆+R
to denote all new tuple values (inserts and after-images of updates),∆−R to denote all
old tuple values (deletes and before-images of updates), and∆0R to denote all unmodified
tuples. We refer to all forms of∆’s asdelta sets. We assume that delta sets correspond to the
modifications performed by a single local transaction, however other update granularities
can be used without affecting our protocols.2

2.2. Basic Architecture and Assumptions

Figure 1 depicts the basic architecture we address for integrity constraint checking in feder-
ated databases. To develop our protocols we consider the restricted case of two databases,
each containing a single relation. In practice, most multi-site constraints involve only two
databases or can be reformulated as an equivalent set of two-site constraints. However, our
protocols can be generalized to handle constraints over more than two sites—see Section 4.3
for a discussion. Generalizing to more than one relation per site is straightforward.

Figure 1. Basic architecture

In the diagram,DBR andDBS denote two local database systems managing relations
R andS, respectively. Connected to the local database systems areconstraint managers,
CMR andCMS in the diagram. There is one constraint manager for each local database—
each constraint manager handles the global constraints that may be invalidated by operations
on its corresponding database. (Consequently, each global constraint is replicated at every
site containing data involved in the constraint.) We assume that any local constraints are



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 333

managed within the appropriate database system using traditional mechanisms (see, e.g.,
[14]).

The constraint manager is notified of all changes (∆’s) to the local database that may
violate a constraint. For convenience, we may assume that delta notifications are sent at
the end of each local update transaction; however, as mentioned earlier, any granularity of
delta notification can be handled by our protocols. Of particular importance is that we do
not generally assume that delta notifications or subsequent constraint checking protocols
occur as part of a local transaction, and constraint managers need not be tightly coupled
with their corresponding database systems.

The database systems in the federation are autonomous, in that global queries, global
transactions, and global concurrency control mechanisms are not available. The fact that
global query mechanisms are not assumed means that we deal with loosely-coupled fed-
erated databases [1]. The approach presented in this paper is, however, also applicable in
federated database systems where global query facilities are available, i.e., tightly-coupled
federated databases.

A message-passing interface connects the two sites. This interface allows the constraint
managers to exchange messages in a cooperative fashion, and may allow a constraint man-
ager to send requests directly to the remote database system.

2.3. Implementation Aspects

An essential aspect of implementing the above architecture is supporting the delta no-
tification mechanism by which database systems in a federation communicate with their
respective constraint managers. Various implementation schemes can be used to realize this
mechanism, includingactive database rules, passive database rules, database triggers, and
polling.

Active database rules follow theevent-condition-action(ECA) paradigm [30]. These
rules can be used to implement the delta notification mechanism in a straightforward way:

WHEN relevant update has occured
IF global constraint possibly violated
THEN notify constraint manager

Clearly, the event and condition (WHEN and IF clauses) are “pessimistic,” since the actual
violation of a global constraint cannot in general be determined by the local database system.

For database systems that do not include an active rule manager,passive rulescan be
used: Passive rules are processed by a transaction modification component built on top of
a conventional database system [16, 21]. While active rules respond to the actual effects
of updates to the database, passive rules act on the mere execution of an update operation,
regardless of its effects. Thus, the triggering behaviour of passive rules is more pessimistic,
but their implementation and execution costs can be lower.

Database triggers, as supported by many recent commercial database systems [30], can
be used in a similar way to the rules described above. Usually, their abstraction level is
lower than that of active or passive rules, making the implementation of the notification
mechanism slightly more complex.



334 GREFEN AND WIDOM

Finally, in cases where no triggering mechanism is available at the database system level
(e.g., in strictly closed legacy systems), delta notification must be handled by the constraint
manager using a polling mechanism. In this approach, the constraint manager polls the
local database system at a certain frequency to detect when changes have occurred. The
database system has to maintain delta sets in this case that contain the relevant changes to
the database. The constraint manager must be able to read these delta sets and empty them
after processing. Certainly this approach is the least desirable from both a performance and
architecture standpoint, but it is necessary in the case of closed systems with no notification
mechanism.

2.4. Integrity Constraints

In this paper we consider constraints over two relations,R andS. In particular, we consider
constraints that can be evaluatedincrementally. By incremental, we mean that if the con-
straint is valid initially, and if one of the relations is changed—relationR, say—then the
constraint can be reevaluated by considering only the changes toR (∆R) and the relationS.
This class of constraints includes many of the most common constraint types, such as refer-
ential integrity and mutual exclusion. See the earlier technical report version of this paper
[19] for a complete definition of the class of constraints considered. The problem of incre-
mental constraint checking has been studied extensively (see, e.g., [4, 13, 22, 26, 25, 29]).
The protocols we present can be extended in a straightforward way to constraints over more
than two relations; the two-relation restriction is adopted for clarity and brevity only.

We assume that constraints are expressed as queries, where the constraint is satisfied
iff the query result is empty. This is a common and convenient formulation [14, 17, 19],
equivalent to expressing constraints as logical formulae. Hence, we denote a constraint
C over relationsR andS as a queryQ(R,S). A query to checkC incrementally with
respect to changes onR is denotedQ′(∆R,S), where again the constraint is satisfied iff
the query result is empty (assuming the constraint held beforeR was modified [4, 25, 29]).
Q′(R,∆S) is a similar query to handle modifications toS.

2.5. Example Application

Suppose we have two hospitals,HA andHB , in two neighboring cities. Each hospital has
its own database system,SA andSB respectively. When the hospitals start a cooperation in
which they share physicians, it is decided to connect the two existing database systems into
a federation to be able to also share information. The relations of the resulting federated
database are shown in Table 1. Both hospitals keep a local record of their patients, and each
patient has a reference to his or her physician. To avoid duplication of information, the
local physician administrations have been merged into a central administration at hospital
HA.

The hospitals enforce a rule that each patient can be registered at only one hospital. In
addition, all patients must have a registered physician. These rules lead to the following



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 335

Table 1.Example database relations

system relation

SA PatientsA(SSN,Name,Address,DateOfBirth, Physician)
SB PatientsB(SSN,Name,Address, Phone, Sex, Physician)
SA Physicians(PhN,Name, Phone)

three integrity constraints, expressed as relational algebra queries. (Recall that the constraint
is satisfied when the result of the query is empty.)

