
36 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

practice
DoI:10.1145/1536616.1536632

 article development led by
 queue.acm.org

Scale up your datasets enough and your apps
come undone. What are the typical problems
and where do the bottlenecks surface?

BY ADAm JAcoBs

farm would have been far too expen-
sive, and requiring the operators
to manually mount and dismount
thousands of 40MB tapes would have
slowed progress to a crawl, or at the
very least severely limited the kinds of
questions that could be asked about
the census data.

A database on the order of 100GB
would not be considered trivially
small even today, although hard
drives capable of storing 10 times as
much can be had for less than $100
at any computer store. The U.S. Cen-
sus database included many different
datasets of varying sizes, but let’s sim-
plify a bit: 100GB is enough to store at
least the basic demographic informa-
tion—age, sex, income, ethnicity, lan-
guage, religion, housing status, and
location, packed in a 128-bit record—
for every living human being on the
planet. This would create a table of
6.75 billion rows and maybe 10 col-
umns. Should that still be considered
“big data?” It depends, of course, on
what you’re trying to do with it. Cer-
tainly, you could store it on $10 worth
of disk. More importantly, any compe-
tent programmer could in a few hours
write a simple, unoptimized applica-
tion on a $500 desktop PC with mini-
mal CPU and RAM that could crunch
through that dataset and return an-
swers to simple aggregation queries
such as “what is the median age by sex
for each country?” with perfectly rea-
sonable performance.

To demonstrate this, I tried it, with
fake data of course—namely, a file
consisting of 6.75 billion 16-byte re-
cords containing uniformly distribut-
ed random data (see Figure 1). Since
a 7-bit age field allows a maximum of
128 possible values, one bit for sex al-
lows only two (we’ll assume there were
no NULLs), and eight bits for coun-
try allows up to 256 (the UN has 192
member states), we can calculate the

WHAt is “BiG DAtA” anyway? Gigabytes? Terabytes?
Petabytes? A brief personal memory may provide some
perspective. In the late 1980s at Columbia university,
I had the chance to play around with what at the
time was a truly enormous disk: the IBM 3850 Mss
(Mass storage system). The Mss was actually a
fully automatic robotic tape library and associated
staging disks to make random access, if not
exactly instantaneous, at least fully transparent. In
Columbia’s configuration, it stored a total of around
100GB. It was already on its way out by the time I got
my hands on it, but in its heyday, the early- to mid-
1980s, it had been used to support access by social
scientists to what was unquestionably “big data” at the
time: the entire 1980 u.s. Census database.2

Presumably, there was no other practical way to
provide the researchers with ready access to a dataset
that large—at close to $40K per GB,3 a 100GB disk

The
Pathologies
of Big Data

Details of Jason salavon’s 2008 data
visualization American Varietal (u.s.
Population, by county, 1790–2000),
commissioned as part of a site-specific
installation for the u.s. census Bureau.
http://salavon.com/

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 37

38 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

practice

loading my fake 100GB world census
into a commonly used enterprise-
grade database system (PostgreSQL6)
running on relatively hefty hardware
(an eight-core Mac Pro workstation
with 20GB RAM and two terabytes of
RAID 0 disk), but had to abort the bulk
load process after six hours as the da-
tabase storage had already reached
many times the size of the original
binary dataset, and the workstation’s
disk was nearly full. (Part of this, of
course, was a result of the “unpack-
ing” of the data. The original file
stored fields bit-packed rather than
as distinct integer fields, but subse-
quent tests revealed that the database
was using three to four times as much
storage as would be necessary to store
each field as a 32-bit integer. This sort
of data “inflation” is typical of a tradi-
tional RDBMS and shouldn’t neces-
sarily be seen as a problem, especially
to the extent that it is part of a strat-
egy to improve performance. After all,
disk space is relatively cheap.)

