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Scale up your datasets enough and your apps 
come undone. What are the typical problems 
and where do the bottlenecks surface?

BY ADAm JAcoBs

farm would have been far too expen-
sive, and requiring the operators 
to manually mount and dismount 
thousands of 40MB tapes would have 
slowed progress to a crawl, or at the 
very least severely limited the kinds of 
questions that could be asked about 
the census data.

A database on the order of 100GB 
would not be considered trivially 
small even today, although hard 
drives capable of storing 10 times as 
much can be had for less than $100 
at any computer store. The U.S. Cen-
sus database included many different 
datasets of varying sizes, but let’s sim-
plify a bit: 100GB is enough to store at 
least the basic demographic informa-
tion—age, sex, income, ethnicity, lan-
guage, religion, housing status, and 
location, packed in a 128-bit record—
for every living human being on the 
planet. This would create a table of 
6.75 billion rows and maybe 10 col-
umns. Should that still be considered 
“big data?” It depends, of course, on 
what you’re trying to do with it. Cer-
tainly, you could store it on $10 worth 
of disk. More importantly, any compe-
tent programmer could in a few hours 
write a simple, unoptimized applica-
tion on a $500 desktop PC with mini-
mal CPU and RAM that could crunch 
through that dataset and return an-
swers to simple aggregation queries 
such as “what is the median age by sex 
for each country?” with perfectly rea-
sonable performance. 

To demonstrate this, I tried it, with 
fake data of course—namely, a file 
consisting of 6.75 billion 16-byte re-
cords containing uniformly distribut-
ed random data (see Figure 1). Since 
a 7-bit age field allows a maximum of 
128 possible values, one bit for sex al-
lows only two (we’ll assume there were 
no NULLs), and eight bits for coun-
try allows up to 256 (the UN has 192 
member states), we can calculate the 

WHAt is  “BiG DAtA” anyway? Gigabytes? Terabytes? 
Petabytes? A brief personal memory may provide some 
perspective. In the late 1980s at Columbia university,  
I had the chance to play around with what at the 
time was a truly enormous disk: the IBM 3850 Mss 
(Mass storage system). The Mss was actually a 
fully automatic robotic tape library and associated 
staging disks to make random access, if not 
exactly instantaneous, at least fully transparent. In 
Columbia’s configuration, it stored a total of around 
100GB. It was already on its way out by the time I got 
my hands on it, but in its heyday, the early- to mid-
1980s, it had been used to support access by social 
scientists to what was unquestionably “big data” at the 
time: the entire 1980 u.s. Census database.2  

Presumably, there was no other practical way to 
provide the researchers with ready access to a dataset 
that large—at close to $40K per GB,3 a 100GB disk 

The 
Pathologies  
of Big Data

Details of Jason salavon’s 2008 data 
visualization American Varietal (u.s. 
Population, by county, 1790–2000), 
commissioned as part of a site-specific 
installation for the u.s. census Bureau.  
http://salavon.com/
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loading my fake 100GB world census 
into a commonly used enterprise-
grade database system (PostgreSQL6) 
running on relatively hefty hardware 
(an eight-core Mac Pro workstation 
with 20GB RAM and two terabytes of 
RAID 0 disk), but had to abort the bulk 
load process after six hours as the da-
tabase storage had already reached 
many times the size of the original 
binary dataset, and the workstation’s 
disk was nearly full. (Part of this, of 
course, was a result of the “unpack-
ing” of the data. The original file 
stored fields bit-packed rather than 
as distinct integer fields, but subse-
quent tests revealed that the database 
was using three to four times as much 
storage as would be necessary to store 
each field as a 32-bit integer. This sort 
of data “inflation” is typical of a tradi-
tional RDBMS and shouldn’t neces-
sarily be seen as a problem, especially 
to the extent that it is part of a strat-
egy to improve performance. After all, 
disk space is relatively cheap.)  

