
. 1

Optimized Data Loading for a  

Multi-Terabyte Sky Survey Repository*

   Y. Dora Cai
†
, Ruth Aydt

†
, Robert J. Brunner

†,‡

†
National Center for Supercomputing Applications (NCSA) 

‡
Department of Astronomy 

University of Illinois at Urbana-Champaign  
{ycai, aydt, rb}@ncsa.uiuc.edu 

Abstract 

Advanced instruments in a variety of scientific domains are 

collecting massive amounts of data that must be post-

processed and organized to support research activities.  

Astronomers have been pioneers in the use of databases to 

host sky survey data. Increasing data volumes from more 

powerful telescopes pose enormous challenges to state-of-

the-art database systems and data-loading techniques.  

In this paper we present SkyLoader, our novel framework 

for data loading that is being used to populate a multi-table, 

multi-terabyte database repository for the Palomar-Quest 

sky survey.  SkyLoader consists of an efficient algorithm 

for bulk loading, an effective data structure to support data 

integrity, optimized parallelism, and guidelines for system 

tuning.   Performance studies show the positive effects of 

these techniques, with load time for a 40-gigabyte data set 

reduced from over 20 hours to less than 3 hours.  

Our framework offers a promising approach for loading 

other large and complex scientific databases.

1. Introduction 

With the advent of computers, databases, data warehouses, 

and World Wide Web technologies, astronomy research has 

been undergoing revolutionary changes.  Advanced data-

gathering technologies have collected tremendous amounts 

of digital sky survey data and many sky survey repositories 

(e.g., SDSS, GALEX, 2MASS, GSC-2, DPOSS, ROSAT, 
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FIRST and DENIS) have been built to house this data and 

to serve as valuable resources for astronomy researchers 

and the general public [13].  A repository for the Palomar-

Quest sky survey [8] is currently under construction at 

NCSA.  

Several characteristics of sky survey data—such as rapid 

data capture, massive data volume, and high data 

dimensionality—make data loading the first great challenge 

in building advanced sky survey repositories.  These 

characteristics are reflected in several demanding issues 

that must be addressed when loading such data.  First, data-

loading speed must, at a minimum, keep up with data-

acquisition speed. Second, it must be possible to populate 

multiple database tables from a single source file. Third, it 

is often necessary to perform complex data transformations 

and computations during the loading process. Finally, 

automatic error recovery is required during the lengthy 

data-loading process.  

In this paper we present SkyLoader, our optimized 

framework for parallel bulk loading of a Palomar-Quest 

repository powered by an Oracle 10g relational database. 

Our framework addresses all of the data-loading issues 

listed above through the development and application of the 

following techniques: (1) an efficient algorithm to perform 

bulk data loading, (2) an effective data structure to maintain 

table relationships and allow proper error handling, (3) 

optimized parallelism to take full advantage of concurrent 

loading processes, and (4) active database and system 

tuning to achieve optimal data-loading performance.  

With systematic testing and refinement of the SkyLoader 

framework we have significantly improved the data-loading 

performance for the Palomar-Quest repository.  Loading 

time for a 40-gigabyte data set was reduced from more than 

20 hours to less than 3 hours on the same hardware and 

operating system platform.   

The issues outlined earlier are being faced not only by the 

astronomy community, but also by other scientific 

disciplines interested in building scalable databases to 

house multi-terabyte archives of complex structured data.  
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We firmly believe the experience gained in this study will 

benefit other data repositories of massive scale. 

The remainder of the paper is organized as follows.  Section 

2 presents a brief introduction to the Palomar-Quest sky 

survey. Section 3 describes data-loading challenges and 

approaches.  Section 4 details our SkyLoader framework for 

addressing these data-loading challenges. Section 5 

describes our experimental platform and presents results 

and analyses for a variety of performance studies. Section 6 

discusses our approach in comparison to related work, and 

Section 7 presents conclusions and future directions.  

2. The Palomar-Quest Sky Survey  

The Palomar-Quest sky survey is a collaborative endeavor 

between the California Institute of Technology, Yale 

University, Indiana University and the University of 

Illinois, being jointly led by Principal Investigators Charles 

Baltay at Yale and S. George Djorgovski at Caltech.  

Palomar-Quest is a multi-year, multi-wavelength synoptic 

survey conducted at the Palomar-Quest Observatory located 

in north San Diego County, California. The survey camera 

consists of 112 Charge-Coupled Devices (CCDs) and can 

observe a third of the sky in a single night. In contrast to 

traditional sky surveys, Palomar-Quest repeatedly scans the 

night sky.  If we characterize traditional sky surveys as 

taking digital snapshots of the sky, the Palomar-Quest 

survey in contrast is taking digital movies [8]. The time 

element inherent in this survey allows astronomers to 

statistically analyze the variable nature of our universe and 

contributes to the volume, richness, and complexity of the 

survey data. 

The data-collection rate is 7.4 gigabytes/hour or 

approximately 70 gigabytes/night, with a monthly average 

of 12–15 nights of observing.  Extrapolating, Palomar-

Quest can collect approximately 1 terabyte of image data 

per month, assuming ideal observing conditions.  The 

image data captured by the telescope camera is further 

processed to produce catalog data totaling approximately 

15 gigabytes/night. Since going into production in 2003, 

over 6 terabytes of raw image data have been archived at 

NCSA from which more than a terabyte of catalog data has 

been derived.  

