
. 1

Optimized Data Loading for a

Multi-Terabyte Sky Survey Repository*

 Y. Dora Cai
†
, Ruth Aydt

†
, Robert J. Brunner

†,‡

†
National Center for Supercomputing Applications (NCSA)

‡
Department of Astronomy

University of Illinois at Urbana-Champaign
{ycai, aydt, rb}@ncsa.uiuc.edu

Abstract

Advanced instruments in a variety of scientific domains are

collecting massive amounts of data that must be post-

processed and organized to support research activities.

Astronomers have been pioneers in the use of databases to

host sky survey data. Increasing data volumes from more

powerful telescopes pose enormous challenges to state-of-

the-art database systems and data-loading techniques.

In this paper we present SkyLoader, our novel framework

for data loading that is being used to populate a multi-table,

multi-terabyte database repository for the Palomar-Quest

sky survey. SkyLoader consists of an efficient algorithm

for bulk loading, an effective data structure to support data

integrity, optimized parallelism, and guidelines for system

tuning. Performance studies show the positive effects of

these techniques, with load time for a 40-gigabyte data set

reduced from over 20 hours to less than 3 hours.

Our framework offers a promising approach for loading

other large and complex scientific databases.

1. Introduction

With the advent of computers, databases, data warehouses,

and World Wide Web technologies, astronomy research has

been undergoing revolutionary changes. Advanced data-

gathering technologies have collected tremendous amounts

of digital sky survey data and many sky survey repositories

(e.g., SDSS, GALEX, 2MASS, GSC-2, DPOSS, ROSAT,

*This work was supported in part by the National Science

Foundation grants SCI 0525308, ACI-9619019, ACI-0332116

and by NASA grants NAG5-12578 and NAG5-12580.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SC|05 November 12-18, 2005, Seattle, Washington, USA© 2005 ACM 1-

59593-061-2/05/0011…$5.00

FIRST and DENIS) have been built to house this data and

to serve as valuable resources for astronomy researchers

and the general public [13]. A repository for the Palomar-

Quest sky survey [8] is currently under construction at

NCSA.

Several characteristics of sky survey data—such as rapid

data capture, massive data volume, and high data

dimensionality—make data loading the first great challenge

in building advanced sky survey repositories. These

characteristics are reflected in several demanding issues

that must be addressed when loading such data. First, data-

loading speed must, at a minimum, keep up with data-

acquisition speed. Second, it must be possible to populate

multiple database tables from a single source file. Third, it

is often necessary to perform complex data transformations

and computations during the loading process. Finally,

automatic error recovery is required during the lengthy

data-loading process.

In this paper we present SkyLoader, our optimized

framework for parallel bulk loading of a Palomar-Quest

repository powered by an Oracle 10g relational database.

Our framework addresses all of the data-loading issues

listed above through the development and application of the

following techniques: (1) an efficient algorithm to perform

bulk data loading, (2) an effective data structure to maintain

table relationships and allow proper error handling, (3)

optimized parallelism to take full advantage of concurrent

loading processes, and (4) active database and system

tuning to achieve optimal data-loading performance.

With systematic testing and refinement of the SkyLoader

framework we have significantly improved the data-loading

performance for the Palomar-Quest repository. Loading

time for a 40-gigabyte data set was reduced from more than

20 hours to less than 3 hours on the same hardware and

operating system platform.

The issues outlined earlier are being faced not only by the

astronomy community, but also by other scientific

disciplines interested in building scalable databases to

house multi-terabyte archives of complex structured data.

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 2

We firmly believe the experience gained in this study will

benefit other data repositories of massive scale.

The remainder of the paper is organized as follows. Section

2 presents a brief introduction to the Palomar-Quest sky

survey. Section 3 describes data-loading challenges and

approaches. Section 4 details our SkyLoader framework for

addressing these data-loading challenges. Section 5

describes our experimental platform and presents results

and analyses for a variety of performance studies. Section 6

discusses our approach in comparison to related work, and

Section 7 presents conclusions and future directions.

2. The Palomar-Quest Sky Survey

The Palomar-Quest sky survey is a collaborative endeavor

between the California Institute of Technology, Yale

University, Indiana University and the University of

Illinois, being jointly led by Principal Investigators Charles

Baltay at Yale and S. George Djorgovski at Caltech.

Palomar-Quest is a multi-year, multi-wavelength synoptic

survey conducted at the Palomar-Quest Observatory located

in north San Diego County, California. The survey camera

consists of 112 Charge-Coupled Devices (CCDs) and can

observe a third of the sky in a single night. In contrast to

traditional sky surveys, Palomar-Quest repeatedly scans the

night sky. If we characterize traditional sky surveys as

taking digital snapshots of the sky, the Palomar-Quest

survey in contrast is taking digital movies [8]. The time

element inherent in this survey allows astronomers to

statistically analyze the variable nature of our universe and

contributes to the volume, richness, and complexity of the

survey data.

The data-collection rate is 7.4 gigabytes/hour or

approximately 70 gigabytes/night, with a monthly average

of 12–15 nights of observing. Extrapolating, Palomar-

Quest can collect approximately 1 terabyte of image data

per month, assuming ideal observing conditions. The

image data captured by the telescope camera is further

processed to produce catalog data totaling approximately

15 gigabytes/night. Since going into production in 2003,

over 6 terabytes of raw image data have been archived at

NCSA from which more than a terabyte of catalog data has

been derived.

Researchers from the Department of Astronomy and the

National Center for Supercomputing Applications at the

University of Illinois at Urbana-Champaign have jointly

designed and developed a data repository system powered

by an Oracle 10g relational database to archive, process,

and distribute the Palomar-Quest sky survey catalog data to

research collaborators. This paper focuses on the optimized

loading of derived catalog data into the sky survey

repository.