I was successfully able to load sub-
sets consisting of up to one billion 
rows of just three columns: country (8-
bits, 256 possible values), age (7-bits, 
128 possible values), and sex (one bit, 
two values). This was only 2% of the 
raw data, although it ended up con-
suming more than 40GB in the DBMS. 
I then tested the following query, es-

median age by using a counting strat-
egy: simply create 65,536 buckets—
one for each combination of age, sex, 
and country—and count how many 
records fall into each. We find the 
median age by determining, for each 
sex and country group, the cumulative 
count over the 128 age buckets: the 
median is the bucket where the count 
reaches half of the total. In my tests, 
this algorithm was limited primarily 
by the speed at which data could be 
fetched from disk: a little over 15 min-
utes for one pass through the data at a 
typical 90MB/s sustained read speed,9 
shamefully underutilizing the CPU 
the whole time.

In fact, our table of “all the people 
in the world” will fit in the memory of 
a single, $15K Dell server with 128GB 
RAM. Running off in-memory data, 
my simple median-age-by-sex-and-
country program completed in less 
than a minute. By such measures, I 
would hesitate to call this “big data,” 
particularly in a world where a single 
research site, the LHC (Large Hadron 
Collider) at CERN (European Orga-
nization for Nuclear Research), is ex-
pected to produce 150,000 times as 
much raw data each year.10

For many commonly used appli-
cations, however, our hypothetical 
6.75-billion-row dataset would in fact 
pose a significant challenge. I tried 

sentially the same computation as the 
left side of Figure 1:

SELECT country,age,sex,count(*) 
FROM people GROUP BY 
country,age,sex;
This query ran in a matter of sec-

onds on small subsets of the data, but 
execution time increased rapidly as 
the number of rows grew past 1 mil-
lion (see Figure 2). Applied to the en-
tire billion rows, the query took more 
than 24 hours, suggesting that Postgr-
eSQL was not scaling gracefully to this 
big dataset, presumably because of a 
poor choice of algorithm for the given 
data and query. Invoking the DBMS’s 
built-in EXPLAIN facility revealed 
the problem: while the query planner 
chose a reasonable hash table-based 
aggregation strategy for small tables, 
on larger tables it switched to sorting 
by grouping columns—a viable, if sub-
optimal strategy given a few million 
rows, but a very poor one when facing 
a billion. PostgreSQL tracks statistics 
such as the minimum and maximum 
value of each column in a table (and I 
verified that it had correctly identified 
the ranges of all three columns), so it 
could have chosen a hash-table strat-
egy with confidence. It’s worth not-
ing, however, that even if the table’s 
statistics had not been known, on a 
billion rows it would take far less time 
to do an initial scan and determine 

figure 1. calculating the median age by sex and country  
over the entire world population in a matter of minutes. 
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int age, sex, country;
int cnt[2][256][128];
int tot,acc;
byte r[16];
fill cnt with 0;
do
 read 16 bytes into r;
 age = r[0] & 01111111b;
 sex = r[1] & 10000000b;
 ctry = r[11] & 11111111b;
 cnt[sex][ctry][age] += 1;
until end of file; 

for sex = 0 to 1 do
 for ctry = 0 to 255 do
 output ctry, sex;
 tot = sum9cnt[sex][ctry][age];
 acc = 0;
 for age = 0 to 127 do
  acc += cnt[sex][ctry][age];
  if(acc >= tot/2)
   output age;
   go to next ctry;
  end if;
 next age;
 next ctry;
next sex;

figure 2. PostgresQL performance on the 
query seLecT country,age,sex,count(*)  
fRom people GRouP BY country,age,sex. 
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the distributions than to embark on a 
full-table sort.

PostgreSQL’s difficulty here was 
in analyzing the stored data, not in 
storing it. The database didn’t blink 
at loading or maintaining a database 
of a billion records; presumably there 
would have been no difficulty storing 
the entire 6.75-billion-row, 10-col-
umn table had I had sufficient free 
disk space. 