Researchers from the Department of Astronomy and the 

National Center for Supercomputing Applications at the 

University of Illinois at Urbana-Champaign have jointly 

designed and developed a data repository system powered 

by an Oracle 10g relational database to archive, process, 

and distribute the Palomar-Quest sky survey catalog data to 

research collaborators.  This paper focuses on the optimized 

loading of derived catalog data into the sky survey 

repository.  

3. Data Loading Challenges and Approaches 

The large data-collection rates and volumes noted in the 

previous section dictate the necessity for a fast data 

repository loading process that is capable of keeping up 

over time with the speed of data acquisition.  A number of 

factors contribute to the difficulty of achieving this goal. 

Collected raw image data and computed catalog data are 

usually archived in a mass storage system that is separate 

from the database server.  The catalog data that must be 

transferred from the mass storage system to load the 

database repository typically saturates the available network 

bandwidth, introducing the network as the first bottleneck 

to fast data loading. 

Sky survey data encompasses information of many different 

types, from sky region specifications to the observed details 

of tiny objects.  This variety of information is interleaved in 

the catalog data set that is generated when the raw image 

data is processed.  During the data-loading process the 

complex catalog data must be parsed, the correct 

destination tables must be identified, and the data must be 

loaded into multiple target tables in the repository.  Loading 

data into multiple tables is further complicated by the 

presence of multiple relationships among tables—

relationships that must be maintained by complying with the 

primary and foreign key constraints during the loading 

process.   

Additional operations are also performed during the data-

loading process.  These operations include transformations 

to convert data types and change precision, validation to 

filter out errors and outliers, and calculation of values such 

as the Hierarchical Triangular Mesh ID (htmid) and sky 

coordinates to facilitate the science research [10] that the 

repository is built to enable.  All such intensive operations 

place an additional burden on the loading process.  Finally, 

since data loading is typically a lengthy process, a 

mechanism of automatic recovery from errors is a basic 

requirement.  

Each major relational database management system 

(RDBMS) vendor provides a utility to load data from a flat 

file into a table. The Oracle system supports SQL*Loader, 

the MS/SQLServer system supports Data Transformation 

Services (DTS), and IBM DB2 supports a LOAD utility.  

However, these are proprietary tools that can only work 

with the vendor’s own databases.  Furthermore, they are 

primarily designed to quickly load data into a single 

database table without performing any data transformation. 

These data-loading services are not suitable for use with 

massive scale sky survey data.   

Several packaged data-loading tools are available on the 

market, such as BMC Fast Import, FACT (CoSORT’s FAst 

extraCT), and DataSift.  However, these data-loading tools 

are black boxes that generate programs which cannot be 

easily customized [1].   Some new bulk-loading techniques 

have been proposed [1, 4, 5, 9, 11]; however, all of these 
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approaches are focused on bulk loading an index, such as 

B++-tree, Quad-tree and R-tree.  Based on our experience 

and examination of the research literature, there is little 

work on parallel bulk loading of huge amounts of data into 

a multi-table database.   

To meet the challenges in building the Palomar-Quest 

repository, we have designed and implemented an 

optimized framework, called SkyLoader, which consists of 

(1) an efficient algorithm to load data in bulk, (2) an 

effective data structure to maintain table relationships and 

handle errors, (3) optimized parallelism to take full 

advantage of concurrent loading processes, and (4) active 

database and system tuning to achieve optimal data-loading 

performance.  Using this framework we can bulk load data 

in parallel, insert data into multiple database tables 

simultaneously without locking and constraints violations, 

and recover the loading process from errors.  The 

SkyLoader framework has significantly improved the 

performance of data loading.  We have been able to reduce 

the loading time for a 40-gigabyte data set from over 20 

hours to less than 3 hours on the same hardware and 

operating system platform. 

4. The SkyLoader Framework 

In this section we present the design of our sky survey 

repository and the details of our SkyLoader framework. 

4.1 Data Model and SkyLoader Tasks

The raw images captured by the camera on the Palomar-

Quest telescope are archived in NCSA’s Legato 

DiskXtender (UniTree) mass storage system. A program is 

run on the raw image data to extract catalog data, which 

includes a wide range of information. Typically the catalog 

data includes information on the telescope position, the sky 

region scanned, the parameters applied, the CCDs operated, 

the frames derived, and the objects captured. The catalog 

information is first written to an ASCII file, which is saved 

in the mass storage system and then uploaded to a 

repository database. The format of the catalog file varies 

depending on the extraction program used. In most cases, 

different aspects of the catalog information are interleaved 

in the file. For example, a row of frame information is 

followed by four rows of frame aperture information, and a 

row of object information is followed by four rows of finger

information. Each row in the catalog data file usually has a 

tag or a keyword that can be used to determine the 

destination table in the database.   

A commercial relational database, Oracle 10g, has been 

chosen to host the Palomar-Quest repository. The 

repository database has been designed to store the catalog 

data and support data analysis. Figure 1 shows the data 

model for the database, which consists of 23 tables. Only 

the table names and relationships are shown in Figure 1 to 

simplify the diagram while still conveying the complexity 

of the model and inter-table relationships. 