I was successfully able to load sub-
sets consisting of up to one billion
rows of just three columns: country (8-
bits, 256 possible values), age (7-bits,
128 possible values), and sex (one bit,
two values). This was only 2% of the
raw data, although it ended up con-
suming more than 40GB in the DBMS.
I then tested the following query, es-

median age by using a counting strat-
egy: simply create 65,536 buckets—
one for each combination of age, sex,
and country—and count how many
records fall into each. We find the
median age by determining, for each
sex and country group, the cumulative
count over the 128 age buckets: the
median is the bucket where the count
reaches half of the total. In my tests,
this algorithm was limited primarily
by the speed at which data could be
fetched from disk: a little over 15 min-
utes for one pass through the data at a
typical 90MB/s sustained read speed,9
shamefully underutilizing the CPU
the whole time.

In fact, our table of “all the people
in the world” will fit in the memory of
a single, $15K Dell server with 128GB
RAM. Running off in-memory data,
my simple median-age-by-sex-and-
country program completed in less
than a minute. By such measures, I
would hesitate to call this “big data,”
particularly in a world where a single
research site, the LHC (Large Hadron
Collider) at CERN (European Orga-
nization for Nuclear Research), is ex-
pected to produce 150,000 times as
much raw data each year.10

For many commonly used appli-
cations, however, our hypothetical
6.75-billion-row dataset would in fact
pose a significant challenge. I tried

sentially the same computation as the
left side of Figure 1:

SELECT country,age,sex,count(*)
FROM people GROUP BY
country,age,sex;
This query ran in a matter of sec-

onds on small subsets of the data, but
execution time increased rapidly as
the number of rows grew past 1 mil-
lion (see Figure 2). Applied to the en-
tire billion rows, the query took more
than 24 hours, suggesting that Postgr-
eSQL was not scaling gracefully to this
big dataset, presumably because of a
poor choice of algorithm for the given
data and query. Invoking the DBMS’s
built-in EXPLAIN facility revealed
the problem: while the query planner
chose a reasonable hash table-based
aggregation strategy for small tables,
on larger tables it switched to sorting
by grouping columns—a viable, if sub-
optimal strategy given a few million
rows, but a very poor one when facing
a billion. PostgreSQL tracks statistics
such as the minimum and maximum
value of each column in a table (and I
verified that it had correctly identified
the ranges of all three columns), so it
could have chosen a hash-table strat-
egy with confidence. It’s worth not-
ing, however, that even if the table’s
statistics had not been known, on a
billion rows it would take far less time
to do an initial scan and determine

figure 1. calculating the median age by sex and country
over the entire world population in a matter of minutes.

Record layout:

To find median age by sex and country,

6.75 billion rows

then

7b ag
e

1b se
x

32
b

in
co

m
e

13
b

et
hn

ic
it

y

13
b

la
ng

ua
ge

13
b

re
lig

io
n

1b ha
t

8b co
un

tr
y

16
b

pl
ac

e

24
b

lo
ca

to
r

int age, sex, country;
int cnt[2][256][128];
int tot,acc;
byte r[16];
fill cnt with 0;
do
 read 16 bytes into r;
 age = r[0] & 01111111b;
 sex = r[1] & 10000000b;
 ctry = r[11] & 11111111b;
 cnt[sex][ctry][age] += 1;
until end of file;

for sex = 0 to 1 do
 for ctry = 0 to 255 do
 output ctry, sex;
 tot = sum9cnt[sex][ctry][age];
 acc = 0;
 for age = 0 to 127 do
 acc += cnt[sex][ctry][age];
 if(acc >= tot/2)
 output age;
 go to next ctry;
 end if;
 next age;
 next ctry;
next sex;

figure 2. PostgresQL performance on the
query seLecT country,age,sex,count(*)
fRom people GRouP BY country,age,sex.

104

100

1

0.01

1000 104 105 106 107 108

— query time
— linear Growth

— n log n growth
— n2 growth

109

* Curves of linear, linearithmic, and quadratic growth

 are shown for comparison.

T
im

e
(s

ec
on

d
s)

number of rows

practice

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 39

the distributions than to embark on a
full-table sort.

PostgreSQL’s difficulty here was
in analyzing the stored data, not in
storing it. The database didn’t blink
at loading or maintaining a database
of a billion records; presumably there
would have been no difficulty storing
the entire 6.75-billion-row, 10-col-
umn table had I had sufficient free
disk space.