3. Data Loading Challenges and Approaches

The large data-collection rates and volumes noted in the

previous section dictate the necessity for a fast data

repository loading process that is capable of keeping up

over time with the speed of data acquisition. A number of

factors contribute to the difficulty of achieving this goal.

Collected raw image data and computed catalog data are

usually archived in a mass storage system that is separate

from the database server. The catalog data that must be

transferred from the mass storage system to load the

database repository typically saturates the available network

bandwidth, introducing the network as the first bottleneck

to fast data loading.

Sky survey data encompasses information of many different

types, from sky region specifications to the observed details

of tiny objects. This variety of information is interleaved in

the catalog data set that is generated when the raw image

data is processed. During the data-loading process the

complex catalog data must be parsed, the correct

destination tables must be identified, and the data must be

loaded into multiple target tables in the repository. Loading

data into multiple tables is further complicated by the

presence of multiple relationships among tables—

relationships that must be maintained by complying with the

primary and foreign key constraints during the loading

process.

Additional operations are also performed during the data-

loading process. These operations include transformations

to convert data types and change precision, validation to

filter out errors and outliers, and calculation of values such

as the Hierarchical Triangular Mesh ID (htmid) and sky

coordinates to facilitate the science research [10] that the

repository is built to enable. All such intensive operations

place an additional burden on the loading process. Finally,

since data loading is typically a lengthy process, a

mechanism of automatic recovery from errors is a basic

requirement.

Each major relational database management system

(RDBMS) vendor provides a utility to load data from a flat

file into a table. The Oracle system supports SQL*Loader,

the MS/SQLServer system supports Data Transformation

Services (DTS), and IBM DB2 supports a LOAD utility.

However, these are proprietary tools that can only work

with the vendor’s own databases. Furthermore, they are

primarily designed to quickly load data into a single

database table without performing any data transformation.

These data-loading services are not suitable for use with

massive scale sky survey data.

Several packaged data-loading tools are available on the

market, such as BMC Fast Import, FACT (CoSORT’s FAst

extraCT), and DataSift. However, these data-loading tools

are black boxes that generate programs which cannot be

easily customized [1]. Some new bulk-loading techniques

have been proposed [1, 4, 5, 9, 11]; however, all of these

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 3

approaches are focused on bulk loading an index, such as

B++-tree, Quad-tree and R-tree. Based on our experience

and examination of the research literature, there is little

work on parallel bulk loading of huge amounts of data into

a multi-table database.

To meet the challenges in building the Palomar-Quest

repository, we have designed and implemented an

optimized framework, called SkyLoader, which consists of

(1) an efficient algorithm to load data in bulk, (2) an

effective data structure to maintain table relationships and

handle errors, (3) optimized parallelism to take full

advantage of concurrent loading processes, and (4) active

database and system tuning to achieve optimal data-loading

performance. Using this framework we can bulk load data

in parallel, insert data into multiple database tables

simultaneously without locking and constraints violations,

and recover the loading process from errors. The

SkyLoader framework has significantly improved the

performance of data loading. We have been able to reduce

the loading time for a 40-gigabyte data set from over 20

hours to less than 3 hours on the same hardware and

operating system platform.

4. The SkyLoader Framework

In this section we present the design of our sky survey

repository and the details of our SkyLoader framework.

4.1 Data Model and SkyLoader Tasks

The raw images captured by the camera on the Palomar-

Quest telescope are archived in NCSA’s Legato

DiskXtender (UniTree) mass storage system. A program is

run on the raw image data to extract catalog data, which

includes a wide range of information. Typically the catalog

data includes information on the telescope position, the sky

region scanned, the parameters applied, the CCDs operated,

the frames derived, and the objects captured. The catalog

information is first written to an ASCII file, which is saved

in the mass storage system and then uploaded to a

repository database. The format of the catalog file varies

depending on the extraction program used. In most cases,

different aspects of the catalog information are interleaved

in the file. For example, a row of frame information is

followed by four rows of frame aperture information, and a

row of object information is followed by four rows of finger

information. Each row in the catalog data file usually has a

tag or a keyword that can be used to determine the

destination table in the database.

A commercial relational database, Oracle 10g, has been

chosen to host the Palomar-Quest repository. The

repository database has been designed to store the catalog

data and support data analysis. Figure 1 shows the data

model for the database, which consists of 23 tables. Only

the table names and relationships are shown in Figure 1 to

simplify the diagram while still conveying the complexity

of the model and inter-table relationships.

Each table stores a unique aspect of the sky survey. For

example, metadata related to a night’s observation such as

telescope position, filters in use, and collection start time

goes into the observations table. Metadata related to the

CCDs such as CCD number and sky area covered goes into

the table ccd_columns. Detailed information related to

observed objects goes into the objects table.

A primary key is defined in each table to force data

uniqueness. Most tables have one or more foreign keys to

maintain parent-child relationships. For example, a frame

aperture is always related to a frame. The foreign key on the

table ccd_frame_apertures, which references the table

ccd_frames, enforces this constraint. The database table

sizes vary significantly. Some static metadata tables have

less than 100 rows, while the objects table is expected to

grow beyond a billion rows.

Taking into account the data model and data characteristics

of the Palomar-Quest repository, the SkyLoader framework

was designed to efficiently perform the following tasks

using a parallel architecture: (1) read the data from the

catalog data files, (2) parse, validate, transform and

compute data, (3) load data into the repository database and

distribute data to multiple tables, and (4) detect and recover

from errors in the data-loading process.