Each table stores a unique aspect of the sky survey. For 

example, metadata related to a night’s observation such as 

telescope position, filters in use, and collection start time 

goes into the observations table. Metadata related to the 

CCDs such as CCD number and sky area covered goes into 

the table ccd_columns.  Detailed information related to 

observed objects goes into the objects table.  

A primary key is defined in each table to force data 

uniqueness. Most tables have one or more foreign keys to 

maintain parent-child relationships. For example, a frame 

aperture is always related to a frame. The foreign key on the 

table ccd_frame_apertures, which references the table 

ccd_frames, enforces this constraint.  The database table 

sizes vary significantly. Some static metadata tables have 

less than 100 rows, while the objects table is expected to 

grow beyond a billion rows.  

Taking into account the data model and data characteristics 

of the Palomar-Quest repository, the SkyLoader framework 

was designed to efficiently perform the following tasks 

using a parallel architecture: (1) read the data from the 

catalog data files, (2) parse, validate, transform and 

compute data, (3) load data into the repository database and 

distribute data to multiple tables, and (4) detect and recover 

from errors in the data-loading process.  

4.2 An Efficient and Scalable Bulk-Loading 

Algorithm  

For massive volumes of sky survey data, it is crucial to 

explore scalable data-loading techniques. The first such 

technique to explore is bulk loading. Bulk loading allows 

multiple insert operations to be packed into a single batch 

and performed with one database call, minimizing network 

roundtrip traffic and disk I/O [17].   

It is straightforward to perform bulk loading to a single 

table, and most RDBMS system tools and some on-the-

shelf software packages can accomplish this efficiently.  

However, it is nontrivial to bulk load multiple tables 

 Figure 1.  Palomar-Quest Repository Data Model
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simultaneously due to the complicated relationships among 

the tables.  If the data belonging to a child table is loaded 

before the corresponding parent keys, a foreign key 

constraint is violated.  Our technique to avoid this problem 

is to first buffer the data into separate arrays designated for 

different tables, and then to follow the parent-child 

relationship order when performing the bulk inserts. The 

parent table is loaded first, then the child table(s). This 

table-loading order is illustrated in Figure 2.  

Another difficulty in data loading is recoverability in a 

lengthy data-loading process. The catalog data set to be 

loaded sometimes contains errors such as missing and/or 

invalid values. To make the loading process recoverable 

from these errors, we use an array-index tracing technique 

that can quickly detect errors, skip the problematic rows, 

and resume the loading process immediately.  

For our SkyLoader framework we developed an efficient 

algorithm, bulk-loading, that enables bulk loading into 

multiple tables.  This algorithm not only speeds up data 

loading by a factor of 7 to 9, but also maintains the 

relationships of multiple tables and enables the system to 

recover from errors during data loading.  Our bulk-loading 

algorithm is presented in Figure 3. 

The algorithm, bulk-loading, contains two user-tunable 

constants, array-size and batch-size, controlling the size of 

an array and the size of a batch, respectively. The procedure 

bulk_loading (Line 4, in Figure 3) first parses a data row, 

performs validation, transformation, and computation, and 

then buffers the data row into a designated array.  This 

buffering step separates data into different arrays based on 

the destination tables and is necessary to maintain the 

relationships between multiple tables and to facilitate error 

handling.  We explain this step in more detail in the next 

section on our buffering data structure. 

When any data array reaches array-size (Line 5), the 

batch_row procedure is called (Line 10) for each array 

based on the parent-child relationship.  The array for the 

parent table is processed first, followed by the child tables. 

This processing sequence depends entirely on the data 

model. Our approach does not cover circular parent-child 

relationships, as a good database design does not have 

circular dependencies between tables. 

Input: a series of input data files 

Output: populated database tables 

       int array-size   /* the size of an array */ 

       int batch-size   /* the size of a batch;  

                                   typically << array-size  */ 

Procedure bulk_loading 

      (1) for each data file { 

      (2)    open the file 

      (3) for each row { 

      (4)       parse the row, do validation, transformation and                                   

computation, and buffer it in a designated array based on the 

destination table; 

       (5) if (any array.size >= array-size) { 

       (6) for each array ordered by parent-child relationship { 

       (7)             first_idx = 0; 

       (8)             last_idx = array.size; 

       (9) while (first_idx <= last_idx)  

       (10)               first_idx = batch_row(array, destination_table, 

first_idx, last_idx) 

       (11)         } /* for each array */ 

       (12)       } /* if reach array-size */ 

       (13)     } /* for each row */ 

       (14) } /* for each data file */ 

Function batch_row (array, destination_table, first_idx, 

last_idx)  

       (15) while (first_idx <= last_idx) { 

       (16)         prepare SQL statement; 

       (17)         add to batch; 

       (18) if (batch-size reached) {  /* time to insert */ 

       (19)            insert batch into the destination table; 

       (20) if (successful insert) { 

       (21)               first_idx += batch-size;

       (22)            } else {       /* if an error occurred skip that row */ 

       (23)                skip_one_row; 

       (24)                return (the_next_index); 

       (25)            } 

       (26)         } else if ( first_idx == last_idx) {  /* array done */  

       (27)            insert batch into the destination table; 

       (28) if (successful insert) { 

       (29)               return (last_idx + 1 ); 

       (30)            } else {       /* if an error occurred skip that row */ 

       (31)                skip_one_row; 

       (32)                return (the_next_index); 

       (33)            } 

       (34)         } 

       (35)       } /* while there are more rows to process */ 

The function batch_row prepares the SQL statements (Line 

16), adds the SQL command to a batch (Line 17) and 

makes a database call when batch-size is reached (Line 19). 