Here’s the big truth about big data
in traditional databases: it’s easier to
get the data in than out. Most DBMSs
are designed for efficient transaction
processing: adding, updating, search-
ing for, and retrieving small amounts
of information in a large database.
Data is typically acquired in a trans-
actional fashion: imagine a user log-
ging into a retail Web site (account
data is retrieved; session information
is added to a log), searching for prod-
ucts (product data is searched for and
retrieved; more session information
is acquired), and making a purchase
(details are inserted in an order data-
base; user information is updated). A
fair amount of data has been added
effortlessly to a database that—if it’s
a large site that has been in operation
for a while—probably already consti-
tutes “big data.”

There is no pathology here; this sto-
ry is repeated in countless ways, every
second of the day, all over the world.
The trouble comes when we want to
take that accumulated data, collected
over months or years, and learn some-
thing from it—and naturally we want
the answer in seconds or minutes!
The pathologies of big data are pri-
marily those of analysis. This may be a
slightly controversial assertion, but I
would argue that transaction process-
ing and data storage are largely solved
problems. Short of LHC-scale science,
few enterprises generate data at such
a rate that acquiring and storing it
pose major challenges today.

In business applications, at least,
data warehousing is ordinarily re-
garded as the solution to the database
problem (data goes in but doesn’t
come out). A data warehouse has been
classically defined as “a copy of trans-
action data specifically structured for
query and analysis,”4 and the general
approach is commonly understood
to be bulk extraction of the data from

an operational database, followed by
reconstitution in a different database
in a form that is more suitable for
analytical queries (the so-called “ex-
tract, transform, load,” or sometimes
“extract, load, transform” process).
Merely saying, “We will build a data
warehouse” is not sufficient when
faced with a truly huge accumulation
of data.

How must data be structured for
query and analysis, and how must
analytical databases and tools be de-
signed to handle it efficiently? Big
data changes the answers to these
questions, as traditional techniques
such as RDBMS-based dimensional
modeling and cube-based OLAP (on-
line analytical processing) turn out
to be either too slow or too limited to
support asking the really interesting
questions about warehoused data.
To understand how to avoid the pa-
thologies of big data, whether in the
context of a data warehouse or in the
physical or social sciences, we need to
consider what really makes it “big.”

Dealing with Big Data
Data means “things given” in Latin—
although we tend to use it as a mass
noun in English, as if it denotes a
substance—and ultimately, almost
all useful data is given to us either
by nature, as a reward for careful ob-
servation of physical processes, or by
other people, usually inadvertently
(consider logs of Web hits or retail
transactions, both common sources
of big data). As a result, in the real
world, data is not just a big set of
random numbers; it tends to exhibit
predictable characteristics. For one
thing, as a rule, the largest cardinali-
ties of most datasets—specifically,
the number of distinct entities about
which observations are made—are
small compared with the total num-
ber of observations.

This is hardly surprising. Hu-
man beings are making the observa-
tions, or being observed as the case
may be, and there are no more than
6.75 billion of them at the moment,
which sets a rather practical upper
bound. The objects about which we
collect data, if they are of the human
world—Web pages, stores, products,
accounts, securities, countries, cities,
houses, phones, IP addresses—tend

To understand
how to avoid the
pathologies of big
data, whether
in the context of
a data warehouse
or in the physical
or social sciences,
we need to consider
what really makes
it “big.”

40 communications of the acm | august 2009 | vol. 52 | no. 8

practice

a “contiguous range” of customers
(however defined) at a randomly se-
lected set of times.

The point is even clearer when we
consider the demands of time-series
analysis and forecasting, which ag-
gregate data in an order-dependent
manner (for example, cumulative and
moving-window functions, lead and
lag operators, among others). Such
analyses are necessary for answering
most of the truly interesting questions
about temporal data, broadly: “What
happened?” “Why did it happen?”
“What’s going to happen next?”

The prevailing database model
today, however, is the relational da-
tabase, and this model explicitly ig-
nores the ordering of rows in tables.1
Database implementations that fol-
low this model, eschewing the idea of
an inherent order on tables, will inevi-
tably end up retrieving data in a non-
sequential fashion once it grows large
enough that it no longer fits in memo-
ry. As the total amount of data stored
in the database grows, the problem
only becomes more significant. To
achieve acceptable performance for
highly order-dependent queries on truly
large data, one must be willing to con-
sider abandoning the purely relational
database model for one that recogniz-
es the concept of inherent ordering
of data down to the implementation
level. Fortunately, this point is slowly
starting to be recognized in the ana-
lytical database sphere.