C1 : PatientsA 1SSN=SSN PatientsB

C2 : ΠPhysicianPatientsA −ΠPhNPhysicians

C3 : ΠPhysicianPatientsB −ΠPhNPhysicians

ConstraintsC1 andC3 are global constraints, since they involve relations at two different
sites. ConstraintC2 is a local constraint, so it can be enforced at its local site (SA) using
standard methods. ConstraintsC1 andC3 can each be “factored” into two incremental
global constraints [29], dealing with relevant updates to each of the two relations:

CA1 : ∆+PatientsA 1SSN=SSN PatientsB

CB1 : PatientsA 1SSN=SSN ∆+PatientsB

CB3 : ΠPhysician∆+PatientsB −ΠPhNPhysicians

CA3 : ΠPhysicianPatientsB ∩ΠPhN∆−Physicians

3. The Family of Protocols

As motivated earlier, conventional integrity constraint checking methods are not applicable
in federated environments, so alternative protocols must be designed. In the remainder of
this paper we develop and analyze a family of constraint checking protocols suitable for
federated databases. The members of this family have different requirements, different
properties, and different performance characteristics. The “root” of the family is a very
simple protocol, described in Section 3.1. Although this protocol is safe, it is inaccurate
because it may evaluate constraints over phantom states (recall Definition 4). In Sections
3.2–3.8 we enhance the simple protocol along a number of different dimensions to obtain
more useful protocols.

In designing the protocols, we are especially interested in the safety and accuracy prop-
erties as defined in Section 2.1. The root of the protocol family is safe, and so are all of
the protocols derived from it. To obtain accuracy, we enhance the root protocol along the
dimensions oftimestampingmechanisms andlocal transactionmechanisms. Timestamp-
ing mechanisms annotate delta sets and query results with global timestamps,2 enabling the
algorithm to detect when phantom states may have been used in constraint evaluation. In



336 GREFEN AND WIDOM

contrast, local transaction mechanisms can be used to prevent the evaluation of constraints
over phantom states.

In addition to safety and accuracy, we also are interested in the performance of the
protocols, and in ensuring that the local databases remain as autonomous as possible.
For these purposes, we enhance the protocols along the dimensions ofchange logging
mechanisms andlocal testmechanisms. Change logging mechanisms accumulate updates
in special purpose data sets so that database updating and constraint checking need not
occur at the same granularity. Local test mechanisms check global constraints by accessing
local data only (whenever possible), thus avoiding any kind of global coordination.

These four dimensions delineate a “design space” for constraint checking protocols,
illustrated in Figure 2. In the remainder of this section the various protocols are developed,
beginning with the simple protocol at the root—the central dot in Figure 2. For each protocol,
we specify the protocol in a table that contains a set of sequentially occurringsteps. Each
step is performed by anactor—a database system or a constraint manager. Associated with
each step is anaction. Actions vary from simple query evaluations or messaging commands
to more complex behavior. The table for each protocol is accompanied by a figure, which
illustrates how the protocol behaves within the context of the basic architecture introduced
earlier in Figure 1.

Figure 2. Protocol dimensions

3.1. The Direct Remote Query Protocol (DRQ)

TheDirect Remote Query Protocol(DRQ) is specified in Table 2 and depicted in Figure 3.
Table 2 specifies how the protocol responds to a delta notification for relationR.3 A sym-
metric protocol is used to handle updates toS. Protocols handling updates toR and to
S may run concurrently. We will assume that multiple updates toR or to S are handled
sequentially, although this assumption is not strictly necessary. Figure 3 illustrates the pro-
tocol for both updates toR and updates toS. Note that arrows representing the transmission
of query results are left out of the figure for reasons of clarity, as these arrows are implied
by their counterparts representing queries.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 337

Table 2.DRQ Protocol

1 DBR send∆R toCMR

2 CMR receive∆R fromDBR
3 sendQ(∆R,S) toDBS
4 DBS receiveQ(∆R,S) fromCMR

5 evaluateQ(∆R,S)
6 send query result toCMR

7 CMR receive query result fromDBS
8 raise alarm if query result is non-empty

Figure 3. DRQ Protocol

The DRQ protocol is very simple: When the constraint manager is notified of an update,
it sends the appropriate incremental query for evaluation at the other site. Delta sets are
usually small enough that the actual data can be transmitted in a straightforward way. For
example,Q(∆R,S) may by a query overS with the values from∆R “plugged in.” If the
query result is non-empty, then the constraint manager raises an alarm. The DRQ protocol
always detects when a constraint is violated, i.e., it is safe. Unfortunately, DRQ can easily
produce “false alarms,” i.e., it is inaccurate. (As pointed out earlier, a protocol that raises
an alarm every time there is an update also is safe but inaccurate. It should be evident that
DRQ is much less inaccurate than such a protocol.)

To show that the DRQ protocol is safe, we show that starting from a quiescent consistent
global stateD0 at timet0, a quiescent inconsistent global stateDn at timetn cannot be
reached without an alarm being raised:

1. At least one update must have occurred between timest0 andtn to reach an inconsistent
quiescent stateDn from consistent stateD0.

2. Assume that updateu1 occurring at timet1, t0 < t1 < tn, is the last such update
producing an inconsistent state.

3. Updateu1 triggers a constraint checking process that does not raise an alarm, so there
exists a timet2, t1 < t2 < tn, at which the state is consistent.



338 GREFEN AND WIDOM

4. Since the state attn is inconsistent, there must be an updateu2 at timet3, t2 < t3 < tn,
that causes the inconsistent state. This contradicts the fact thatu1 is the last update
invalidating the constraint.

The inaccuracy of DRQ is shown by a counterexample in which an alarm is raised but
there is never an inconsistent global state. The counterexample is based on the example
application from Section 2.5:

1. Consider constraintC1, and let relationsPatientsA andPatientsB both be empty in
an initial (consistent) global database state at timet0.

2. Suppose a local transaction is executed that inserts one tupleT with SSN = X into
PatientsA and commits at timet1, t0 < t1. ∆PatientsA is sent to the constraint
manager.