Here’s the big truth about big data 
in traditional databases: it’s easier to 
get the data in than out. Most DBMSs 
are designed for efficient transaction 
processing: adding, updating, search-
ing for, and retrieving small amounts 
of information in a large database. 
Data is typically acquired in a trans-
actional fashion: imagine a user log-
ging into a retail Web site (account 
data is retrieved; session information 
is added to a log), searching for prod-
ucts (product data is searched for and 
retrieved; more session information 
is acquired), and making a purchase 
(details are inserted in an order data-
base; user information is updated). A 
fair amount of data has been added 
effortlessly to a database that—if it’s 
a large site that has been in operation 
for a while—probably already consti-
tutes “big data.”

There is no pathology here; this sto-
ry is repeated in countless ways, every 
second of the day, all over the world. 
The trouble comes when we want to 
take that accumulated data, collected 
over months or years, and learn some-
thing from it—and naturally we want 
the answer in seconds or minutes! 
The pathologies of big data are pri-
marily those of analysis. This may be a 
slightly controversial assertion, but I 
would argue that transaction process-
ing and data storage are largely solved 
problems. Short of LHC-scale science, 
few enterprises generate data at such 
a rate that acquiring and storing it 
pose major challenges today.

In business applications, at least, 
data warehousing is ordinarily re-
garded as the solution to the database 
problem (data goes in but doesn’t 
come out). A data warehouse has been 
classically defined as “a copy of trans-
action data specifically structured for 
query and analysis,”4 and the general 
approach is commonly understood 
to be bulk extraction of the data from 

an operational database, followed by 
reconstitution in a different database 
in a form that is more suitable for 
analytical queries (the so-called “ex-
tract, transform, load,” or sometimes 
“extract, load, transform” process). 
Merely saying, “We will build a data 
warehouse” is not sufficient when 
faced with a truly huge accumulation 
of data. 

How must data be structured for 
query and analysis, and how must 
analytical databases and tools be de-
signed to handle it efficiently? Big 
data changes the answers to these 
questions, as traditional techniques 
such as RDBMS-based dimensional 
modeling and cube-based OLAP (on-
line analytical processing) turn out 
to be either too slow or too limited to 
support asking the really interesting 
questions about warehoused data. 
To understand how to avoid the pa-
thologies of big data, whether in the 
context of a data warehouse or in the 
physical or social sciences, we need to 
consider what really makes it “big.” 

Dealing with Big Data
Data means “things given” in Latin—
although we tend to use it as a mass 
noun in English, as if it denotes a 
substance—and ultimately, almost 
all useful data is given to us either 
by nature, as a reward for careful ob-
servation of physical processes, or by 
other people, usually inadvertently 
(consider logs of Web hits or retail 
transactions, both common sources 
of big data). As a result, in the real 
world, data is not just a big set of 
random numbers; it tends to exhibit 
predictable characteristics. For one 
thing, as a rule, the largest cardinali-
ties of most datasets—specifically, 
the number of distinct entities about 
which observations are made—are 
small compared with the total num-
ber of observations. 

This is hardly surprising. Hu-
man beings are making the observa-
tions, or being observed as the case 
may be, and there are no more than 
6.75 billion of them at the moment, 
which sets a rather practical upper 
bound.  The objects about which we 
collect data, if they are of the human 
world—Web pages, stores, products, 
accounts, securities, countries, cities, 
houses, phones, IP addresses—tend 

To understand 
how to avoid the 
pathologies of big 
data, whether  
in the context of  
a data warehouse 
or in the physical 
or social sciences, 
we need to consider 
what really makes  
it “big.” 



40    communications of the acm    |   august 2009  |   vol.  52  |   no.  8

practice

a “contiguous range” of customers 
(however defined) at a randomly se-
lected set of times. 

The point is even clearer when we 
consider the demands of time-series 
analysis and forecasting, which ag-
gregate data in an order-dependent 
manner (for example, cumulative and 
moving-window functions, lead and 
lag operators, among others). Such 
analyses are necessary for answering 
most of the truly interesting questions 
about temporal data, broadly: “What 
happened?” “Why did it happen?” 
“What’s going to happen next?” 