4.2 An Efficient and Scalable Bulk-Loading

Algorithm

For massive volumes of sky survey data, it is crucial to

explore scalable data-loading techniques. The first such

technique to explore is bulk loading. Bulk loading allows

multiple insert operations to be packed into a single batch

and performed with one database call, minimizing network

roundtrip traffic and disk I/O [17].

It is straightforward to perform bulk loading to a single

table, and most RDBMS system tools and some on-the-

shelf software packages can accomplish this efficiently.

However, it is nontrivial to bulk load multiple tables

 Figure 1. Palomar-Quest Repository Data Model

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 4

simultaneously due to the complicated relationships among

the tables. If the data belonging to a child table is loaded

before the corresponding parent keys, a foreign key

constraint is violated. Our technique to avoid this problem

is to first buffer the data into separate arrays designated for

different tables, and then to follow the parent-child

relationship order when performing the bulk inserts. The

parent table is loaded first, then the child table(s). This

table-loading order is illustrated in Figure 2.

Another difficulty in data loading is recoverability in a

lengthy data-loading process. The catalog data set to be

loaded sometimes contains errors such as missing and/or

invalid values. To make the loading process recoverable

from these errors, we use an array-index tracing technique

that can quickly detect errors, skip the problematic rows,

and resume the loading process immediately.

For our SkyLoader framework we developed an efficient

algorithm, bulk-loading, that enables bulk loading into

multiple tables. This algorithm not only speeds up data

loading by a factor of 7 to 9, but also maintains the

relationships of multiple tables and enables the system to

recover from errors during data loading. Our bulk-loading

algorithm is presented in Figure 3.

The algorithm, bulk-loading, contains two user-tunable

constants, array-size and batch-size, controlling the size of

an array and the size of a batch, respectively. The procedure

bulk_loading (Line 4, in Figure 3) first parses a data row,

performs validation, transformation, and computation, and

then buffers the data row into a designated array. This

buffering step separates data into different arrays based on

the destination tables and is necessary to maintain the

relationships between multiple tables and to facilitate error

handling. We explain this step in more detail in the next

section on our buffering data structure.

When any data array reaches array-size (Line 5), the

batch_row procedure is called (Line 10) for each array

based on the parent-child relationship. The array for the

parent table is processed first, followed by the child tables.

This processing sequence depends entirely on the data

model. Our approach does not cover circular parent-child

relationships, as a good database design does not have

circular dependencies between tables.

Input: a series of input data files

Output: populated database tables

 int array-size /* the size of an array */

 int batch-size /* the size of a batch;

 typically << array-size */

Procedure bulk_loading

 (1) for each data file {

 (2) open the file

 (3) for each row {

 (4) parse the row, do validation, transformation and

computation, and buffer it in a designated array based on the

destination table;

 (5) if (any array.size >= array-size) {

 (6) for each array ordered by parent-child relationship {

 (7) first_idx = 0;

 (8) last_idx = array.size;

 (9) while (first_idx <= last_idx)

 (10) first_idx = batch_row(array, destination_table,

first_idx, last_idx)

 (11) } /* for each array */

 (12) } /* if reach array-size */

 (13) } /* for each row */

 (14) } /* for each data file */

Function batch_row (array, destination_table, first_idx,

last_idx)

 (15) while (first_idx <= last_idx) {

 (16) prepare SQL statement;

 (17) add to batch;

 (18) if (batch-size reached) { /* time to insert */

 (19) insert batch into the destination table;

 (20) if (successful insert) {

 (21) first_idx += batch-size;

 (22) } else { /* if an error occurred skip that row */

 (23) skip_one_row;

 (24) return (the_next_index);

 (25) }

 (26) } else if (first_idx == last_idx) { /* array done */

 (27) insert batch into the destination table;

 (28) if (successful insert) {

 (29) return (last_idx + 1);

 (30) } else { /* if an error occurred skip that row */

 (31) skip_one_row;

 (32) return (the_next_index);

 (33) }

 (34) }

 (35) } /* while there are more rows to process */

The function batch_row prepares the SQL statements (Line

16), adds the SQL command to a batch (Line 17) and

makes a database call when batch-size is reached (Line 19).

Catalog Data Set

Parent Array Child Array Grandchild Array

Parent Table Child Table Grandchild Table

Loading must be in the order: Parent, Child, Grandchild

Step 1

 Step 2 Step 3 Step 4

Figure 2. Bulk Loading Order with Multiple Tables

Figure 3. bulk-loading Algorithm

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 5

If no error is encountered (Line 21), the function loops

through the array and inserts all rows in batch into the

appropriate database table (Line 27). In the case of errors,

the function skips the error row, and returns the next array

index to the calling procedure bulk_loading (Lines 23, 24

and 31, 32). The bulk-loading procedure continues to make

calls to the function batch_row with a new index range

(Line 9 to Line 10) until all rows in the array are processed.

Example 1: Loading a data set into two tables. Suppose

a sky survey repository has two tables: frames and objects.

The table frames stores the frame information derived from

an image and the table objects keeps the object information

measured in each frame. A foreign key constraint between

frames and objects is enforced. Consider a case with 5

frames and 1000 objects interleaved in a data file. When

packaging the SQL insert statements into a batch for bulk

loading, the rows with object information will reach batch-

size first. However, if the object rows get inserted before

the frame rows, the frames-objects foreign key constraint

will be violated immediately. Using our bulk-loading

algorithm, a batch-size of 40, and an array-size of 1000,

this data set can be loaded efficiently and correctly through

the following steps:

Step 1. Read data in and buffer the frame data into array1

and the object data into array2.