Not only in databases, but also in
application programming in general,
big data greatly magnifies the per-
formance impact of suboptimal ac-
cess patterns. As dataset sizes grow,
it becomes increasingly important to
choose algorithms that exploit the ef-
ficiency of sequential access as much
as possible at all stages of process-
ing. Aside from the obvious point that
a 10:1 increase in processing time
(which could easily result from a high
proportion of nonsequential access-
es) is far more painful when the units
are hours than when they are seconds,
increasing data sizes mean that data
access becomes less and less efficient.
The penalty for inefficient access pat-
terns increases disproportionately
as the limits of successive stages of
hardware are exhausted: from proces-
sor cache to memory, memory to local

to be fewer in number than the total
world population. Even in scientific
datasets, a practical limit on cardinal-
ities is often set by such factors as the
number of available sensors (a state-
of-the-art neurophysiology dataset,
for example, might reflect 512 chan-
nels of recording5) or simply the num-
ber of distinct entities that humans
have been able to detect and identify
(the largest astronomical catalogs,
for example, include several hundred
million objects8).

What makes most big data big is
repeated observations over time and/
or space. The Web log records mil-
lions of visits a day to a handful of
pages; the cellphone database stores
time and location every 15 seconds for
each of a few million phones; the re-
tailer has thousands of stores, tens of
thousands of products, and millions
of customers but logs billions and
billions of individual transactions in
a year. Scientific measurements are
often made at a high time resolution
(thousands of samples a second in
neurophysiology, far more in particle
physics) and really start to get huge
when they involve two or three dimen-
sions of space as well; fMRI neuroim-
aging studies can generate hundreds
or even thousands of gigabytes in a
single experiment. Imaging in gener-
al is the source of some of the biggest
big data out there, but the problems
of large image data are a topic for an
article by themselves; I won’t consider
them further here.

The fact that most large datasets
have inherent temporal or spatial
dimensions, or both, is crucial to
understanding one important way
that big data can cause performance
problems, especially when databases
are involved. It would seem intuitively
obvious that data with a time dimen-
sion, for example, should in most
cases be stored and processed with
at least a partial temporal ordering to
preserve locality of reference as much
as possible when data is consumed in
time order. After all, most nontrivial
analyses will involve at the very least
an aggregation of observations over
one or more contiguous time inter-
vals. One is more likely, for example,
to be looking at the purchases of a
randomly selected set of customers
over a particular time period than of

here’s the big
truth about big
data in traditional
databases: it’s
easier to get the
data in than out.

practice

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 41

disk, and—rarely nowadays!—disk to
off-line storage.

On typical server hardware today,
completely random memory access
on a range much larger than cache
size can be an order of magnitude or
more slower than purely sequential
access, but completely random disk
access can be five orders of magni-
tude slower than sequential access
(see Figure 3). Even state-of-the-art
solid-state (flash) disks, although they
have much lower seek latency than
magnetic disks, can differ in speed
by roughly four orders of magnitude
between random and sequential ac-
cess patterns. The results for the test
shown in Figure 3 are the number of
four-byte integer values read per sec-
ond from a 1-billion-long (4GB) array
on disk or in memory; random disk
reads are for 10,000 indices chosen at
random between one and one billion.

A further point that’s widely un-
derappreciated: in modern systems,
as demonstrated in the figure, ran-
dom access to memory is typically
slower than sequential access to disk.
Note that random reads from disk are
more than 150,000 times slower than
sequential access; SSD improves on
this ratio by less than one order of
magnitude. In a very real sense, all of
the modern forms of storage improve
only in degree, not in their essential
nature, upon that most venerable and
sequential of storage media: the tape.