The prevailing database model 
today, however, is the relational da-
tabase, and this model explicitly ig-
nores the ordering of rows in tables.1 
Database implementations that fol-
low this model, eschewing the idea of 
an inherent order on tables, will inevi-
tably end up retrieving data in a non-
sequential fashion once it grows large 
enough that it no longer fits in memo-
ry. As the total amount of data stored 
in the database grows, the problem 
only becomes more significant. To 
achieve acceptable performance for 
highly order-dependent queries on truly 
large data, one must be willing to con-
sider abandoning the purely relational 
database model for one that recogniz-
es the concept of inherent ordering 
of data down to the implementation 
level. Fortunately, this point is slowly 
starting to be recognized in the ana-
lytical database sphere.

Not only in databases, but also in 
application programming in general, 
big data greatly magnifies the per-
formance impact of suboptimal ac-
cess patterns. As dataset sizes grow, 
it becomes increasingly important to 
choose algorithms that exploit the ef-
ficiency of sequential access as much 
as possible at all stages of process-
ing. Aside from the obvious point that 
a 10:1 increase in processing time 
(which could easily result from a high 
proportion of nonsequential access-
es) is far more painful when the units 
are hours than when they are seconds, 
increasing data sizes mean that data 
access becomes less and less efficient. 
The penalty for inefficient access pat-
terns increases disproportionately 
as the limits of successive stages of 
hardware are exhausted: from proces-
sor cache to memory, memory to local 

to be fewer in number than the total 
world population. Even in scientific 
datasets, a practical limit on cardinal-
ities is often set by such factors as the 
number of available sensors (a state-
of-the-art neurophysiology dataset, 
for example, might reflect 512 chan-
nels of recording5) or simply the num-
ber of distinct entities that humans 
have been able to detect and identify 
(the largest astronomical catalogs, 
for example, include several hundred 
million objects8).

What makes most big data big is 
repeated observations over time and/
or space. The Web log records mil-
lions of visits a day to a handful of 
pages; the cellphone database stores 
time and location every 15 seconds for 
each of a few million phones; the re-
tailer has thousands of stores, tens of 
thousands of products, and millions 
of customers but logs billions and 
billions of individual transactions in 
a year. Scientific measurements are 
often made at a high time resolution 
(thousands of samples a second in 
neurophysiology, far more in particle 
physics) and really start to get huge 
when they involve two or three dimen-
sions of space as well; fMRI neuroim-
aging studies can generate hundreds 
or even thousands of gigabytes in a 
single experiment. Imaging in gener-
al is the source of some of the biggest 
big data out there, but the problems 
of large image data are a topic for an 
article by themselves; I won’t consider 
them further here.

The fact that most large datasets 
have inherent temporal or spatial 
dimensions, or both, is crucial to 
understanding one important way 
that big data can cause performance 
problems, especially when databases 
are involved. It would seem intuitively 
obvious that data with a time dimen-
sion, for example, should in most 
cases be stored and processed with 
at least a partial temporal ordering to 
preserve locality of reference as much 
as possible when data is consumed in 
time order. After all, most nontrivial 
analyses will involve at the very least 
an aggregation of observations over 
one or more contiguous time inter-
vals. One is more likely, for example, 
to be looking at the purchases of a 
randomly selected set of customers 
over a particular time period than of 

here’s the big 
truth about big 
data in traditional 
databases: it’s 
easier to get the 
data in than out. 
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disk, and—rarely nowadays!—disk to 
off-line storage. 

On typical server hardware today, 
completely random memory access 
on a range much larger than cache 
size can be an order of magnitude or 
more slower than purely sequential 
access, but completely random disk 
access can be five orders of magni-
tude slower than sequential access 
(see Figure 3). Even state-of-the-art 
solid-state (flash) disks, although they 
have much lower seek latency than 
magnetic disks, can differ in speed 
by roughly four orders of magnitude 
between random and sequential ac-
cess patterns. The results for the test 
shown in Figure 3 are the number of 
four-byte integer values read per sec-
ond from a 1-billion-long (4GB) array 
on disk or in memory; random disk 
reads are for 10,000 indices chosen at 
random between one and one billion.  