Step 2. When either array reaches array-size, 1000 in this

example, bulk loading is triggered. In this example, array2

will fill up first. Despite that, the bulk loading proceeds by

following the parent-child relationship order, meaning the

rows in array1 are processed before array2.

Step 3. If no error occurs, a single call to the function

batch_row will initiate bulk loads to insert all rows in an

array into a database table. Suppose row 45 in array2 has

an error. Recall, we are using a batch-size of 40. The

function batch_row inserts rows 1 to 40 in the first batch,

inserts rows 41 to 44 in the second batch, skips row 45

where the error occurs, and returns to the calling procedure,

bulk_loading. Since the array was not completely loaded,

bulk_loading calls batch_row again for array2 with a new

starting index, and loading proceeds with rows 46 to 85,

rows 86 to 125, and so on until all remaining rows in

array2 have been inserted.

The bulk-loading algorithm has been implemented using

the JDBC™ core API. Let N denote the total number of

rows in the data set. In the best case, that is when the data

set is error-free, the algorithm will generate N/batch-size

database calls and result in N/batch-size database I/Os. In

the worst case, for example primary key violations on every

row caused by repeatedly loading duplicate rows, bulk

loading will deteriorate to a series of singleton insert

operations which make N database calls and perform N

database I/Os. This behavior results from the algorithm

breaking up the problematic batch, skipping the error row,

and repacking the batch to continue each time that an error

is encountered.

Performance results demonstrating the benefits of bulk

loading for our Palomar-Quest repository are shown in

Section 5.1. The effects of the user-tunable constants

batch-size and array-size are presented in Sections 5.2 and

5.3 respectively.

4.3 An Effective Data Structure to Buffer

Data

As discussed previously, the catalog data set used to load

the Palomar-Quest repository contains rows of data

destined for multiple target tables in the database. This

interleaving of data for multiple target tables, combined

with the presence of multiple relationships among tables—

relationships that must be maintained by complying with the

primary and foreign key constraints during the loading

process—makes bulk loading especially challenging. To

manage the interleaved data and complex table

relationships, and to facilitate quick recovery when an error

is detected during the data-loading process, we have

designed an effective data structure, array-set, in our

framework.

The array-set data structure consists of a dynamically

maintained set of two-dimensional arrays, each associated

with a destination table in the database. One dimension of

each array corresponds to table rows, and the other to table

attributes. Arrays are cached in memory and used in the

bulk loading process as described in the previous section.

The number of arrays in the array-set at a given time during

data loading depends on the degree to which the data in the

catalog data set is interleaved. As the input catalog data set

is processed, the framework creates a new array in array-set

whenever it reads an input row targeted for a database table

for which no array is currently maintained. When any of

the arrays in array-set are fully populated, bulk loading

occurs. At the end of the bulk-loading cycle, the arrays in

array-set are destroyed and their memory released. The

framework resumes reading the input catalog data and

creates new arrays as required to buffer the incoming table

rows.

To reiterate and expand on the motivations for the array-set

structure, the Palomar-Quest catalog data set contains

various levels of information for a sky survey, and that

information is interleaved in a single data set with the

relationships between levels embedded in the file. If data is

bulk-loaded by simply following the order of the data rows

and starting bulk loads into various tables when a threshold

is hit, a foreign key constraint may be violated because the

referencing data may be loaded before the referenced data.

In order to load the catalog data items into different

destination tables and retain the proper relationships, we

use array-set to buffer the data and execute the bulk

loading in the order of parent-child sequence.

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 6

Error handling in bulk data loading is difficult. In the

JDBC core API, when an error is encountered during a bulk

load, the remaining data in the batch is ignored.

Furthermore, after the batch has been dispatched to the

database server, it is impossible to reapply it [12]. Since it

is not unusual for sky survey data to have missing and/or

invalid values due to the complexity of the collection and

processing pipeline, stringent data checking is performed by

the database to guard against hidden corruption, and errors

are detected during bulk loads fairly often. Quickly

recovering from an error in a single row and continuing to

insert data in the batch following that row is critical.

Failure to recover properly could result in the loss of a huge

amount of information and in an incomplete catalog

repository. Failure to recover quickly will negatively impact

overall loading time.

The use of the array-set data structure allows us to solve

these problems. Buffering data in an array enables random

access of any data element. A row in a batch always maps

back to the source array. By detecting the error row in a

batch during bulk inserts, our algorithm can quickly identify

the corresponding row in the source array, skip the error

row, repack the batch, and continue the bulk data-loading

process from the row following the error. In addition to

performing this runtime recovery, the data loading program

saves the error rows in a separate database table that can be

reviewed later by the domain scientists. The scientists can

decide on a row-by-row basis to discard an error row or to

repair and reload it.

The tunable parameter array-size is one of the factors that

effects bulk loading performance. A large array-set may

consume too much memory on the client machine and cause

excessive memory paging. This slowdown on the client

where the loading process is running is reflected in

degraded loading performance on the database server. On

the other hand, an array-size value that is too small may

increase the overhead for array initialization and

population. In our framework, we adjusted array-size

based on the system resources and data characteristics to

achieve optimal performance. Results of the performance

studies that we performed to select an optimal array-size

value are presented in Section 5.3.

Our current SkyLoader framework uses a single array-size

user-tunable constant to control the number of rows in all

memory-resident arrays used to cache table data prior to

bulk loading. Since the systems that we are using to run the

client data-loading processes have generous memory

configurations, our primary consideration was to implement

a solution quickly rather than to carefully minimize the

space needed by the array-set data structure. We plan to

revisit this implementation and make use of a configuration

file to support arrays with variable number of rows. By

understanding the structure of our catalog data set and the

interleave pattern of the rows there, we can make more

intelligent memory-management decisions regarding the

array-set data structure. We may also explore the use of

an overall “memory high water mark” that would trigger

bulk loading and memory reclamation whenever the

aggregate memory used by the cached arrays reached that

size.