3. Let the triggered constraint checking process read relationPatientsB at timet2, t1 <
t2.

4. Now suppose two other local transactions are executed, the first deleting tupleT from
PatientsA and committing at timet3, the second inserting a tupleT ′ with SSN = X
into PatientsB and committing at timet4, such thatt1 < t3 < t4 < t2.

5. The DRQ protocol will raise an alarm after timet2, even though no inconsistent state
ever existed (since there was never more than one tuple in the database).

Inaccuracy is due to the fact that the DRQ protocol may evaluate the constraint over a
phantom state, since relationsR andS are accessed at different times. Note again that
the absence of global concurrency control mechanisms makes the traditional solution to
this problem inapplicable here. We can solve the problem in two ways, bydetectionor by
prevention:

• We can use timestamping information to detect possible evaluation over phantom states.

• We can exploit local transaction mechanisms to prevent evaluation over phantom states.

The first solution is explored in Section 3.3, the second solution in Section 3.5. First, a
slight variation on the DRQ protocol is presented.

3.2. The Indirect Remote Query Protocol (IRQ)

The DRQ protocol relies on the capability of each database system to process queries issued
from a remote constraint manager. If remote query services are unavailable, then we can
use a variation on the DRQ protocol that uses peer-to-peer communication between the
constraint managers. ThisIndirect Remote Query Protocol(IRQ) is specified in Table 3
and illustrated in Figure 4. For clarity, the figure (and all protocol figures to follow) only
shows the case whereR is updated. The case whereS is updated is symmetric in all
protocols.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 339

Table 3.IRQ Protocol

1 DBR send∆R toCMR

2 CMR receive∆R fromDBR
3 sendQ(∆R,S) toCMS

4 CMS receiveQ(∆R,S) fromCMR

5 submitQ(∆R,S) toDBS
6 DBS receiveQ(∆R,S) fromCMS

7 evaluateQ(∆R,S)
8 send query result toCMS

9 CMS receive query result fromDBS
10 send query result toCMR

11 CMR receive query result fromCMS

12 raise alarm if query result non-empty

Figure 4. IRQ Protocol

The IRQ protocol is the same as the DRQ protocol, except queries are routed through
constraint managers. In step 10 of Table 3, note thatCMS could raise the alarm itself if
the query result is non-empty, instead of sending the result toCMR. However, it may be
preferable for alarms to be raised at the site of the constraint-violating update. Like the
DRQ protocol, the IRQ protocol is safe but inaccurate.

3.3. The Timestamped Remote Query Protocol (TRQ)

The DRQ and IRQ protocols lack the accuracy property because they cannot distinguish
true global states from phantom states. To overcome this problem, we first enhance the IRQ
protocol with a timestamping technique. This technique allows the constraint manager to
detect when a phantom state may have been used for query evaluation, and to reevaluate
queries when this happens. To make the protocol more efficient, when reevaluation is
necessary it is performed with acumulative delta set, i.e., a delta set combining multiple
delta notifications from a single site. (We assume anet effectsemantics for cumulative delta
sets [30].)



340 GREFEN AND WIDOM

Table 4.TRQ Protocol

1 DBR send〈∆R, t1〉 toCMR

2 CMR receive〈∆R, t1〉 fromDBR
3 send〈Q(∆R,S), t1〉 toCMS

4 CMS receive〈Q(∆R,S), t1〉 fromCMR

5 submitQ(∆R,S) toDBS
6 DBS receiveQ(∆R,S) fromCMS

7 evaluateQ(∆R,S)
8 send query result toCMS

9 CMS receive query result fromDBS at t2
10 IF (∃t3)(∆S@t3 ∧ t1 < t3 < t2)

THEN send query result and〈busy, t3〉 status toCMR

ELSE send query result andquiet status toCMR

11 CMR receive query result and status fromCMS

12 IF status=quiet OR (6 ∃t4)(∆R@t4 ∧ t1 < t4 < t3)
THEN raise alarm if query result is non-empty
ELSE restart protocol from step 2 with cumulative∆R

Figure 5. TRQ Protocol

TheTimestamped Remote Query Protocol(TRQ) is specified in Table 4 and depicted in
Figure 5. In the figure and the table, theti’s denote timestamps attached to messages, and
∆R@t and∆S@t denote notifications of updates occurring at timet. Assume for now
that a synchronous global clock is used to generate timestamps; Section 3.4 discusses how
this assumption can be relaxed. The TRQ protocol requires that the interface between each
constraint manager and its database system isorder preserving. In particular, a query result
sent to the constraint manager must follow the notification of a relevant update if that update
was performed before the query was evaluated.

The TRQ protocol behaves as follows. When constraint managerCMR is notified of
an update toR, it sends the appropriate incremental queryQ for evaluation to constraint
managerCMS , along with a timestamp for the update.CMS requests evaluation of query
Q at databaseDBS . If an update occurs toS between the time ofR’s update and the
evaluation ofQ, thenCMS returns abusystatus toCMR (rather than aquietstatus) along
with the query answer. Consider what happens whenCMR receives the answer. If the



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 341

return status isquiet then there have been no relevant updates toS and the query has been
evaluated over a true global state. If the return status isbusythen there have been relevant
updates toS. However, ifR has not been updated further, then the query still has been
evaluated over a true global state. In the case where there have been further updates toR,
then the query may have been evaluated over a phantom state, and it must be reevaluated.
Reevaluation takes place by restarting the protocol; for efficiency, the original and new
updates toR are combined before restarting. Note that, provided that updates toR and
S eventually cease, termination of the protocol is guaranteed since protocol restarts are
triggered only by new updates. (In fact, updates at both sites are required to trigger a
restart, so a given instance of the protocol is guaranteed to terminate as long as one site’s
updates cease.)

Safety of the TRQ protocol follows the same line of reasoning as safety for the DRQ
protocol. We show that the TRQ protocol is accurate by arguing that every successful (i.e.,
not restarted) query evaluation is performed in a true global state. Hence, if an alarm is
raised then there was a global state that violated the constraint:

• After an update∆R at timet1, t1 is the first “candidate” global state for evaluation of
Q. If evaluation does not produce abusystatus, thenQ has been evaluated in the state
occurring at timet1.