A further point that’s widely un-
derappreciated: in modern systems, 
as demonstrated in the figure, ran-
dom access to memory is typically 
slower than sequential access to disk. 
Note that random reads from disk are 
more than 150,000 times slower than 
sequential access; SSD improves on 
this ratio by less than one order of 
magnitude. In a very real sense, all of 
the modern forms of storage improve 
only in degree, not in their essential 
nature, upon that most venerable and 
sequential of storage media: the tape.

The huge cost of random access 
has major implications for analysis of 
large datasets (whereas it is typically 
mitigated by various kinds of caching 
when data sizes are small). Consider, 
for example, joining large tables that 
are not both stored and sorted by the 
join key—say, a series of Web trans-
actions and a list of user/account 
information. The transaction table 
has been stored in time order, both 
because that is the way the data was 
gathered and because the analysis of 
interest (tracking navigation paths, 
say) is inherently temporal. The user 
table, of course, has no temporal di-
mension. 

As records from the transaction ta-
ble are consumed in temporal order, 
accesses to the joined user table will 
be effectively random—at great cost if 
the table is large and stored on disk. If 
sufficient memory is available to hold 

the user table, performance will be 
improved by keeping it there. Because 
random access in RAM is itself expen-
sive, and RAM is a scarce resource 
that may simply not be available for 
caching large tables, the best solution 
when constructing a large database 
for analytical purposes (for example, 
in a data warehouse) may, surpris-
ingly, be to build a fully denormalized 
table—that is, a table including each 
transaction along with all user infor-

mation that is relevant to the analysis 
(as shown in Figure 4). 

Denormalizing a 10-million-row, 
10-column user information table 
onto a 1-billion-row, four-column 
transaction table adds substantially 
to the size of data that must be stored 
(the denormalized table is more than 
three times the size of the original 
tables combined). If data analysis is 
carried out in timestamp order but re-
quires information from both tables, 

figure 3. comparing random and sequential access in disk and memory.
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figure 4. Denormalizing a user information table.
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rally exhibit higher performance than 
disk-bound ones (at least insofar as 
the data-crunching they carry out ad-
vances beyond single-pass, purely se-
quential processing), but requiring 
all data to fit in memory means that 
if you have a dataset larger than your 
installed RAM, you’re out of luck. On 
most hardware platforms, there’s a 
much harder limit on memory expan-
sion than disk expansion: the mother-
board has only so many slots to fill. 

The problem often goes further 
than this, however. Like most other 
aspects of computer hardware, maxi-
mum memory capacities increase with 
time; 32GB is no longer a rare con-
figuration for a desktop workstation, 
and servers are frequently configured 
with far more than that. There is no 
guarantee, however, that a memory-
bound application will be able to use 
all installed RAM. Even under modern 
64-bit operating systems, many appli-
cations today (for example, R under 
Windows) have only 32-bit executa-
bles and are limited to 4GB address 
spaces—this often translates into a 2- 
or 3GB working set limitation.

Finally, even where a 64-bit binary 
is available—removing the absolute 
address space limitation—all too of-
ten relics from the age of 32-bit code 
still pervade software, particularly in 
the use of 32-bit integers to index ar-
ray elements. Thus, for example, 64-bit 
versions of R (available for Linux and 
Mac) use signed 32-bit integers to rep-
resent lengths, limiting data frames 
to at most 231–1, or about two billion 
rows. Even on a 64-bit system with suf-
ficient RAM to hold the data, therefore, 
a 6.75-billion-row dataset such as the 
earlier world census example ends up 
being too big for R to handle.