4.4 Exploration of Optimized Parallelism

The Palomar-Quest survey collects a tremendous amount of

data, with each observation generating 28 image data sets

and each image data set containing the data collected by 4

CCDs. The raw image data is processed to derive the

catalog data, which is also organized in 28 files. The 28

catalog data files can be processed independently, and we

currently load them in parallel from Radium, an NCSA

Condor [16] cluster, to a centralized Oracle database

powered by an 8-processor SGI Altix server that is one of

NCSA’s TeraGrid resources. Parallelism enables multiple

processors to work simultaneously with the database server

and substantially improves the data-loading performance

[2].

The optimal degree of parallelism, which we will refer to as

p, varies depending on the system resources and the running

applications. In an ideal environment with our 8-processor

database server and well-matched Condor nodes and

network connectivity, we would expect 8 parallel loading

processes to fully utilize all CPUs on the database server.

However, warning messages from the Oracle performance

monitor during our tests indicated that parallelism at this

level caused locking problems. All RDBMSs have a limit

on the supported number of concurrent transactions, and the

complex nature of database locking makes it difficult to

pinpoint in advance exactly when lock contention will

become an issue for a particular workload. Even without

the locking issues, the performance gain in data loading is

usually not proportional to the degree of parallelism.

Parallel processing introduces some system overhead that

limits the performance benefit to less than perfect speedup.

In cases such as the Palomar-Quest sky survey repository

where data loading is a critical and ongoing activity, it is

worth the time to conduct careful experiments to determine

p, the optimal degree of parallelism. Methodical

experimentation—even when the detailed database system

implementation is unknown—can help identify the best

possible degree of parallelism. In our framework, we have

parallelized the data loading according to the number of

processors available, the underlying data characteristics,

and the results of our performance studies. Performance

study results are shown in Section 5.4.

When scheduling the loading of the 28 catalog data files

associated with an observation, we recognize that these files

vary in size and, consequently, in loading time. Because of

this variation, we adopt a master/worker scheduling model

where p Condor worker nodes are employed in parallel,

each loading one catalog data file, until no unloaded catalog

data files remain. Running the condor_submit_dag program

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 7

with –maxjobs p specified implements the desired schedule,

and the overall runtime is shorter than it would be if the

data sets were divided evenly among the Condor nodes.

This load-balancing methodology also helps minimize the

overall data-loading time when one or more data files have

a higher-than-average frequency of errors that slow the

loading process.

4.5 Active Database and System Tuning

Many factors impact the performance of data loading. In

our SkyLoader framework, we performed active database

and system tuning to achieve the best possible

configuration. Such performance tuning is crucial to

achieve the fast loading of massive data volumes required

for our sky survey repository. We believe our experience

will benefit others who are faced with loading large

quantities of scientific data from various disciplines into

relational database systems.

4.5.1 Delay Index Building

Since the Palomar-Quest sky survey is a multi-year

continuous effort, the survey repository must serve two

purposes at the same time. First, it must be a warehouse to

store incrementally loaded data. Second, it must act as a

query engine to support scientific research. For optimal

query performance, it is necessary to create indices on

database tables. However, indices usually make data

loading slower because every insert requires an update of

all index entries [6].

Our tests showed that locking tends to happen more

frequently at a lower degree of data-loading parallelism

when indices are present. Based on our experiments,

presented in Section 5.5, the impact of indices on data

loading varies depending on the type and size of the index

and on the pattern of the index keys. Because of these

findings, we dropped most secondary indices to speed up

the data loading. Once the catch-up phase of loading is

complete and load time is not as critical, these secondary

indices will be rebuilt and kept current as subsequent data is

collected and loaded. Recognizing the need to balance load

time and query performance, some very selective indices

that are crucial to the scientific research queries, such as the

index on htmid, have been maintained during the intensive

data loading phase.

4.5.2 Reduce Frequency of Transaction Commits

A commit command in data loading permanently writes the

loaded data to the database. The RDBMS must perform a

considerable amount of processing when a transaction

commits [7], but infrequent commits can lead to large redo

and undo logs, and lengthen the time needed to recover the

database in the event of a hardware failure. In our

framework, we chose to execute commits very infrequently

during the loading of catalog data, resulting in a significant

performance increase.

4.5.3 Reduce I/O Contention

Bulk data loading is typically I/O bound. To reduce I/O

contention, we distributed the database (1) data files and

temporary files, (2) indices, and (3) logs onto three separate

RAID devices.

4.5.4 Presort Data

In our framework, the data files are sorted by the primary

keys of the tables prior to data loading. This sorting is done

as a byproduct of the processing that extracts the catalog

data from raw images. Through improvement of the

clustering factor on the disk data, this presorting procedure

reduces disk I/O contention, especially if Index Organized

Table (in Oracle) or Clustered Index (in MS SQLServer)

features are used [7].

4.5.5 Manage Memory Allocation

In our experiments, we discovered that allocating a smaller

database data cache actually improves the data-loading

performance. Since a database writer needs to scan the

entire data cache when writing new data from data cache to

disk, the reduced data cache size minimizes the work that

the database writer has to do each time [7]. This reduced

cache configuration should be adjusted after the intensive

data-loading phase is complete because a larger data cache

usually performs better for user queries.