Catalog Data Set 

Parent Array Child Array Grandchild Array 

Parent Table Child Table Grandchild Table 

Loading must be in the order:  Parent, Child, Grandchild 

Step 1

 Step 2 Step 3 Step 4

Figure 2.  Bulk Loading Order with Multiple Tables 

Figure 3.  bulk-loading Algorithm 
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If no error is encountered (Line 21), the function loops 

through the array and inserts all rows in batch into the 

appropriate database table (Line 27). In the case of errors, 

the function skips the error row, and returns the next array 

index to the calling procedure bulk_loading (Lines 23, 24 

and 31, 32).  The bulk-loading procedure continues to make 

calls to the function batch_row with a new index range 

(Line 9 to Line 10) until all rows in the array are processed.  

Example 1: Loading a data set into two tables.  Suppose 

a sky survey repository has two tables: frames and objects. 

The table frames stores the frame information derived from 

an image and the table objects keeps the object information 

measured in each frame. A foreign key constraint between 

frames and objects is enforced.  Consider a case with 5 

frames and 1000 objects interleaved in a data file.  When 

packaging the SQL insert statements into a batch for bulk 

loading, the rows with object information will reach batch-

size first.  However, if the object rows get inserted before 

the frame rows, the frames-objects foreign key constraint 

will be violated immediately. Using our bulk-loading 

algorithm, a batch-size of 40, and an array-size of 1000, 

this data set can be loaded efficiently and correctly through 

the following steps: 

Step 1. Read data in and buffer the frame data into array1

and the object data into array2.

Step 2. When either array reaches array-size, 1000 in this 

example, bulk loading is triggered.  In this example, array2

will fill up first.  Despite that, the bulk loading proceeds by 

following the parent-child relationship order, meaning the 

rows in array1 are processed before array2.

Step 3.  If no error occurs, a single call to the function 

batch_row will initiate bulk loads to insert all rows in an 

array into a database table.  Suppose row 45 in array2 has 

an error.   Recall, we are using a batch-size of 40. The 

function batch_row inserts rows 1 to 40 in the first batch, 

inserts rows 41 to 44 in the second batch, skips row 45 

where the error occurs, and returns to the calling procedure, 

bulk_loading. Since the array was not completely loaded, 

bulk_loading calls batch_row again for array2 with a new 

starting index, and loading proceeds with rows 46 to 85, 

rows 86 to 125, and so on until all remaining rows in 

array2 have been inserted. 

The bulk-loading algorithm has been implemented using 

the JDBC™ core API. Let N denote the total number of 

rows in the data set.  In the best case, that is when the data 

set is error-free, the algorithm will generate N/batch-size

database calls and result in N/batch-size database I/Os.  In 

the worst case, for example primary key violations on every 

row caused by repeatedly loading duplicate rows, bulk 

loading will deteriorate to a series of singleton insert

operations which make N database calls and perform N

database I/Os. This behavior results from the algorithm 

breaking up the problematic batch, skipping the error row, 

and repacking the batch to continue each time that an error 

is encountered.  

Performance results demonstrating the benefits of bulk 

loading for our Palomar-Quest repository are shown in 

Section 5.1.  The effects of the user-tunable constants 

batch-size and array-size are presented in Sections 5.2 and 

5.3 respectively.

4.3 An Effective Data Structure to Buffer 

Data

As discussed previously, the catalog data set used to load 

the Palomar-Quest repository contains rows of data 

destined for multiple target tables in the database.  This 

interleaving of data for multiple target tables, combined 

with the presence of multiple relationships among tables— 

relationships that must be maintained by complying with the 

primary and foreign key constraints during the loading 

process—makes bulk loading especially challenging. To 

manage the interleaved data and complex table 

relationships, and to facilitate quick recovery when an error 

is detected during the data-loading process, we have 

designed an effective data structure, array-set, in our 

framework.  

The array-set data structure consists of a dynamically 

maintained set of two-dimensional arrays, each associated 

with a destination table in the database.  One dimension of 

each array corresponds to table rows, and the other to table 

attributes.  Arrays are cached in memory and used in the 

bulk loading process as described in the previous section. 

The number of arrays in the array-set at a given time during 

data loading depends on the degree to which the data in the 

catalog data set is interleaved.  As the input catalog data set 

is processed, the framework creates a new array in array-set 

whenever it reads an input row targeted for a database table 

for which no array is currently maintained.  When any of 

the arrays in array-set are fully populated, bulk loading 

occurs.  At the end of the bulk-loading cycle, the arrays in 

array-set are destroyed and their memory released.    The 

framework resumes reading the input catalog data and 

creates new arrays as required to buffer the incoming table 

rows. 