• If CMS identifies a∆S at time t3 with t1 < t3 < t2, thent3 is taken as the next
candidate global state. If there have been no further updates toR beforet3, thenQ has
been evaluated in the state occurring at timet3.

• If CMR identifies a new∆R at timet4 with t1 < t4 < t3, then the process is restarted
with t3 as the next candidate global state.

The TRQ protocol also can be used withtime interval constraints. Time interval constraints
require a constraint to be evaluated within a certain time interval, instead of on a single
global database state. This type of constraint relaxes the usual notion of consistency of
integrity constraints, but is sufficient for many environments (such as those with low update
frequency). When the TRQ protocol is used for time interval constraints, the protocol is
restarted in step 12 of Table 4 only ift3 − t4 is greater than the time interval specified for
the constraint.

3.4. The Semi-Timestamped Remote Query Protocol (SRQ)

The TRQ protocol assumes that the database systems can generate timestamps. A similar
protocol can be used for the situation in which the database systems cannot generate times-
tamps, but the constraint managers can.4 To provide the accuracy property when timestamps
are generated by the constraint managers, it is necessary to guarantee that delta notifications
from database systems are always received within a certain maximum delayt∆ [7]. For
this scenario we provide theSemi-timestamped Remote Query Protocol(SRQ). SRQ is
specified in Table 5 and depicted in Figure 6. In the figure,∆R ↑ t∆ and∆S ↑ t∆ indicate
delta notifications within delayt∆. The SRQ protocol is very similar to the TRQ protocol,



342 GREFEN AND WIDOM

Table 5.SRQ Protocol

1 DBR send∆R within t∆ toCMR

2 CMR receive∆R fromDBR at t1
3 send〈Q(∆R,S), t1 − t∆〉 toCMS

4 CMS receive〈Q(∆R,S), t1 − t∆〉 fromCMR

5 submitQ(∆R,S) toDBS
6 DBS receiveQ(∆R,S) fromCMS

7 evaluateQ(∆R,S)
8 send query result toCMS

9 CMS receive query result fromDBS at t2
10 IF (∃t3)(∆S@t3 ∧ t1 − t∆ < t3 < t2)

THEN send query result and〈busy, t3〉 status toCMR

ELSE send query result andquiet status toCMR

11 CMR receive query result and status fromCMS

12 IF status=quiet OR (6 ∃t4)(∆R@t4 ∧ t1 < t4 ∧ t4 − t∆ < t3)
THEN raise alarm if query result is non-empty
ELSE restart protocol from step 2 with cumulative∆R

Figure 6. SRQ Protocol

except the determination of whether a phantom state may have been used must take into
account the notification delayst∆. Like the TRQ protocol, the SRQ protocol is safe and
accurate.

Both the TRQ and SRQ protocols require access to a synchronous global clock. With the
availability of inexpensive “time services,” this assumption does not appear to be highly
restrictive. However, suppose that instead of a global clock we have a set of local clocks that
are synchronized within a maximum drifttD. Then the local clocks can be used instead
of a global clock by incorporatingtD into our protocols, similarly to the way we have
incorporatedt∆ to obtain the SRQ protocol from TRQ. In addition, we are investigating
whether we can adapt our protocols so thatlogical clocks[5, 20] are sufficient.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 343

Table 6.TRT Protocol

1 DBR send∆R toCMR, holding transaction X-lockingR
2 CMR receive∆R fromDBR
3 send remote transaction[Q(∆R,S)] toDBS
4 DBS receive[Q(∆R,S)] fromCMR

5 execute[Q(∆R,S)], S-lockingS
6 commit transaction, releasing locks onS
7 send query result toCMR

8 CMR receive result fromDBS
9 raise alarm if query result is non-empty

10 send release message toDBR

Figure 7. TRT Protocol

3.5. The Transaction Remote Transaction Protocol (TRT)

The TRQ and SRQ protocols add timestamping to the DRQ protocol in order to achieve
accuracy. This approach corresponds to one dimension in the protocol space of Figure
2. The next dimension we consider is transactions. Note that we are not proposing to
add global transaction capabilities. Rather, we can exploit standard transaction capabilities
provided by the local database systems. TheTransaction Remote Transaction Protocol
(TRT) is specified in Table 6 and depicted in Figure 7. In both the table and the figure, the
enclosure of a query in square brackets indicates that the query is to be executed within
its own local transaction, i.e., the query is effectively bracketed bybegin transactionand
commit.

The TRT protocol behaves as follows. WhenDBR performs a delta notification, this
notification occurs as part of the transactionτ that updatedR, andτ does not commit
until it receives a “release” message from the constraint manager. That is, transactionτ
continues to hold its exclusive lock (X-lock) onR while the protocol runs. This approach
requires that the database system is capable of performing a notification and waiting for
an acknowledgment, all within a single transaction. This capability is provided by most
database systems supporting triggers or active rules [30]; see Section 2.3. OnceCMR has
received the delta notification, it sends the appropriate query toDBS , to be executed within



344 GREFEN AND WIDOM

its own transactionτ ′ atDBS . During execution of the query,τ ′ will hold a shared lock
(S-lock) onS. When the query answer is received byCMR, an alarm is raised if the result
is non-empty, and the pending transactionτ atDBR is released.

Safety of the TRT protocol follows the same line of reasoning as for the other protocols.
Accuracy of the TRT protocol results from the fact that every query is evaluated over a
true global state (with respect toR andS). To see that only true global states are used,
we can think of the bracketed query transactionτ ′ as being embedded within the pending
transactionτ that generated the delta notification. In this way, the TRT protocol effectively
emulates a distributed two-phase locking protocol, ensuring serializability across sites with
respect toR andS [23].

Note that although the TRT protocol emulates global locking, the protocol does not rely
on global transaction mechanisms of any kind.

Although the TRT protocol is relatively straightforward, and it satisfies both the safety
and accuracy properties, it has two significant drawbacks:

1. Constraint manager processing is synchronous with the database system, unlike in the
previous protocols. In TRT, the database system must wait for the constraint checking
protocol to complete before it can commit its transaction and release its locks. This
can be considered as a loss of autonomy, since progress on one site is dependent upon
progress on the other site.