5. Performance Analyses

In this section we report and analyze various aspects of our

performance studies on parallel bulk loading of data into

the Palomar-Quest sky survey repository.

All experiments were conducted in a client-server

environment. All data-loading programs (clients) were

implemented using Java™ and communicate with the

database server using JDBC. The loading programs were

initiated from multiple nodes of an NCSA Condor cluster.

All nodes in the cluster are dual CPU (1.5 GHz Intel

Pentium III processor), 1 gigabyte RAM, Linux servers.

An Oracle 10g database runs on an 8-processor (1.3 GHz

Intel Itanium 2), 64-bit SGI Altix machine running SGI

Linux Propack 3 with 12 gigabytes of memory. The Altix

has a single Gigabit Ethernet interface and two Qlogic

FibreChannel host-bus-adapter cards. The Qlogic cards are

used to access the disk environment via a storage area

network (SAN). The disk environment is comprised of

three separate Data Direct 8500 disk controllers, each

hosting 10 terabytes of RAIDed SATA disks for a total of

30 terabytes of storage. 2-gigabit FibreChannel

components are used throughout the environment.

All tests were performed using the same data model and

load identical sky survey catalog data extracted from a

single night’s observation. All constraints, including

primary key constraints, foreign key constraints, unique

constraints, and check constraints were maintained in the

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 8

data loading process. Tests were performed on an empty

database unless otherwise noted. The time reported is the

runtime of the data-loading process as measured on the

database server.

5.1 Bulk Loading vs. Non-Bulk Loading

Figure 4 shows the runtime of bulk loading versus non-bulk

loading when a single loading process is used. For the

bulk-loading process, the bulk_loading algorithm described

earlier was used with a batch-size of 40. For the non-bulk

loading case, a series of individual SQL insert statements

were issued. The runtime of both approaches is

proportional to the input data size. As shown in Figure 4,

the bulk_loading algorithm is much faster than the

individual inserts. However, although the batch-size was

40 we see a speedup of only 7 to 9 (not 40). This

discrepancy indicates that bulk loading incurs some

overhead. The batch-size of 40 was determined to be

optimal through a series of performance tests using

different values for batch-size.

Bulk vs. Non-Bulk

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

200 400 600 800 1000 1200

Size of Data loaded into the Database tables (MB)

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

Bulk

Non-Bulk

Figure 4. Runtime of Bulk and Non-Bulk Loading

5.2 Batch Size

Figure 5 shows the runtime of the bulk_loading algorithm

with respect to the batch size used for the bulk loads.

Initially, increasing the batch size decreases the loading

time. However, the benefit lessens as the batch size

continues to increase.

Effect of Batch Size

(loading a 200 MB data set)

200

250

300

350

10 20 30 40 50 60

Batch Size

R
u

n
ti

m
e
 (

S
e
c
o

n
d

s
)

The optimal batch size for the testing data set lies in the

range between 40 and 50. The optimal batch size varies

depending on the patterns of the catalog data file and the

underlying data model. Even with this variation,

experimenting with a variety of batch sizes and choosing

one that is close to optimal for a typical data file can

improve performance markedly over a random choice.

5.3 Array Size

Figure 6 shows the runtime of the bulk_loading algorithm

with respect to the array size. The array-set resides in the

memory of the client host. A change to the array-size

parameter effects the memory hit ratio and the paging rate

on the client host, resulting in runtime variations on the

database server. Increasing the size of the array allows

more data to reside in memory and can speed up the data

loading. However, on our system configuration, this benefit

was lost when array-size was increased beyond 1000. This

loss occurred because the high paging rate at those settings

deteriorated the data-loading performance. These findings

indicate that the array-size should be adjusted based on the

client system configuration, the characteristics of the data

model, and the interleave factor of the data being loaded.

The latter two combine to determine the incremental

amount of memory used when the array size is increased.

Effect of Array Size

(loading a 200 MB data set)

230

240

250

260

270

250 500 750 1000 1250 1500

Array Size

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

Figure 6. Effect of Array Size on Runtime

5.4 Parallel Data Loading

Figure 7 shows the loading throughput for varying numbers

of concurrent bulk-loading processes running on separate

nodes of the Condor cluster. A batch-size of 40 was used

for these bulk loads. The throughput goes up almost linearly

when six or fewer degrees of parallelism are used. Since

the database server has eight processors, one might expect

the data-loading performance should be optimal when eight

loading processes are run concurrently. Unfortunately, our

performance tests have shown this is not the case. The

data-loading throughput peaked at a parallel degree of 6–7

in our studies. Benefits decreased after that, and, very

infrequently even 6 parallel loads caused stalls and dramatic

degradation in the overall throughput.

As the degree of parallelism increased, we observed

escalating occurrences of database locks, indicating we
Figure 5. Effect of Batch Size on Runtime

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 9

were hitting the RDBMS limit on the number of concurrent

transactions. The relationship between the observed

database locks and the database concurrent transaction limit

is not an intuitive one. Our results indicate that various

degrees of parallelism should be tested in the environment

for typical data loading tasks to maximize the power of

parallel processing while avoiding database lock

contention. Because of the infrequent but very long stalls

we observed when running with an “optimal” parallel

degree of 6, we chose to run 5 concurrent loading processes

in our production SkyLoader framework.

Effect of Parallelism

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

Number of Parallel Data Loading Processes

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

Figure 7. Effect of Parallelism on Throughput

5.5 Attribute Indices

Figure 8 shows the impact of various indices on the runtime

of bulk data loading. We have experimented with three

scenarios. In the first, no indices were created. In the

second, one index was built and maintained on a large

integer attribute. In the final scenario, one index was built

and maintained on three float attributes. All experiments

were carried out on an empty database, with six different

data set sizes bulk-loaded by a single process.