The huge cost of random access
has major implications for analysis of
large datasets (whereas it is typically
mitigated by various kinds of caching
when data sizes are small). Consider,
for example, joining large tables that
are not both stored and sorted by the
join key—say, a series of Web trans-
actions and a list of user/account
information. The transaction table
has been stored in time order, both
because that is the way the data was
gathered and because the analysis of
interest (tracking navigation paths,
say) is inherently temporal. The user
table, of course, has no temporal di-
mension.

As records from the transaction ta-
ble are consumed in temporal order,
accesses to the joined user table will
be effectively random—at great cost if
the table is large and stored on disk. If
sufficient memory is available to hold

the user table, performance will be
improved by keeping it there. Because
random access in RAM is itself expen-
sive, and RAM is a scarce resource
that may simply not be available for
caching large tables, the best solution
when constructing a large database
for analytical purposes (for example,
in a data warehouse) may, surpris-
ingly, be to build a fully denormalized
table—that is, a table including each
transaction along with all user infor-

mation that is relevant to the analysis
(as shown in Figure 4).

Denormalizing a 10-million-row,
10-column user information table
onto a 1-billion-row, four-column
transaction table adds substantially
to the size of data that must be stored
(the denormalized table is more than
three times the size of the original
tables combined). If data analysis is
carried out in timestamp order but re-
quires information from both tables,

figure 3. comparing random and sequential access in disk and memory.

10

316 values/sec

53.2M values/sec

1924 values/sec

42.2M values/sec

36.7M values/sec

358.2M values/sec

100 1000 104 105 106 107 108

* Disk tests were carried out on a freshly booted machine (a Windows 2003 server with 64GB RaM and

eight 15,000RPM SaS disks in RaID5 configuration) to eliminate the effect of operating-system disk caching.

SSD test used a latest generation Intel high-performance SaTa SSD.

random, disk

sequential, disk

random, ssD

sequential, ssD

random, memory

sequential, memory

figure 4. Denormalizing a user information table.

transid timestamp page userid

9999997
6
9999994
23535
6
6
9999994
3
4

userid age sex country
1
2
3
4
5
6
7
8

transid timestamp page userid age sex country …

9999993
9999994
9999995
9999996
9999997
9999998
9999999
100000000

…

10 columns

13 columns

1 billion rows

1 billion rows

10 million rows

42 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

practice

rally exhibit higher performance than
disk-bound ones (at least insofar as
the data-crunching they carry out ad-
vances beyond single-pass, purely se-
quential processing), but requiring
all data to fit in memory means that
if you have a dataset larger than your
installed RAM, you’re out of luck. On
most hardware platforms, there’s a
much harder limit on memory expan-
sion than disk expansion: the mother-
board has only so many slots to fill.

The problem often goes further
than this, however. Like most other
aspects of computer hardware, maxi-
mum memory capacities increase with
time; 32GB is no longer a rare con-
figuration for a desktop workstation,
and servers are frequently configured
with far more than that. There is no
guarantee, however, that a memory-
bound application will be able to use
all installed RAM. Even under modern
64-bit operating systems, many appli-
cations today (for example, R under
Windows) have only 32-bit executa-
bles and are limited to 4GB address
spaces—this often translates into a 2-
or 3GB working set limitation.

Finally, even where a 64-bit binary
is available—removing the absolute
address space limitation—all too of-
ten relics from the age of 32-bit code
still pervade software, particularly in
the use of 32-bit integers to index ar-
ray elements. Thus, for example, 64-bit
versions of R (available for Linux and
Mac) use signed 32-bit integers to rep-
resent lengths, limiting data frames
to at most 231–1, or about two billion
rows. Even on a 64-bit system with suf-
ficient RAM to hold the data, therefore,
a 6.75-billion-row dataset such as the
earlier world census example ends up
being too big for R to handle.