Distributed computing as 
a strategy for Big Data
Any given computer has a series of ab-
solute and practical limits: memory 
size, disk size, processor speed, and 
so on. When one of these limits is ex-
hausted, we lean on the next one, but 
at a performance cost: an in-memory 
database is faster than an on-disk one, 
but a PC with 2GB RAM cannot store a 
100GB dataset entirely in memory; a 
server with 128GB RAM can, but the 
data may well grow to 200GB before 
the next generation of servers with 

then eliminating random look-ups 
in the user table can improve perfor-
mance greatly. Although this inevita-
bly requires much more storage and, 
more importantly, more data to be 
read from disk in the course of the 
analysis, the advantage gained by do-
ing all data access in sequential order 
is often enormous.

hard Limits
Another major challenge for data 
analysis is exemplified by applica-
tions with hard limits on the size of 
data they can handle. Here, one is 
dealing mostly with the end-user an-
alytical applications that constitute 
the last stage in analysis. Occasion-
ally the limits are relatively arbitrary; 
consider the 256-column, 65,536-row 
bound on worksheet size in all ver-
sions of Microsoft Excel prior to the 
most recent one. Such a limit might 
have seemed reasonable in the days 
when main RAM was measured in 
megabytes, but it was clearly obsolete 
by 2007 when Microsoft updated Ex-
cel to accommodate up to 16,384 col-
umns and one million rows. Enough 
for anyone? Excel is not targeted at us-
ers crunching truly huge datasets, but 
the fact remains that anyone working 
with a one million-row dataset (a list 
of customers along with their total 
purchases for a large chain store, per-
haps) is likely to face a two million-
row dataset sooner or later, and Excel 
has placed itself out of the running 
for the job. 

In designing applications to handle 
ever-increasing amounts of data, de-
velopers would do well to remember 
that hardware specs are improving 
too, and keep in mind the so-called 
ZOI (zero-one-infinity) rule, which 
states that a program should “allow 
none of foo, one of foo, or any number 
of foo.”11 That is, limits should not be 
arbitrary; ideally, one should be able 
to do as much with software as the 
hardware platform allows.

Of course, hardware—chiefly 
memory and CPU limitations—is of-
ten a major factor in software limits 
on dataset size. Many applications are 
designed to read entire datasets into 
memory and work with them there; 
a good example of this is the popular 
statistical computing environment 
R.7 Memory-bound applications natu-

Data replicated 
to improve the 
efficiency of 
different kinds  
of analyses can  
also provide 
redundancy  
against the 
inevitable  
node failure. 
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twice the memory slots comes out. 
The beauty of today’s mainstream 

computer hardware, though, is that 
it’s cheap and almost infinitely repli-
cable. Today it is much more cost-ef-
fective to purchase eight off-the-shelf, 
“commodity” servers with eight pro-
cessing cores and 128GB of RAM each 
than it is to acquire a single system 
with 64 processors and a terabyte of 
RAM. Although the absolute numbers 
will change over time, barring a radi-
cal change in computer architectures, 
the general principle is likely to re-
main true for the foreseeable future. 
Thus, it’s not surprising that distrib-
uted computing is the most success-
ful strategy known for analyzing very 
large datasets. 

Distributing analysis over multiple 
computers has significant performance 
costs:  even with gigabit and 10-gigabit 
Ethernet, both bandwidth (sequential 
access speed) and latency (thus, ran-
dom access speed) are several orders 
of magnitude worse than RAM. At the 
same time, however, the highest-speed 
local network technologies have now 
surpassed most locally attached disk 
systems with respect to bandwidth, 
and network latency is naturally much 
lower than disk latency. 

As a result, the performance cost of 
storing and retrieving data on other 
nodes in a network is comparable to 
(and in the case of random access, po-
tentially far less than) the cost of using 
disk. Once a large dataset has been 
distributed to multiple nodes in this 
way, however, a huge advantage can be 
obtained by distributing the process-
ing as well—so long as the analysis is 
amenable to parallel processing.