Our experiments confirm that indices do slow down the

data-loading process, but to varying degrees. The single-

integer attribute index had an almost undetectable average

performance impact of 1.5% over the six data set sizes. In

contrast, the composite index built from three float

attributes causes a significant performance degradation

averaging 8.5%.

In these tests, as the size of the data sets increased, the

performance degradation attributable to the indices tended

to increase as well. When parallel loads are being done,

maintenance of indices introduces more concurrent

transactions (and locks) into the bulk-load process.

Furthermore, in our early prototype environment as the size

of the Palomar-Quest repository grew, the overhead that the

indices placed on the data-loading performance became

increasingly worrisome.

Based on the results of these studies and our observations

with the larger database, we elected to maintain only the

single-integer attribute index during data loading to support

user queries. With ongoing database tuning, we have been

able to maintain the single-integer attribute index without

incurring increased load-time overhead as the database size

has grown. We have delayed the composite index creation

until the intensive data-loading phase is complete.

Effect of Indices

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200

Data Size (MB)

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s
) No Indices

Index on 1 integer attribute

Index on 3 float attributes

Figure 8. Effect of Indices on Runtime

5.6 Database Size

In our final performance experiment, we explored the effect

of database size on bulk data-loading runtime. With some

loading techniques, the time required to load the same

amount of data increases as the size of the database grows.

This characteristic, while tolerable with relatively small and

fairly static databases, is very problematic with databases

that are large and growing. The results shown in Figure 9

indicate that with our SkyLoader framework the database

size has no significant impact on data-loading time when

indices are disabled. Loading time for a 200 megabyte

dataset remains constant as the size of the database grew

from 50 gigabytes to 300 gigabytes. The Palomar-Quest

database size currently exceeds 1.5 terabytes and we have

not seen a decrease in loading speed even at this scale.

Effect of Database Size

(loading a 200 MB data set)

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300

Database Size (GB)

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

Figure 9. Effect of Database Size on Runtime

6. Discussion

Similar to other database repositories, a considerable

amount of the effort that has gone into building the

Palomar-Quest sky survey repository has been focused on

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 10

data loading. Much time and energy has been invested in

exploring new approaches to improve the data-loading

performance, and in performance studies to identify optimal

parameter settings for our configuration and data model. In

this section we compare and contrast our data-loading

approach to that of the Sloan Digital Sky Survey.

One of the most successful sky survey repositories, the

Sloan Digital Sky Survey (SDSS), utilizes a framework [13,

14, 15] to perform most of the data-loading steps in

parallel, on a cluster of SQL Server nodes, using distributed

transactions. The SDSS data loading is a two-phase load:

the data is first loaded into Task databases, not exceeding

20-30 gigabytes each. Then the data is fully validated

before being published to its final destination in the Publish

database. In the SDSS framework, the catalog data is

converted to comma-separated-value ASCII files before the

two-phase loading begins. The data in each comma-

separated-value file is associated with a single database

table. The data is bulk loaded into MS/SQLServer using

Data Transformation Services (DTS). By carefully ordering

the loading sequence of the ASCII files, the table

relationships in the database are maintained.

Our framework differs significantly from the SDSS

approach. In the SkyLoader framework, all data-loading

tasks, including data validation, transformation,

computation and insertion, are performed in a single pass.

Since our approach does not split the data into multiple data

files based on the destination database tables, nor does it

require an intermediate temporary database be loaded prior

to loading the permanent database, we believe our approach

can be more efficient. That said, due to the incompatibility

of these two repositories, we are unable to conduct a direct

performance comparison to test this hypothesis.

Another difference between the SDSS data-loading process

and that of the SkyLoader framework is that SDSS relies on

a proprietary tool, DTS, while our framework is

implemented using Java. The use of Java makes our

framework platform-independent, portable and extensible.

7. Conclusions and Future Work

The Palomar-Quest sky survey is a multi-year project to

collect, archive, process, and distribute survey data for

research collaborations. The repository being built at

NCSA to hold catalog data for the Palomar-Quest survey

currently exceeds 1.5 terabytes in size, and is expected to

ultimately exceed 5 terabytes. The first significant challenge

this project faced was to load the catalog data into the

repository database in a timely fashion. Parallel bulk

loading with array buffering has proven to be a viable

approach to address this challenge.

We have proposed and implemented our SkyLoader

framework to realize this data-loading goal. Our

framework consists of an efficient algorithm for bulk

loading, an effective data structure to support data integrity

and proper error handling during the loading process,

support for optimized parallelism, and guidelines for

database and system tuning. Our framework has taken

advantage of high-performance computing and parallel-

processing resources, and has made the building of a

terabyte-plus repository a reality. With this framework, we

have decreased the loading time for a 40-gigabyte data set

from over 20 hours to less than 3 hours, running on the

same hardware architecture and operating system.

Looking ahead, we are interested in collaborating with

other scientists to apply our data-loading framework to their

large scientific database problems. While some of the

framework is specific to the Palomar-Quest repository, we

believe that much of it is directly applicable to other fields.

Although our efforts to date have involved loading disk-

based data sets, we anticipate that with some modification

our framework will also be able to load streaming data in

near-real-time. The loading of near-continuous streaming

data presents more stringent rate and reliability

requirements, and we are anxious to explore applications in

this domain. It is our hope and expectation that the

knowledge gained and optimization techniques developed

in working with the Palomar-Quest project will allow us to

quickly adapt the code to other operating environments and

data models.