To reiterate and expand on the motivations for the array-set

structure, the Palomar-Quest catalog data set contains 

various levels of information for a sky survey, and that 

information is interleaved in a single data set with the 

relationships between levels embedded in the file.  If data is 

bulk-loaded by simply following the order of the data rows 

and starting bulk loads into various tables when a threshold 

is hit, a foreign key constraint may be violated because the 

referencing data may be loaded before the referenced data.  

In order to load the catalog data items into different 

destination tables and retain the proper relationships, we 

use array-set to buffer the data and execute the bulk 

loading in the order of parent-child sequence. 
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Error handling in bulk data loading is difficult.  In the 

JDBC core API, when an error is encountered during a bulk 

load, the remaining data in the batch is ignored.  

Furthermore, after the batch has been dispatched to the 

database server, it is impossible to reapply it [12].  Since it 

is not unusual for sky survey data to have missing and/or 

invalid values due to the complexity of the collection and 

processing pipeline, stringent data checking is performed by 

the database to guard against hidden corruption, and errors 

are detected during bulk loads fairly often. Quickly 

recovering from an error in a single row and continuing to 

insert data in the batch following that row is critical.  

Failure to recover properly could result in the loss of a huge 

amount of information and in an incomplete catalog 

repository. Failure to recover quickly will negatively impact 

overall loading time.  

The use of the array-set data structure allows us to solve 

these problems. Buffering data in an array enables random 

access of any data element.  A row in a batch always maps 

back to the source array.  By detecting the error row in a 

batch during bulk inserts, our algorithm can quickly identify 

the corresponding row in the source array, skip the error 

row, repack the batch, and continue the bulk data-loading 

process from the row following the error.  In addition to 

performing this runtime recovery, the data loading program 

saves the error rows in a separate database table that can be 

reviewed later by the domain scientists.  The scientists can 

decide on a row-by-row basis to discard an error row or to 

repair and reload it. 

The tunable parameter array-size is one of the factors that 

effects bulk loading performance. A large array-set may 

consume too much memory on the client machine and cause 

excessive memory paging.  This slowdown on the client 

where the loading process is running is reflected in 

degraded loading performance on the database server. On 

the other hand, an array-size value that is too small may 

increase the overhead for array initialization and 

population.  In our framework, we adjusted array-size

based on the system resources and data characteristics to 

achieve optimal performance.  Results of the performance 

studies that we performed to select an optimal array-size 

value are presented in Section 5.3. 

Our current SkyLoader framework uses a single array-size 

user-tunable constant to control the number of rows in all 

memory-resident arrays used to cache table data prior to 

bulk loading.  Since the systems that we are using to run the 

client data-loading processes have generous memory 

configurations, our primary consideration was to implement 

a solution quickly rather than to carefully minimize the 

space needed by the array-set data structure. We plan to 

revisit this implementation and make use of a configuration 

file to support arrays with variable number of rows.   By 

understanding the structure of our catalog data set and the 

interleave pattern of the rows there, we can make more 

intelligent memory-management decisions regarding the 

array-set data structure.   We may also explore the use of 

an overall “memory high water mark” that would trigger 

bulk loading and memory reclamation whenever the 

aggregate memory used by the cached arrays reached that 

size.    

4.4 Exploration of Optimized Parallelism

The Palomar-Quest survey collects a tremendous amount of 

data, with each observation generating 28 image data sets 

and each image data set containing the data collected by 4 

CCDs.  The raw image data is processed to derive the 

catalog data, which is also organized in 28 files.  The 28 

catalog data files can be processed independently, and we 

currently load them in parallel from Radium, an NCSA 

Condor [16] cluster, to a centralized Oracle database 

powered by an 8-processor SGI Altix server that is one of 

NCSA’s TeraGrid resources. Parallelism enables multiple 

processors to work simultaneously with the database server 

and substantially improves the data-loading performance 

[2].

The optimal degree of parallelism, which we will refer to as 

p, varies depending on the system resources and the running 

applications.  In an ideal environment with our 8-processor 

database server and well-matched Condor nodes and 

network connectivity, we would expect 8 parallel loading 

processes to fully utilize all CPUs on the database server.  

However, warning messages from the Oracle performance 

monitor during our tests indicated that parallelism at this 

level caused locking problems. All RDBMSs have a limit 

on the supported number of concurrent transactions, and the 

complex nature of database locking makes it difficult to 

pinpoint in advance exactly when lock contention will 

become an issue for a particular workload.  Even without 

the locking issues, the performance gain in data loading is 

usually not proportional to the degree of parallelism. 

Parallel processing introduces some system overhead that 

limits the performance benefit to less than perfect speedup.   

In cases such as the Palomar-Quest sky survey repository 

where data loading is a critical and ongoing activity, it is 

worth the time to conduct careful experiments to determine 

p, the optimal degree of parallelism. Methodical 

experimentation—even when the detailed database system 

implementation is unknown—can help identify the best 

possible degree of parallelism.   In our framework, we have 

parallelized the data loading according to the number of 

processors available, the underlying data characteristics, 

and the results of our performance studies.  Performance 

study results are shown in Section 5.4. 