Much has been and can be said 
about this topic, but in the context 
of a distributed large dataset, the cri-
teria are essentially related to those 
discussed earlier: just as maintain-
ing locality of reference via sequen-
tial access is crucial to processes that 
rely on disk I/O (because disk seeks 
are expensive), so too, in distributed 
analysis, processing must include a 
significant component that is local 
in the data—that is, does not require 
simultaneous processing of many dis-
parate parts of the dataset (because 
communication between the differ-
ent processing domains is expensive). 
Fortunately, most real-world data 

analysis does include such a compo-
nent. Operations such as searching, 
counting, partial aggregation, record-
wise combinations of multiple fields, 
and many time-series analyses (if the 
data is stored in the correct order) 
can be carried out on each computing 
node independently. 

Furthermore, where communica-
tion between nodes is required, it 
often occurs after data has been ex-
tensively aggregated; consider, for 
example, taking an average of billions 

of rows of data stored on multiple 
nodes. Each node is required to com-
municate only two values—a sum and 
a count—to the node that produces 
the final result. Not every aggrega-
tion can be computed so simply, as a 
global aggregation of local sub-aggre-
gations (consider the task of finding a 
global median, for example, instead 
of a mean), but many of the important 
ones can, and there are distributed al-
gorithms for other, more complicated 
tasks that minimize communication 

figure 5. Two ways to distribute 10 years of sensor data for 1,000 sites over 10 machines.
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ways would provide optimal efficiency 
for both kinds of analysis—but the 
larger the dataset, the more likely it 
is that two copies would be simply too 
much data for the available hardware 
resources.

Another important issue with dis-
tributed systems is reliability. Just as 
a four-engine airplane is more likely 
to experience an engine failure in a 
given period than a craft with two of 
the equivalent engines, so too is it 10 
times more likely that a cluster of 10 
machines will require a service call. 
Unfortunately, many of the compo-
nents that get replicated in clusters—
power supplies, disks, fans, cabling, 
and so on—tend to be unreliable. It 
is, of course, possible to make a clus-
ter arbitrarily resistant to single-node 
failures, chiefly by replicating data 
across the nodes. Happily, there is 
perhaps room for some synergy here: 
data replicated to improve the effi-
ciency of different kinds of analyses, 
as noted here, can also provide redun-
dancy against the inevitable node fail-
ure. Once again, however, the larger 
the dataset, the more difficult it is to 
maintain multiple copies of the data.

A meta-Definition
I have tried here to provide an over-
view of a few of the issues that can 
arise when analyzing big data: the in-
ability of many off-the-shelf packages 
to scale to large problems; the para-
mount importance of avoiding sub-
optimal access patterns as the bulk of 
processing moves down the storage 
hierarchy; and replication of data for 
storage and efficiency in distributed 
processing. I have not yet answered 
the question I opened with: What is 
“big data,” anyway? 

I will take a stab at a meta-defini-
tion: big data should be defined at any 
point in time as “data whose size forc-
es us to look beyond the tried-and-
true methods that are prevalent at 
that time.” In the early 1980s, it was a 
dataset that was so large that a robotic 
“tape monkey” was required to swap 
thousands of tapes in and out. In the 
1990s, perhaps, it was any data that 
transcended the bounds of Microsoft 
Excel and a desktop PC, requiring seri-
ous software on Unix workstations to 
analyze. Nowadays, it may mean data 
that is too large to be placed in a rela-

between nodes.
Naturally, distributed analysis of 

big data comes with its own set of 
“gotchas.” One of the major problems 
is nonuniform distribution of work 
across nodes. Ideally, each node will 
have the same amount of indepen-
dent computation to do before results 
are consolidated across nodes. If this 
is not the case, then the node with the 
most work will dictate how long we 
must wait for the results, and this will 
obviously be longer than we would 
have waited had work been distribut-
ed uniformly; in the worst case, all the 
work may be concentrated in a single 
node and we will get no benefit at all 
from parallelism. 