As part of the effort to make our framework more portable

and tunable, we plan to revise the array-set data structure to

take advantage of the memory-saving configuration options

discussed in Section 4.3. The use of configuration files to

control array-set initialization will not only lower client

memory requirements, but also make the framework more

adaptable for use with data sets other than the Palomar-

Quest sky survey.

In addition, we plan to explore database-hosting

architectures and Oracle RAC technology to see how they

scale for databases of the Palomar-Quest magnitude and

complexity. For many projects, the option of hosting a

production database on a cluster configuration that can be

scaled up as the data size and usage increases is an

attractive one—provided performance and stability are not

sacrificed.

Finally, we will continue our collaboration on the Palomar-

Quest catalog repository. With the data-loading phase

under control, we will turn our attention toward tuning the

database to meet the needs of the scientists who will be

submitting queries through web interfaces, as well as

programmatically from scientific codes executing on high-

end compute resources such as those provided by the

TeraGrid. Our ultimate goal is to enable new scientific

discoveries through the effective coupling of compute and

data technologies.

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

. 11

Acknowledgements

We would like to thank Michael Remijan, Adam Rengstorf,

Nicholas Waggoner, and Brian Wilhite, members of the

NCSA Laboratory for Cosmological Data Mining, for their

work in parallel data loading using the NCSA Condor

cluster. We would also like to thank Michelle Butler, Chad

Kerner, and Chris Cribbs, members of the NCSA Storage

Enabling Technologies Group, for their assistance with

tuning the SGI Altix system and disk environment. Finally,

we would like to thank the members of the Palomar-Quest

collaboration for their dedication and hard work that has

produced the rich dataset we have leveraged in the work

described in this paper.

References

[1] S. Amer-yahia and S. Cluet. “A Declarative Approach

to Optimize Bulk Loading into Databases”. ACM

Transactions on Database Systems, Vol. 29, Issue 2, June

2004.

[2] T. Barclay, R. Barnes, J. Gray, P. Sundaresan. “Loading

Databases Using Dataflow Parallelism”. SIGMOD

RECORD, 23(4), Dec. 1994

[3] T. Barclay, J. Gray, D. Slutz. “Microsoft TerraServer: A

Spatial Data Warehouse”. In Proc. SIGMOD, Austin, TX,

May 2000.

[4] J. Berchen, B. Seeger. “An Evaluation of Generic Bulk

Loading Techniques”. In Proc. 27th VLDB Conference,

Rome, Italy, 2001.

[5] C. Bohm and H. Kriegel. “Efficient Bulk Loading of

Large High-Dimensional Indexes”. In Proc. Int. Conf. Data

Warehousing and Knowledge Discovery (DaWak), 1999.

[6] D. Burleson. “Hypercharge Oracle data load speed”.

http://www.dba-oracle.com/oracle_tips_load_speed.htm

[7] D. Burleson. “Hypercharging Oracle Data Loading”.

http://www.orafaq.com/articles/archives/000020.htm

[8] M. Graham, R. Williams, S. Djorgovski, A. Mahabal, C.

Baltay, D. Rabinowitz, A. Bauer, J. Snyder, N. Morgan, P.

Andrews, A. Szalay, R. Brunner, J. Musser. “Palomar-

QUEST: A case study in designing sky surveys in the VO

era”. Astronomical Data Analysis Software and Systems

XIII, ASP Conference Series. Vol. 314, 2004.

[9] S. Leutenegger, D. Nicol. “Efficient Bulk-Loading of

Gridfiles”. IEEE Transactions on Knowledge and Data

Engineering, 9(3):410-420, 1997.

[10] W. O’Mullane, A.J. Banday, K.M. Gorski, P. Kuntz,

A.S.Szalay. “Splitting the Sky – HTM and HEALPix”,

Mining the Sky, Banday et al ed. Springer, 2000, p639-648.

[11] A. Papadopoulos, Y. Manolopoulos. “Parallel bulk-

loading of spatial data”. In Parallel Computing

29(10):1419-1444, Oct. 2003.

[12] G. Reese. Database Programming with JDBC and

Java. O’Reilly. 2nd Edition, Aug. 2000.

[13] A. Szalay, P. Kunszt, A. Thakar, J. Gray, R. Brunner.

“Designing and Mining Multi-Terabyte Astronomy

Archives: The Sloan Digital Sky Survey”. In Proc.

SIGMOD, Austin, TX, May 2000.

[14] A. Szalay, J. Gray, A. Thakar, P. Kunszt, T. Malik, J.

Raddick, C. Stoughton, J. vandenBerg. “The SDSS

SkyServer-Public Access to the Sloan Digital Sky Server

Data”. Microsoft Technical Report. MSR-TR-2001-104,

Nov 2001.

[15] A. Szalay, J. Gray, A. Thakar, B. Boroski, R. Gal, N.

Li, P. Kunszt, T. Malik, W. O’Mullane, M. Nieto-

Santisteban, J. Raddick, C. Stoughton, J. vandenBerg. “The

SDSS DR1 SkyServer, Public Access to a Terabyte of

Astronomical Data”. http://cas.sdss.org/dr3/en/skyserver.

[16] D. Thain, T. Tannenbaum, M. Livny. "Condor and

the Grid". in Grid Computing: Making The Global

Infrastructure a Reality. Fran Berman, Anthony J.G. Hey,

Geoffrey Fox, editors. John Wiley, 2003.

[17] J. Wiener, J. Naughton. “Bulk Loading into an OODB:

A Performance Study”. In Proc. 20th VLDB Conference.

Santiago, Chile, pp. 120–131, 1994.

Proceedings of the 2005 ACM/IEEE SC|05 Conference (SC’05)
1-59593-061-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