Distributed computing as
a strategy for Big Data
Any given computer has a series of ab-
solute and practical limits: memory
size, disk size, processor speed, and
so on. When one of these limits is ex-
hausted, we lean on the next one, but
at a performance cost: an in-memory
database is faster than an on-disk one,
but a PC with 2GB RAM cannot store a
100GB dataset entirely in memory; a
server with 128GB RAM can, but the
data may well grow to 200GB before
the next generation of servers with

then eliminating random look-ups
in the user table can improve perfor-
mance greatly. Although this inevita-
bly requires much more storage and,
more importantly, more data to be
read from disk in the course of the
analysis, the advantage gained by do-
ing all data access in sequential order
is often enormous.

hard Limits
Another major challenge for data
analysis is exemplified by applica-
tions with hard limits on the size of
data they can handle. Here, one is
dealing mostly with the end-user an-
alytical applications that constitute
the last stage in analysis. Occasion-
ally the limits are relatively arbitrary;
consider the 256-column, 65,536-row
bound on worksheet size in all ver-
sions of Microsoft Excel prior to the
most recent one. Such a limit might
have seemed reasonable in the days
when main RAM was measured in
megabytes, but it was clearly obsolete
by 2007 when Microsoft updated Ex-
cel to accommodate up to 16,384 col-
umns and one million rows. Enough
for anyone? Excel is not targeted at us-
ers crunching truly huge datasets, but
the fact remains that anyone working
with a one million-row dataset (a list
of customers along with their total
purchases for a large chain store, per-
haps) is likely to face a two million-
row dataset sooner or later, and Excel
has placed itself out of the running
for the job.

In designing applications to handle
ever-increasing amounts of data, de-
velopers would do well to remember
that hardware specs are improving
too, and keep in mind the so-called
ZOI (zero-one-infinity) rule, which
states that a program should “allow
none of foo, one of foo, or any number
of foo.”11 That is, limits should not be
arbitrary; ideally, one should be able
to do as much with software as the
hardware platform allows.

Of course, hardware—chiefly
memory and CPU limitations—is of-
ten a major factor in software limits
on dataset size. Many applications are
designed to read entire datasets into
memory and work with them there;
a good example of this is the popular
statistical computing environment
R.7 Memory-bound applications natu-

Data replicated
to improve the
efficiency of
different kinds
of analyses can
also provide
redundancy
against the
inevitable
node failure.

practice

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 43

twice the memory slots comes out.
The beauty of today’s mainstream

computer hardware, though, is that
it’s cheap and almost infinitely repli-
cable. Today it is much more cost-ef-
fective to purchase eight off-the-shelf,
“commodity” servers with eight pro-
cessing cores and 128GB of RAM each
than it is to acquire a single system
with 64 processors and a terabyte of
RAM. Although the absolute numbers
will change over time, barring a radi-
cal change in computer architectures,
the general principle is likely to re-
main true for the foreseeable future.
Thus, it’s not surprising that distrib-
uted computing is the most success-
ful strategy known for analyzing very
large datasets.

Distributing analysis over multiple
computers has significant performance
costs: even with gigabit and 10-gigabit
Ethernet, both bandwidth (sequential
access speed) and latency (thus, ran-
dom access speed) are several orders
of magnitude worse than RAM. At the
same time, however, the highest-speed
local network technologies have now
surpassed most locally attached disk
systems with respect to bandwidth,
and network latency is naturally much
lower than disk latency.

As a result, the performance cost of
storing and retrieving data on other
nodes in a network is comparable to
(and in the case of random access, po-
tentially far less than) the cost of using
disk. Once a large dataset has been
distributed to multiple nodes in this
way, however, a huge advantage can be
obtained by distributing the process-
ing as well—so long as the analysis is
amenable to parallel processing.

Much has been and can be said
about this topic, but in the context
of a distributed large dataset, the cri-
teria are essentially related to those
discussed earlier: just as maintain-
ing locality of reference via sequen-
tial access is crucial to processes that
rely on disk I/O (because disk seeks
are expensive), so too, in distributed
analysis, processing must include a
significant component that is local
in the data—that is, does not require
simultaneous processing of many dis-
parate parts of the dataset (because
communication between the differ-
ent processing domains is expensive).
Fortunately, most real-world data

analysis does include such a compo-
nent. Operations such as searching,
counting, partial aggregation, record-
wise combinations of multiple fields,
and many time-series analyses (if the
data is stored in the correct order)
can be carried out on each computing
node independently.