2. IfRandS are updated concurrently then the risk of deadlock is relatively high. Since the
TRT protocol emulates two-phase locking, the same deadlock cases arise as in central-
ized or tightly-coupled distributed databases. However, executing a remote transaction
in a loosely-coupled federated environment may be much slower than transaction pro-
cessing in a tightly-coupled or centralized environment, thereby increasing the chance
of deadlock.

These drawbacks are addressed in an extended version of the TRT protocol called MDS,
presented in Section 3.7. Another improvement to the TRT protocol is to use alocal test
to avoid the problems caused by remote transactions. This extension of the TRT protocol
is described in Section 3.8. Below, we first present a slight variation on the TRT protocol.

3.6. The Indirect Transaction Remote Transaction Protocol (IRT)

If direct submission of remote transactions is not supported by the database systems, an
Indirect Transaction Remote Transaction Protocol(IRT) is possible. In this protocol, the
bracketed query is sent to the remote database system through its constraint manager. IRT
bears the same relationship to TRT that IRQ bears to DRQ (recall Section3.2). The protocol
is depicted in Figure 8.

Clearly, the IRT protocol has the same properties as the TRT protocol with respect to
safety and accuracy.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 345

Figure 8. IRT Protocol

Table 7.MDS Protocol

1 DBR append change to∆R
2 send∆ notification toCMR

3 CMR receive∆ notification fromDBR
4 decide whether to run constraint check;

if not, repeat from step 1
5 open transaction onDBR, X-locking ∆R
6 submitQ(∆R) toDBR
7 DBR receiveQ(∆R) fromCMR

8 evaluateQ(∆R)
9 send query result toCMR

10 CMR receive query result fromDBR
11 send[Q(∆R,S)] toDBS
12 DBS receive[Q(∆R,S)] fromCMR

13 execute[Q(∆R,S)], S-lockingS
14 commit transaction, releasing locks onS
15 send query result toCMR

16 CMR receive result fromDBS
17 raise alarm if query result is non-empty
18 submitDelete(∆R) toDBR
19 DBR performDelete(∆R)
20 CMR commit transaction onDBR, releasing X-lock on∆R

3.7. The Materialized Delta Set Protocol (MDS)

Our next protocol considers thechange loggingdimension of Figure 2. In this protocol,
relevant changes are “logged” in special relations that we callmaterialized delta sets. Ma-
terialized delta sets allow us to develop a version of the TRT protocol in which constraint
checking is decoupled from database execution, thereby addressing the drawbacks associ-
ated with the TRT protocol (discussed above). In addition, materialized delta sets enable
variable, application-dependent granularities for constraint checking.

TheMaterialized Delta Set Protocol(MDS) is specified in Table 7 and depicted in Figure
9. It behaves as follows. When relationR is updated,DBR appends the update to the



346 GREFEN AND WIDOM

Figure 9. MDS Protocol

materialized delta set∆R. (Here,∆R denotes an accumulated set of changes, not just
an individual change or set of changes.)DBR’s append to∆R must occur before the
local transaction that updatesR commits; however, no other actions need occur within the
updating transaction. A notification∆ is sent toCMR, indicating that an update occurred
but not providing the actual delta set. WhenCMR decides to proceed with constraint
checking, it obtains an X-lock on∆R for the duration of the protocol.CMR then reads
∆R, and proceeds just as in the TRT protocol, executing a queryQ(∆R,S) within a
transaction at the remote site. After receiving the query result and raising an alarm if
appropriate,CMR erases the current contents of materialized delta set∆R and releases its
X-lock on∆R.

As in the TRT protocol, accuracy is guaranteed because the protocol emulates distributed
two-phase locking. However, unlike in TRT, local access toR is not entirely restricted
while the protocol is executing. Local transactions that readR can execute concurrently
with the protocol. Concurrent local transactions also can updateR; however, because the
protocol X-locks∆R, such transactions cannot complete and commit until the protocol has
finished. This behavior still represents some loss of local autonomy, but it is a significant
improvement over the TRT protocol. In addition, the risk of deadlock is much lower with
MDS than with TRT, although deadlock is not eliminated altogether. A deadlock cycle can
exist involving two update transactions,TU1 andTU2 atDBR andDBS respectively, and
two constraint checking transactions,TC1 andTC2 atCMR andCMS respectively. The
cycle is illustrated in Figure 10. Note that the occurrence of a four-element deadlock cycle
is far less likely than the two-element cycle that can occur with the TRT protocol.

3.8. The Local Test Transaction Protocol (LTT)

The last dimension of Figure 2 we explore is the use oflocal tests. Consider a delta
notification∆R. A local test is a query,QL(∆R,R), such that if the query result is empty,
then the result of the global constraint checking queryQ(∆R,S) is guaranteed to be empty
as well. The test is “local” because it involves∆R andR only, and does not require access
to S. Hence, a local test can be used to avoid the many disadvantages of executing remote



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 347

Figure 10.Deadlock in MDS protocol

Table 8.LTT Protocol

1 DBR send∆R toCMR, holding transaction
X-lockingR

2 CMR receive∆R fromDBR
3 submitQL(∆R,R) toDBR
4 DBR receiveQL(∆R,R) fromDBR
5 evaluateQL(∆R,R)
6 send query result toCMR

7 CMR receive query result fromDBR
8 IF query result is non-empty

THEN perform TRT protocol in same transaction

Figure 11.LTT Protocol

queries. Unfortunately, local tests are generallyconservative, so if a local test fails it still
becomes necessary to issue a remote query. A considerable theory of local tests has been
developed in [18, 17]. Here we show how that theory can be put into practice in the context
of constraint checking protocols for federated databases.