When scheduling the loading of the 28 catalog data files 

associated with an observation, we recognize that these files 

vary in size and, consequently, in loading time.  Because of 

this variation, we adopt a master/worker scheduling model 

where p Condor worker nodes are employed in parallel, 

each loading one catalog data file, until no unloaded catalog 

data files remain. Running the condor_submit_dag program 
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with –maxjobs p specified implements the desired schedule, 

and the overall runtime is shorter than it would be if the 

data sets were divided evenly among the Condor nodes. 

This load-balancing methodology also helps minimize the 

overall data-loading time when one or more data files have 

a higher-than-average frequency of errors that slow the 

loading process. 

4.5 Active Database and System Tuning

Many factors impact the performance of data loading.  In 

our SkyLoader framework, we performed active database 

and system tuning to achieve the best possible 

configuration.  Such performance tuning is crucial to 

achieve the fast loading of massive data volumes required 

for our sky survey repository.  We believe our experience 

will benefit others who are faced with loading large 

quantities of scientific data from various disciplines into 

relational database systems. 

4.5.1 Delay Index Building 

Since the Palomar-Quest sky survey is a multi-year 

continuous effort, the survey repository must serve two 

purposes at the same time.  First, it must be a warehouse to 

store incrementally loaded data.  Second, it must act as a 

query engine to support scientific research. For optimal 

query performance, it is necessary to create indices on 

database tables. However, indices usually make data 

loading slower because every insert requires an update of 

all index entries [6].  

Our tests showed that locking tends to happen more 

frequently at a lower degree of data-loading parallelism 

when indices are present. Based on our experiments, 

presented in Section 5.5, the impact of indices on data 

loading varies depending on the type and size of the index 

and on the pattern of the index keys. Because of these 

findings, we dropped most secondary indices to speed up 

the data loading.  Once the catch-up phase of loading is 

complete and load time is not as critical, these secondary 

indices will be rebuilt and kept current as subsequent data is 

collected and loaded. Recognizing the need to balance load 

time and query performance, some very selective indices 

that are crucial to the scientific research queries, such as the 

index on htmid, have been maintained during the intensive 

data loading phase. 

4.5.2 Reduce Frequency of Transaction Commits 

A commit command in data loading permanently writes the 

loaded data to the database.  The RDBMS must perform a 

considerable amount of processing when a transaction 

commits [7], but infrequent commits can lead to large redo 

and undo logs, and lengthen the time needed to recover the 

database in the event of a hardware failure.  In our 

framework, we chose to execute commits very infrequently 

during the loading of catalog data, resulting in a significant 

performance increase. 

4.5.3 Reduce I/O Contention 

Bulk data loading is typically I/O bound. To reduce I/O 

contention, we distributed the database (1) data files and 

temporary files, (2) indices, and (3) logs onto three separate 

RAID devices. 

4.5.4 Presort Data 

In our framework, the data files are sorted by the primary 

keys of the tables prior to data loading.  This sorting is done 

as a byproduct of the processing that extracts the catalog 

data from raw images.  Through improvement of the 

clustering factor on the disk data, this presorting procedure 

reduces disk I/O contention, especially if Index Organized 

Table (in Oracle) or Clustered Index (in MS SQLServer) 

features are used [7]. 

4.5.5 Manage Memory Allocation 

In our experiments, we discovered that allocating a smaller 

database data cache actually improves the data-loading 

performance.  Since a database writer needs to scan the 

entire data cache when writing new data from data cache to 

disk, the reduced data cache size minimizes the work that 

the database writer has to do each time [7].  This reduced 

cache configuration should be adjusted after the intensive 

data-loading phase is complete because a larger data cache 

usually performs better for user queries. 

5. Performance Analyses 

In this section we report and analyze various aspects of our 

performance studies on parallel bulk loading of data into 

the Palomar-Quest sky survey repository. 

All experiments were conducted in a client-server 

environment. All data-loading programs (clients) were 

implemented using Java™ and communicate with the 

database server using JDBC. The loading programs were 

initiated from multiple nodes of an NCSA Condor cluster.  

All nodes in the cluster are dual CPU (1.5 GHz Intel 

Pentium III processor), 1 gigabyte RAM, Linux servers.  

An Oracle 10g database runs on an 8-processor (1.3 GHz 

Intel Itanium 2), 64-bit SGI Altix machine running SGI 

Linux Propack 3 with 12 gigabytes of memory.  The Altix 

has a single Gigabit Ethernet interface and two Qlogic 

FibreChannel host-bus-adapter cards. The Qlogic cards are 

used to access the disk environment via a storage area 

network (SAN).     The disk environment is comprised of 

three separate Data Direct 8500 disk controllers, each 

hosting 10 terabytes of RAIDed SATA disks for a total of 

30 terabytes of storage.  2-gigabit FibreChannel 

components are used throughout the environment.   

All tests were performed using the same data model and 

load identical sky survey catalog data extracted from a 

single night’s observation. All constraints, including 

primary key constraints, foreign key constraints, unique 

constraints, and check constraints were maintained in the 
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data loading process.   Tests were performed on an empty 

database unless otherwise noted. The time reported is the 

runtime of the data-loading process as measured on the 

database server.  