Furthermore, where communica-
tion between nodes is required, it
often occurs after data has been ex-
tensively aggregated; consider, for
example, taking an average of billions

of rows of data stored on multiple
nodes. Each node is required to com-
municate only two values—a sum and
a count—to the node that produces
the final result. Not every aggrega-
tion can be computed so simply, as a
global aggregation of local sub-aggre-
gations (consider the task of finding a
global median, for example, instead
of a mean), but many of the important
ones can, and there are distributed al-
gorithms for other, more complicated
tasks that minimize communication

figure 5. Two ways to distribute 10 years of sensor data for 1,000 sites over 10 machines.

timestamp sensor reading
19990101000000 1
19990101000015 1
19990101000030

20081231235930

1

1

20081231235945 1
19990101000000 2
19990101000015 2
19990101000030

20081231235930

2

2

20081231235945 2
19990101000000

20081231235945

3

100

timestamp sensor reading
19990101000000 101
19990101000015 101
19990101000030

20081231235930

101

101

20081231235945 101
19990101000000 102
19990101000015 102
19990101000030

20081231235930

102

102

20081231235945 102
19990101000000

20081231235945

103

200

timestamp sensor reading
19990101000000 901
19990101000015 901
19990101000030

20081231235930

901

901

20081231235945 901
19990101000000 902
19990101000015 902
19990101000030

20081231235930

902

902

20081231235945 902
19990101000000

20081231235945

903

1000

timestamp sensor reading
19990101000000 1
19990101000000 2
19990101000000

19990101000000

3

1000

19990101000015 1
19990101000015 2
19990101000015 3
19990101000015

19990101000015

4

1000

19990101000030 1
19990101000030

19991231235945

2

100

timestamp sensor reading
20000101000000 1
20000101000000 2
20000101000000

20000101000000

3

1000

20000101000015 1
20000101000015 2
20000101000015 3
20000101000015

20000101000015

4

1000

20000101000030 1
20000101000030

20001231235945

2

1000

timestamp sensor reading
20080101000000 1
20080101000000 2
20080101000000

20080101000000

3

1000

20080101000015 1
20080101000015 2
20080101000015 3
20080101000015

20080101000015

4

1000

20080101000030 1
20080101000030

20081231235945

2

1000

node 1

node 2

node 10

node 1

node 2

node 10

44 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

practice

ways would provide optimal efficiency
for both kinds of analysis—but the
larger the dataset, the more likely it
is that two copies would be simply too
much data for the available hardware
resources.

Another important issue with dis-
tributed systems is reliability. Just as
a four-engine airplane is more likely
to experience an engine failure in a
given period than a craft with two of
the equivalent engines, so too is it 10
times more likely that a cluster of 10
machines will require a service call.
Unfortunately, many of the compo-
nents that get replicated in clusters—
power supplies, disks, fans, cabling,
and so on—tend to be unreliable. It
is, of course, possible to make a clus-
ter arbitrarily resistant to single-node
failures, chiefly by replicating data
across the nodes. Happily, there is
perhaps room for some synergy here:
data replicated to improve the effi-
ciency of different kinds of analyses,
as noted here, can also provide redun-
dancy against the inevitable node fail-
ure. Once again, however, the larger
the dataset, the more difficult it is to
maintain multiple copies of the data.

A meta-Definition
I have tried here to provide an over-
view of a few of the issues that can
arise when analyzing big data: the in-
ability of many off-the-shelf packages
to scale to large problems; the para-
mount importance of avoiding sub-
optimal access patterns as the bulk of
processing moves down the storage
hierarchy; and replication of data for
storage and efficiency in distributed
processing. I have not yet answered
the question I opened with: What is
“big data,” anyway?

I will take a stab at a meta-defini-
tion: big data should be defined at any
point in time as “data whose size forc-
es us to look beyond the tried-and-
true methods that are prevalent at
that time.” In the early 1980s, it was a
dataset that was so large that a robotic
“tape monkey” was required to swap
thousands of tapes in and out. In the
1990s, perhaps, it was any data that
transcended the bounds of Microsoft
Excel and a desktop PC, requiring seri-
ous software on Unix workstations to
analyze. Nowadays, it may mean data
that is too large to be placed in a rela-

between nodes.
Naturally, distributed analysis of

big data comes with its own set of
“gotchas.” One of the major problems
is nonuniform distribution of work
across nodes. Ideally, each node will
have the same amount of indepen-
dent computation to do before results
are consolidated across nodes. If this
is not the case, then the node with the
most work will dictate how long we
must wait for the results, and this will
obviously be longer than we would
have waited had work been distribut-
ed uniformly; in the worst case, all the
work may be concentrated in a single
node and we will get no benefit at all
from parallelism.