As an example of a constraint with a local test, recall factored constraintCB3 from Sec-
tion 2.5:

CB3 : ΠPhysician∆+PatientsB −ΠPhNPhysicians



348 GREFEN AND WIDOM

This constraint specifies that new patient records must match existing physician records. If
all new patient records match physicians in existing patient records, then this local condition
is sufficient to guarantee validity of the constraint without examining the physician records
(under the assumption that the existing patient records satisfy the constraint). The local test
is expressed as the following query, where the test succeeds if the query result is empty:

CB3L : ΠPhysician∆+PatientsB −ΠPhysician∆0PatientsB

TheLocal Test Transaction Protocol(LTT) is specified in Table 8 and depicted in Figure 11.
The protocol is very similar to TRT, except before issuing the remote transactionQ(∆R,S),
the local testQL(∆R,R) is evaluated. If the local test succeeds, then the protocol terminates
successfully with no remote activity. Note that the local test must be evaluated within the
same transaction in which the update occurred in order to behave correctly [17, 31], so
a materialized delta set approach cannot be applied here. The safety and accuracy of the
LTT protocol follows from the correctness of local tests [18, 17], and from the safety and
accuracy of the TRT protocol.

4. Analyzing the Family of Protocols

In Section 3 we developed a family of constraint checking protocols along the four dimen-
sions introduced in Figure 2. In this section we analyze the protocols. First, we consider
the protocols in the context of the four-dimensional space to see how complete the family is.
Then we compare the characteristics and costs of the various protocols. This comparison
yields a “consumer report” that can be used to select the most appropriate protocol for
a specific federated database environment. Finally, we discuss how the protocols can be
extended to handle constraints spanning more than two databases.

4.1. The Protocol Space

Figure 12 places the protocols developed in Section 3 into their appropriate positions in the
four-dimensional space of Figure 2. Although several combinations of dimensions have
been explored, not every possibility has been considered. The four dimensions yield sixteen
different possible protocols, listed in Table 9.

We first point out three potentially useful protocols not discussed in Section 3. These
protocols combine features from our protocols in a relatively straightforward way.

1. Change logging can be used with the DRQ or IRQ protocol to produce aCumulative
Remote Query(CRQ) protocol. CRQ accumulates changes in a materialized delta set
to allow variable granularities of constraint checking. When a remote query is posed,
it uses the current contents of the materialized delta set.

2. Timestamps and change logging can be combined to obtain aTimestamped Materi-
alized Delta Set(TMD) protocol. In this protocol, materialized delta sets containing
timestamps are used in order to allow variable granularities of constraint checking and
to keep track of cumulative updates for protocol restarts.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 349

Figure 12.Protocols in the protocol space

Table 9.Protocol space filled in

timestamps transactions change logging local tests Protocol

1 DRQ, IRQ
2 X TRQ, SRQ
3 X TRT, IRT
4 X X inappropriate
5 X CRQ (see text)
6 X X TMD (see text)
7 X X MDS
8 X X X inappropriate
9 X inappropriate

10 X X inappropriate
11 X X LTT
12 X X X LTG (see text)
13 X X inappropriate
14 X X X inappropriate
15 X X X to be considered
16 X X X X to be considered

3. Timestamps, transaction mechanisms, and local tests can be combined to obtain aLocal
Transaction Global Timestamped(LTG) protocol. The LTG protocol resembles the LTT
protocol, except when a local test fails, timestamping is used rather than transactions
for the global query (to achieve more autonomy).

Some protocols appearing in Table 9 have an inappropriate combination of features: Local
tests cannot be used without local transactions. (Otherwise, the query for the local test
might be evaluated in an erroneous state [18, 31].) This eliminates lines 9–10 and 13–14.
Combining timestamps and transactions is “overkill” in the case where local tests are not
used (eliminating lines 4 and 8). Finally, the combination of transactions, change logging,



350 GREFEN AND WIDOM

Table 10.Requirements and properties of the protocols

requirements properties

remote local order- global safety accuracy asynch- flexible
query trans- preserving clock rony granu-

interface actions interface larity

DRQ X X X
IRQ X X
TRQ X X X X X
SRQ X X X X X
TRT X X X X
IRT X X X
MDS X X X X X
LTT X X X X

and local tests, with or without timestamping, yields rather complex protocols that we have
yet to explore (lines 15–16).

4.2. Comparing the Protocols

The various protocols in the family can be compared with respect to: (1) what they require,
and (2) what they deliver. The requirements of the protocols concern the functionality of
the systems within the federation and the functionality of the interfaces between systems.
Relevant requirements are: an interface for executing remote queries, availability of local
database transactions, an order-preserving interface between each database system and its
corresponding constraint manager, and a global clock. The protocols “deliver” certain
properties: safety, accuracy, asynchrony, and flexible granularity for constraint checking.
Table 10 summarizes the requirements and properties of the protocols discussed in Section 3.

The requirements and properties discussed so far arestaticcharacteristics of the protocols.
The protocols also can be compared in terms of theirdynamiccharacteristics, specifically
their execution costs. We provide only a preliminary cost analysis here; as future work
we plan to expand our analytical model as well as conduct empirical experiments. We
distinguish three ingredients in the cost of a constraint checking protocol:

Local messagesare messages between a database system and its constraint manager. We
distinguish between notification-only messages and messages that convey data.

Remote messagesare messages between a constraint manager and a different constraint
manager or a remote database system. All remote messages convey data.

Database operationsare operations performed by a local database system, where an op-
eration can be either a query, a database modification, or a transaction commit.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 351

Table 11.Cost functions for the protocols

local msgs remote msgs database ops total cost
per∆ per∆ per∆ (simplified)

DRQ λD 2ρ δQ (λ+ 2ρ+ δ)ν
IRQ 3λD 2ρ δQ (3λ+ 2ρ+ δ)ν
TRQ 3λD 2ρ δQ (3λ+ 2ρ+ δ)ν
SRQ 3λD 2ρ δQ (3λ+ 2ρ+ δ)ν
TRT λD + λN 2ρ δQ + δC (2λ+ 2ρ+ 2δ)ν
IRT 3λD + λN 2ρ δQ + δC (4λ+ 2ρ+ 2δ)ν

MDS λN+ 2ρ/g δU+ (λ+ δ + (3λ+ 2ρ+ 4δ)/g)ν
(2λD + λN )/g (2δQ + δU + δC)/g

LTT 3λD + λN 2(1− p)ρ (2− p)δQ + δC (4λ+ 2(1− p)ρ+ (3− p)δ)ν

ν number of update transactions
λN cost of a local notification-only message
λD cost of a local data-conveying message
ρ cost of a remote message
δQ cost of a local database query operation
δU cost of a local database update operation
δC cost of a local database commit operation
g granularity factor for MDS protocol
p probability of local test succeeding in LTT protocol

The cost functions for the protocols from Section 3 are shown in Table 11. Costs are given
for a single delta notification, i.e., for one local update transaction triggering the protocol.
From the analysis in Table 11 some interesting preliminary observations can be made:

Although the TRQ protocol has better properties than the IRQ protocol, and TRQ appears
more complex, the cost functions of the two protocols are the same. This is explained by
the fact that, although TRQ may need to iterate, each iteration “consumes” a delta set that
would have triggered an independent instance of IRQ. (In other words, a protocol restart in
TRQ incurs no additional cost.) In practice, the actual cost of TRQ may be slightly higher
than IRQ since TRQ must generate and communicate timestamps, and because restarts in
TRQ may cause larger data sets to be transmitted.