Whether this is a problem or not 
will tend to be determined by how 
the data is distributed across nodes; 
unfortunately, in many cases this can 
come into direct conflict with the im-
perative to distribute data in such a 
way that processing at each node is lo-
cal. Consider, for example, a dataset 
that consists of 10 years of observa-
tions collected at 15-second intervals 
from 1,000 sensor sites. There are 
more than 20 million observations 
for each site; and, because the typi-
cal analysis would involve time-series 
calculations—say, looking for unusu-
al values relative to a moving average 
and standard deviation—we decide to 
store the data ordered by time for each 
sensor site (shown in Figure 5), dis-
tributed over 10 computing nodes so 
that each one gets all the observations 
for 100 sites (a total of two billion ob-
servations per node). Unfortunately, 
this means that whenever we are in-
terested in the results of only one or 
a few sensors, most of our computing 
nodes will be totally idle. Whether 
the rows are clustered by sensor or by 
time stamp makes a big difference in 
the degree of parallelism with which 
different queries will execute.

We could, of course, store the data 
ordered by time, one year per node, so 
that each sensor site is represented 
in each node (we would need some 
communication between successive 
nodes at the beginning of the compu-
tation to “prime” the time-series cal-
culations). This approach also runs 
into the difficulty if we suddenly need 
an intensive analysis of the past year’s 
worth of data. Storing the data both 

tional database and analyzed with the 
help of a desktop statistics/visualiza-
tion package—data, perhaps, whose 
analysis requires massively parallel 
software running on tens, hundreds, 
or even thousands of servers.

In any case, as analyses of ever-larg-
er datasets become routine, the defi-
nition will continue to shift, but one 
thing will remain constant: success at 
the leading edge will be achieved by 
those developers who can look past 
the standard, off-the-shelf techniques 
and understand the true nature of the 
hardware resources and the full pano-
ply of algorithms that are available to 
them. 

  Related articles  
  on queue.acm.org

Flash Storage Today 

Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

A Call to Arms 

Jim Gray
http://queue.acm.org/detail.cfm?id=1059805

You Don’t Know Jack about Disks 
Dave Anderson
http://queue.acm.org/detail.cfm?id=864058

References
1. Codd, e.f. a relational model for large shared data 

banks. Commun. ACM 13, 6 (June 1970), 377–387.
2. IbM 3850 Mass storage system; http://www.

columbia.edu/acis/history/mss.html.
3. IbM archives: IbM 3380 direct access storage device; 

http://www-03.ibm.com/ibm/history/exhibits/storage/
storage_3380.html.

4. kimball, r. The Data Warehouse Toolkit: Practical 
Techniques for Building Dimensional Data Warehouses. 
John Wiley & sons, ny, 1996.

5. litke, a.M. What does the eye tell the brain? 
Development of a system for the large-scale 
recording of retinal output activity. IEEE Transactions 
on Nuclear Science 51, 4 (2004), 1434–1440.

6. Postgresql: the world’s most advanced open source 
database; http://www.postgresql.org. 

7. the r Project for statistical Computing; http://www.r-
project.org.

8. sloan Digital sky survey; http://www.sdss.org.
9. throughput and Interface Performance. tom’s Winter 

2008 hard Drive Guide; http://www.tomshardware.
com/reviews/hdd-terabyte-1tb,2077-11.html.

10. WlCG (Worldwide lhC Computing Grid); http://lcg.
web.cern.ch/lCG/public/.

11. zero-one-Infinity rule; http://www.catb.org/~esr/
jargon/html/z/zero-one-Infinity-rule.html.

Adam Jacobs is senior software engineer at 1010data 
Inc., where, among other roles, he leads the continuing 
development of tenbase, the company’s ultra-high-
performance analytical database engine. he has more 
than 10 years of experience with distributed processing 
of big datasets, starting in his earlier career as a 
computational neuroscientist at Weill Medical College of 
Cornell university (where he holds the position of Visiting 
fellow) and at uCla. 

© 2009 aCM 0001-0782/09/0800 $10.00