Whether this is a problem or not
will tend to be determined by how
the data is distributed across nodes;
unfortunately, in many cases this can
come into direct conflict with the im-
perative to distribute data in such a
way that processing at each node is lo-
cal. Consider, for example, a dataset
that consists of 10 years of observa-
tions collected at 15-second intervals
from 1,000 sensor sites. There are
more than 20 million observations
for each site; and, because the typi-
cal analysis would involve time-series
calculations—say, looking for unusu-
al values relative to a moving average
and standard deviation—we decide to
store the data ordered by time for each
sensor site (shown in Figure 5), dis-
tributed over 10 computing nodes so
that each one gets all the observations
for 100 sites (a total of two billion ob-
servations per node). Unfortunately,
this means that whenever we are in-
terested in the results of only one or
a few sensors, most of our computing
nodes will be totally idle. Whether
the rows are clustered by sensor or by
time stamp makes a big difference in
the degree of parallelism with which
different queries will execute.

We could, of course, store the data
ordered by time, one year per node, so
that each sensor site is represented
in each node (we would need some
communication between successive
nodes at the beginning of the compu-
tation to “prime” the time-series cal-
culations). This approach also runs
into the difficulty if we suddenly need
an intensive analysis of the past year’s
worth of data. Storing the data both

tional database and analyzed with the
help of a desktop statistics/visualiza-
tion package—data, perhaps, whose
analysis requires massively parallel
software running on tens, hundreds,
or even thousands of servers.

In any case, as analyses of ever-larg-
er datasets become routine, the defi-
nition will continue to shift, but one
thing will remain constant: success at
the leading edge will be achieved by
those developers who can look past
the standard, off-the-shelf techniques
and understand the true nature of the
hardware resources and the full pano-
ply of algorithms that are available to
them.

 Related articles
 on queue.acm.org

Flash Storage Today

Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

A Call to Arms

Jim Gray
http://queue.acm.org/detail.cfm?id=1059805

You Don’t Know Jack about Disks
Dave Anderson
http://queue.acm.org/detail.cfm?id=864058

References
1. Codd, e.f. a relational model for large shared data

banks. Commun. ACM 13, 6 (June 1970), 377–387.
2. IbM 3850 Mass storage system; http://www.

columbia.edu/acis/history/mss.html.
3. IbM archives: IbM 3380 direct access storage device;

http://www-03.ibm.com/ibm/history/exhibits/storage/
storage_3380.html.

4. kimball, r. The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data Warehouses.
John Wiley & sons, ny, 1996.

5. litke, a.M. What does the eye tell the brain?
Development of a system for the large-scale
recording of retinal output activity. IEEE Transactions
on Nuclear Science 51, 4 (2004), 1434–1440.

6. Postgresql: the world’s most advanced open source
database; http://www.postgresql.org.

7. the r Project for statistical Computing; http://www.r-
project.org.

8. sloan Digital sky survey; http://www.sdss.org.
9. throughput and Interface Performance. tom’s Winter

2008 hard Drive Guide; http://www.tomshardware.
com/reviews/hdd-terabyte-1tb,2077-11.html.

10. WlCG (Worldwide lhC Computing Grid); http://lcg.
web.cern.ch/lCG/public/.

11. zero-one-Infinity rule; http://www.catb.org/~esr/
jargon/html/z/zero-one-Infinity-rule.html.

Adam Jacobs is senior software engineer at 1010data
Inc., where, among other roles, he leads the continuing
development of tenbase, the company’s ultra-high-
performance analytical database engine. he has more
than 10 years of experience with distributed processing
of big datasets, starting in his earlier career as a
computational neuroscientist at Weill Medical College of
Cornell university (where he holds the position of Visiting
fellow) and at uCla.

© 2009 aCM 0001-0782/09/0800 $10.00