The cost of the MDS protocol can be “tuned” by varying the granularity factorg, i.e.,
the number of delta notifications before constraint checking is initiated. This allows an
application to establish a constraint checking policy that balances its integrity requirements
against the available resources.

The efficiency of the LTT protocol depends heavily on the probabilityp that a local test
succeeds; ifp is low, the LTT protocol has higher cost than the TRT protocol. The actual
value forp is strongly application-dependent. In the example presented in Section 3.8, we
expect thatp would be close to 1, making LTT a very attractive protocol.

These observations are based on our relatively simple cost model. Deeper observations
may be possible by refining the cost model, e.g., to more precisely capture message sizes.
In addition to refining the cost model, in follow-on work we plan to perform analyses with



352 GREFEN AND WIDOM

varying parameter values in order to further understand the relative costs of the protocols
in various environments.

4.3. Multi-Site Constraints

Our constraint checking protocols in Section 3 have been developed for constraints involving
exactly two databases. It is our experience that two-site constraints predominate in practice.
Furthermore, even when a constraint involves more than two databases, often it can be “split”
into multiple constraints, each involving exactly two databases. For example, suppose our
hospital application (Section 2.5) involved three hospitals instead of two. The constraint
specifying that each patient can be registered at only one hospital (constraintC1) now
involves three sites. However, instead of enforcing the three-site constraint directly, we can
enforce the following set of two-site constraints:

C1
1 : PatientsA 1SSN=SSN PatientsB

C2
1 : PatientsB 1SSN=SSN PatientsC

C3
1 : PatientsA 1SSN=SSN PatientsC

Together, these constraints imply the desired three-site constraint.
There are, however, cases where we may need to handle multi-site constraints: We may

wish to handle constraints such as the example above directly, rather than separately handling
a set of equivalent constraints (which may be exponential in number). Furthermore, some
constraints cannot be split as illustrated above. Suppose in our three-hospital example that
patients may register at two hospitals but not three. On insertions into relationPatientsA,
the constraint checking protocol must evaluate the following incremental query:

ΠSSN (PatientsA+ 1SSN=SSN PatientsB) ∩
ΠSSN (PatientsA+ 1SSN=SSN PatientsC)

When a delta notification forPatientsA is received by the constraint manager at siteSA,
this query can be evaluated easily using the DRQ or IRQ protocol—the constraint manager
simply submits two remote queries (one toSB and one toSC) and intersects the results.
Safety of the protocol is guaranteed by the same reasoning given in Section 3.1. Timestamp-
based protocols TRQ and SRQ also can be extended in a straightforward way to handle
multi-site constraints: A restart is necessary whenever abusystatus is received from any
of the remote sites and a local update has occurred; safety and accuracy follow from the
results in Section 3.3.

It is less straightforward to construct safe and accurate versions of the transaction-based
protocols (such as TRT) for the multi-site case. These protocols emulate two-phase locking,
which requires coordinating local transactions across multiple sites. A two-phase “hand-
shake” protocol could be used for synchronization, similar to distributed two-phase commit.
Alternatively, a mechanism could be used where remote queries are “chained” from one site
to the next (emulating multiple nested transactions). Unfortunately, both solutions incur a
considerable loss of local autonomy.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 353

These initial observations lead us to believe that non-transaction-based protocols are most
suitable for constraints involving more than two sites. As future work we plan to explore
the issues more carefully, and to develop protocols especially suited to the multi-site case.

5. Conclusions and Future Work

We have described a family of constraint checking protocols for federated database systems.
The protocols have been developed by starting with a straightforward basic protocol, then
improving upon the basic protocol by extending it along a number of dimensions.

We have isolated two properties of constraint checking protocols that are of primary
importance: safety and accuracy. All of our protocols are safe, meaning that they are
guaranteed to detect every constraint violation. A protocol is accurate if it does not raise
“false alarms,” i.e., it only detects true constraint violations. Obtaining accuracy requires
additional mechanisms, as seen in our more complex protocols. In addition to varying in
terms of accuracy, our protocols also vary in terms of their requirements of the underlying
systems, their level of asynchrony, their flexibility, and their execution costs. We are
quite certain that no one protocol will be suitable for all federated database scenarios.
By providing a family of alternatives, one of our protocols can be chosen—and perhaps
tailored—for a particular environment or application.

By formalizing the relevant concepts, and by identifying and analyzing a suite of protocols,
this paper provides a sound basis for the problem of integrity constraint checking in federated
databases. The work presented in this paper can be extended in a number of directions:

• The model for analyzing the execution costs of the protocols can be further elaborated.
So far we have identified the cost “ingredients,” and we have compared the protocols
according to these ingredients. The next steps are to introduce and vary parameter
values to understand relative costs in different environments, and to drop some of the
simplifying assumptions we made for the initial cost analysis.

• The issue ofconstraint repairwhen violations occur requires further study. Even
in traditional centralized databases, constraint repair is an important topic of current
research (e.g., [6, 15]). In federated databases the problem is even more difficult. It has
to be determined which of the protocols can be extended to incorporate constraint repair,
and what the characteristics of these extended protocols are with respect to constraint
maintenance properties, system requirements, and execution costs.