5.1 Bulk Loading vs. Non-Bulk Loading 

Figure 4 shows the runtime of bulk loading versus non-bulk 

loading when a single loading process is used.  For the 

bulk-loading process, the bulk_loading algorithm described 

earlier was used with a batch-size of 40. For the non-bulk 

loading case, a series of individual SQL insert statements 

were issued. The runtime of both approaches is 

proportional to the input data size. As shown in Figure 4, 

the bulk_loading algorithm is much faster than the 

individual inserts.  However, although the batch-size was 

40 we see a speedup of only 7 to 9 (not 40).  This 

discrepancy indicates that bulk loading incurs some 

overhead.  The batch-size of 40 was determined to be 

optimal through a series of performance tests using 

different values for batch-size.
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Figure 4. Runtime of Bulk and Non-Bulk Loading 

5.2 Batch Size 

Figure 5 shows the runtime of the bulk_loading algorithm 

with respect to the batch size used for the bulk loads. 

Initially, increasing the batch size decreases the loading 

time. However, the benefit lessens as the batch size 

continues to increase.   
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The optimal batch size for the testing data set lies in the 

range between 40 and 50. The optimal batch size varies 

depending on the patterns of the catalog data file and the 

underlying data model.   Even with this variation, 

experimenting with a variety of batch sizes and choosing 

one that is close to optimal for a typical data file can 

improve performance markedly over a random choice. 

5.3 Array Size 

Figure 6 shows the runtime of the bulk_loading  algorithm 

with respect to the array size. The array-set resides in the 

memory of the client host. A change to the array-size 

parameter effects the memory hit ratio and the paging rate 

on the client host, resulting in runtime variations on the 

database server.  Increasing the size of the array allows 

more data to reside in memory and can speed up the data 

loading.  However, on our system configuration, this benefit 

was lost when array-size was increased beyond 1000.  This 

loss occurred because the high paging rate at those settings 

deteriorated the data-loading performance. These findings

indicate that the array-size should be adjusted based on the 

client system configuration, the characteristics of the data 

model, and the interleave factor of the data being loaded.  

The latter two combine to determine the incremental 

amount of memory used when the array size is increased.  
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Figure 6. Effect of Array Size on Runtime 

5.4 Parallel Data Loading 

Figure 7 shows the loading throughput for varying numbers 

of concurrent bulk-loading processes running on separate 

nodes of the Condor cluster. A batch-size of 40 was used 

for these bulk loads. The throughput goes up almost linearly 

when six or fewer degrees of parallelism are used.  Since 

the database server has eight processors, one might expect 

the data-loading performance should be optimal when eight 

loading processes are run concurrently. Unfortunately, our 

performance tests have shown this is not the case.  The 

data-loading throughput peaked at a parallel degree of 6–7

in our studies.  Benefits decreased after that, and, very 

infrequently even 6 parallel loads caused stalls and dramatic 

degradation in the overall throughput.   

As the degree of parallelism increased, we observed 

escalating occurrences of database locks, indicating we 
Figure 5. Effect of Batch Size on Runtime 
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were hitting the RDBMS limit on the number of concurrent 

transactions. The relationship between the observed 

database locks and the database concurrent transaction limit 

is not an intuitive one. Our results indicate that various 

degrees of parallelism should be tested in the environment 

for typical data loading tasks to maximize the power of 

parallel processing while avoiding database lock 

contention. Because of the infrequent but very long stalls 

we observed when running with an “optimal” parallel 

degree of 6, we chose to run 5 concurrent loading processes 

in our production SkyLoader framework. 
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Figure 7. Effect of Parallelism on Throughput 

5.5 Attribute Indices 

Figure 8 shows the impact of various indices on the runtime 

of bulk data loading.  We have experimented with three 

scenarios.  In the first, no indices were created.  In the 

second, one index was built and maintained on a large 

integer attribute.  In the final scenario, one index was built 

and maintained on three float attributes.  All experiments 

were carried out on an empty database, with six different 

data set sizes bulk-loaded by a single process.  

Our experiments confirm that indices do slow down the 

data-loading process, but to varying degrees.  The single-

integer attribute index had an almost undetectable average 

performance impact of 1.5% over the six data set sizes.   In 

contrast, the composite index built from three float 

attributes causes a significant performance degradation 

averaging 8.5%.     

In these tests, as the size of the data sets increased, the 

performance degradation attributable to the indices tended 

to increase as well. When parallel loads are being done, 

maintenance of indices introduces more concurrent 

transactions (and locks) into the bulk-load process.  

Furthermore, in our early prototype environment as the size 

of the Palomar-Quest repository grew, the overhead that the 

indices placed on the data-loading performance became 

increasingly worrisome.   

Based on the results of these studies and our observations 

with the larger database, we elected to maintain only the 

single-integer attribute index during data loading to support 

user queries. With ongoing database tuning, we have been 

able to maintain the single-integer attribute index without 

incurring increased load-time overhead as the database size 

has grown.  We have delayed the composite index creation 

until the intensive data-loading phase is complete.
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Figure 8. Effect of Indices on Runtime 

5.6 Database Size 

In our final performance experiment, we explored the effect 

of database size on bulk data-loading runtime.  With some 

loading techniques, the time required to load the same 

amount of data increases as the size of the database grows.  