• The protocols identified by Table 9 that we have not studied but that may be applicable
for certain environments merit further study. The same holds for protocols for multi-
site constraints (expanding on the ideas of Section 4.3), and for protocols for handling
constraints that do not have a straightforward incremental form.

• The use oflogical clocks[5, 20] instead of absolute timestamps is an interesting mod-
ification to be studied for those protocols that currently rely on synchronized time
services.



354 GREFEN AND WIDOM

Acknowledgments

We are grateful to Stefano Ceri, Hector Garcia-Molina, and the rest of the Stanford Database
Group for useful feedback on this work.

Notes

1. In this paper we do not consider the reaction to constraint violations, although it is an important area of future
work. Rather, we focus on the detection of constraint violations, and we say that when a protocol detects a
constraint violation it raises an “alarm.”

2. Here a global clock may be required; see Section 3.3.

3. Recall that a delta notification is associated with a delta set∆R. The delta set may contain the updates
performed by a local transaction, or it may reflect some other unit of work relevant for local databaseDBR.

4. As a general principle, we assume that the capabilities of the local database systems are likely to be fixed
in advance (e.g., in the case of legacy systems), while constraint managers may permit modifications and
enhancements for the purposes of implementing the protocols.

References

1. D. Bell and J. Grimson.Distributed Database Systems. Addison-Wesley, Reading, Massachusetts, USA,
1992.

2. D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A technique for maintaining linear arithmetic
constraints in distributed database systems. InAdvances in Database Technology—EDBT ’92, Lecture Notes
in Computer Science 580. Springer-Verlag, Berlin, 1992.

3. Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase transaction management.
VLDB Journal, 1(2), 1992.

4. J.A. Blakeley, P.-A. Larson, and F.W. Tompa. Efficiently updating materialized views. InProcs. ACM
SIGMOD Int. Conf. on Management of Data, Washington, D.C., 1986.

5. O. Babaŏglu and K. Marzullo. Consistent global states of distributed systems: Fundamental concepts and
mechanisms. In S. Mullender, editor,Distributed Systems. ACM Press, New York, 1993.

6. S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generation of production rules for integrity
maintenance.ACM Trans. on Database Systems, 19(3), 1994.

7. S. Chawathe, H. Garcia-Molina, and J. Widom. A Toolkit for Constraint Management in Heterogeneous
Information Systems. InProcs. 12th Int. Conf. on Data Engineering, New Orleans, LA, 1996.

8. K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.
ACM Trans. on Computer Systems, 3(1), 1985.

9. S. Ceri and J. Widom. Managing semantic heterogeneity with production rules and persistent queues. In
Procs. 19th Int. Conf. on Very Large Data Bases, Dublin, Ireland, 1993.

10. L. Do and P. Drew. Active database management of global data integrity constraints in heterogeneous
database environments. InProcs. 11th Int. Conf. on Data Engineering, Taipei, Taiwan, 1995.

11. A. Elmagarmid (ed.).Special Issue on Unconventional Transaction Management,Data Engineering Bulletin
14(1), 1991.

12. A. Elmagarmid (ed.).Extended Transaction Models for Advanced Applications. Morgan Kaufmann, San
Mateo, California, USA, 1992.

13. P.W.P.J. Grefen and P.M.G. Apers. Parallel handling of integrity constraints on fragmented relations. In
Procs. Int. Symp. on Databases in Parallel and Distributed Systems, Dublin, Ireland, 1990.

14. P.W.P.J. Grefen and P.M.G. Apers. Integrity control in relational database systems – an overview.Journal
of Data & Knowledge Engineering, 10(2), 1993.

15. M. Gertz and U.W. Lipeck. Deriving integrity maintaining triggers from transition graphs. InProcs. 9th
Int. Conf. on Data Engineering, Vienna, Austria, 1993.



PROTOCOLS FOR INTEGRITY CONSTRAINT CHECKING 355

16. P.W.P.J. Grefen. Combining theory and practice in integrity control: a declarative approach to the specification
of a transaction modification subsystem. InProcs. 19th Int. Conf. on Very Large Data Bases, Dublin, Ireland,
1993.

17. A. Gupta, Y. Sagiv, J.D. Ullman, and J. Widom. Constraint checking with partial information. InProcs.
13th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, 1994.

18. A. Gupta and J. Widom. Local verification of global integrity constraints in distributed databases. InProcs.
ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C., 1993.

19. P. Grefen and J. Widom. Integrity constraint checking in federated databases.Memoranda Informatica,
94-80, Department of Computer Science, University of Twente, The Netherlands, 1994.

20. L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communications ACM, 21(7),
1978.

21. D. Montesi and R. Torlone. A transaction transformation approach to active rule processing. InProcs. 11th
Int. Conf. on Data Engineering, Taipei, Taiwan, 1995.

22. J.-M. Nicolas. Logic for improving integrity checking in relational data bases.Acta Informatica, 18, 1982.
23. T. Oszu and P. Valduriez.Principles of Distributed Database Systems. Prentice-Hall, Englewood Cliffs,

New Jersey, 1991.
24. X. Qian. Distribution design of integrity constraints. In L. Kerschberg, editor,Expert Database Systems—

Procs. from the 2nd Int. Conf.. Benjamin/Cummings, Redwood City, California, 1989.
25. X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions.IEEE Trans. on

Knowledge and Data Engineering, 3(3), 1991.
26. A. Rosenthal, S. Chakravarthy, B. Blaustein, and J. Blakeley. Situation monitoring for active databases. In

Procs. 15th Int. Conf. on Very Large Data Bases, Amsterdam, The Netherlands, 1989.
27. M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies in a multidatabase

environment.IEEE Computer, 24(12), 1991.
28. E. Simon and P. Valduriez. Integrity control in distributed database systems. InProcs. 19th Int. Conf. on

System Sciences, Hawaii, 1986.
29. J.D. Ullman.Principles of Database and Knowledge-Base Systems, Volumes I and II. Computer Science

Press, Rockville, Maryland, 1989.
30. J. Widom and S. Ceri.Active Database Systems: Triggers and Rules for Advanced Database Processing.

Morgan Kaufmann, San Francisco, California, 1996.
31. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing environment.

In Procs. ACM SIGMOD Int. Conf. on Management of Data, San Jose, California, 1995.