This characteristic, while tolerable with relatively small and 

fairly static databases, is very problematic with databases 

that are large and growing.  The results shown in Figure 9 

indicate that with our SkyLoader framework the database 

size has no significant impact on data-loading time when 

indices are disabled. Loading time for a 200 megabyte 

dataset remains constant as the size of the database grew 

from 50 gigabytes to 300 gigabytes.  The Palomar-Quest 

database size currently exceeds 1.5 terabytes and we have 

not seen a decrease in loading speed even at this scale. 
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Figure 9. Effect of Database Size on Runtime 

6. Discussion

Similar to other database repositories, a considerable 

amount of the effort that has gone into building the 

Palomar-Quest sky survey repository has been focused on 
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data loading. Much time and energy has been invested in 

exploring new approaches to improve the data-loading 

performance, and in performance studies to identify optimal 

parameter settings for our configuration and data model.  In 

this section we compare and contrast our data-loading 

approach to that of the Sloan Digital Sky Survey. 

One of the most successful sky survey repositories, the 

Sloan Digital Sky Survey (SDSS), utilizes a framework [13, 

14, 15] to perform most of the data-loading steps in 

parallel, on a cluster of SQL Server nodes, using distributed 

transactions. The SDSS data loading is a two-phase load: 

the data is first loaded into Task databases, not exceeding 

20-30 gigabytes each. Then the data is fully validated 

before being published to its final destination in the Publish

database. In the SDSS framework, the catalog data is 

converted to comma-separated-value ASCII files before the 

two-phase loading begins. The data in each comma-

separated-value file is associated with a single database 

table. The data is bulk loaded into MS/SQLServer using 

Data Transformation Services (DTS). By carefully ordering 

the loading sequence of the ASCII files, the table 

relationships in the database are maintained. 

Our framework differs significantly from the SDSS 

approach. In the SkyLoader framework, all data-loading 

tasks, including data validation, transformation, 

computation and insertion, are performed in a single pass. 

Since our approach does not split the data into multiple data 

files based on the destination database tables, nor does it 

require an intermediate temporary database be loaded prior 

to loading the permanent database, we believe our approach 

can be more efficient.  That said, due to the incompatibility 

of these two repositories, we are unable to conduct a direct 

performance comparison to test this hypothesis.  

Another difference between the SDSS data-loading process 

and that of the SkyLoader framework is that SDSS relies on 

a proprietary tool, DTS, while our framework is 

implemented using Java.   The use of Java makes our 

framework platform-independent, portable and extensible. 

7. Conclusions and Future Work 

The Palomar-Quest sky survey is a multi-year project to 

collect, archive, process, and distribute survey data for 

research collaborations.  The repository being built at 

NCSA to hold catalog data for the Palomar-Quest survey 

currently exceeds 1.5 terabytes in size, and is expected to 

ultimately exceed 5 terabytes. The first significant challenge 

this project faced was to load the catalog data into the 

repository database in a timely fashion. Parallel bulk 

loading with array buffering has proven to be a viable 

approach to address this challenge.  

We have proposed and implemented our SkyLoader

framework to realize this data-loading goal.  Our 

framework consists of an efficient algorithm for bulk 

loading, an effective data structure to support data integrity 

and proper error handling during the loading process, 

support for optimized parallelism, and guidelines for 

database and system tuning. Our framework has taken 

advantage of high-performance computing and parallel-

processing resources, and has made the building of a 

terabyte-plus repository a reality. With this framework, we 

have decreased the loading time for a 40-gigabyte data set 

from over 20 hours to less than 3 hours, running on the 

same hardware architecture and operating system. 

Looking ahead, we are interested in collaborating with 

other scientists to apply our data-loading framework to their 

large scientific database problems. While some of the 

framework is specific to the Palomar-Quest repository, we 

believe that much of it is directly applicable to other fields. 

Although our efforts to date have involved loading disk-

based data sets, we anticipate that with some modification 

our framework will also be able to load streaming data in 

near-real-time.  The loading of near-continuous streaming 

data presents more stringent rate and reliability 

requirements, and we are anxious to explore applications in 

this domain. It is our hope and expectation that the 

knowledge gained and optimization techniques developed  

in working with the Palomar-Quest project will allow us to 

quickly adapt the code to other operating environments and 

data models.   

As part of the effort to make our framework more portable 

and tunable, we plan to revise the array-set data structure to 

take advantage of the memory-saving configuration options 

discussed in Section 4.3.  The use of configuration files to 

control array-set initialization will not only lower client 

memory requirements, but also make the framework more 

adaptable for use with data sets other than the Palomar-

Quest sky survey.  

In addition, we plan to explore database-hosting 

architectures and Oracle RAC technology to see how they 

scale for databases of the Palomar-Quest magnitude and 

complexity.  For many projects, the option of hosting a 

production database on a cluster configuration that can be 

scaled up as the data size and usage increases is an 

attractive one—provided performance and stability are not 

sacrificed.  

Finally, we will continue our collaboration on the Palomar-

Quest catalog repository.  With the data-loading phase 

under control, we will turn our attention toward tuning the 

database to meet the needs of the scientists who will be 

submitting queries through web interfaces, as well as 

programmatically from scientific codes executing on high-

end compute resources such as those provided by the 

TeraGrid.   Our ultimate goal is to enable new scientific 

discoveries through the effective coupling of compute and 

data technologies. 
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