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Abstract

Traditional databases store sets of relatively static records
with no pre-defined notion of time, unless timestamp
attributes are explicitly added. While this model ad-
equately represents commercial catalogues or reposito-
ries of personal information, many current and emerg-
ing applications require support for on-line analysis of
rapidly changing data streams. Limitations of tradi-
tional DBMSs in supporting streaming applications have
been recognized, prompting research to augment existing
technologies and build new systems to manage streaming
data. The purpose of this paper is to review recent work
in data stream management systems, with an emphasis
on data models, continuous query languages, and query
evaluation and optimization techniques. We also give ex-
amples of streaming queries in various applications and
review related work in modeling lists and sequences.

1 Introduction

Traditional databases have been used in applications that
require persistent data storage and complex querying.
Usually, a database consists of a set of unordered objects
that are relatively static, with insertions, updates and
deletions occurring less frequently than queries. Queries
are executed when posed and the answer reflects the
current state of the database. However, the past few
years have witnessed an emergence of applications that
do not fit this data model and querying paradigm. In-
stead, information naturally occurs in the form of a se-
quence (stream) of data values; examples include sensor
data [13, 68], Internet traffic [45, 87], financial tickers
[22, 104], on-line auctions [5], and transaction logs such
as Web usage logs and telephone call records [26].

A data stream is a real-time, continuous, ordered (im-
plicitly by arrival time or explicitly by timestamp) se-
quence of items. It is impossible to control the order in
which items arrive, nor is it feasible to locally store a
stream in its entirety. Likewise, queries over streams run
continuously over a period of time and incrementally re-
turn new results as new data arrive. First defined in the
Tapestry system [89], these are known as long-running,
continuous, standing, and persistent queries [22, 66]. The
unique characteristics of data streams and continuous
queries dictate the following requirements of data stream
management systems:

e The data model and query semantics must allow
order-based and time-based operations (e.g. queries
over a five-minute moving window).

e The inability to store a complete stream suggests
the use of approximate summary structures, re-
ferred to in the literature as synopses [1] or digests
[104]. As a result, queries over the summaries may
not return exact answers.

e Streaming query plans may not use blocking op-
erators that must consume the entire input before
any results are produced.

e Due to performance and storage constraints, back-
tracking over a data stream is not feasible. On-line
stream algorithms are restricted to making only
one pass over the data.

e Applications that monitor streams in real-time must
react quickly to unusual data values.

e Long-running queries may encounter changes in sys-
tem conditions throughout their execution lifetimes
(e.g. variable stream rates).

e Shared execution of many continuous queries is needed

to ensure scalability.

Proposed data stream systems resemble the abstract
architecture shown in Figure 1. An input monitor regu-
lates the input rates, perhaps by dropping packets if the
system is unable to keep up. Data are typically stored
in three partitions: temporary working storage (e.g. for
window queries), summary storage for stream synopses,
and static storage for meta-data (e.g. physical location of
each source). Long-running queries are registered in the
query repository and placed into groups for shared pro-
cessing, though one-time queries over the current state of
the stream may also be posed. The query processor com-
municates with the input monitor and may re-optimize
the query plans in response to changing input rates. Re-
sults are streamed to the users or temporarily buffered.
Users may then refine their queries based on the latest
results.

In this paper, we review recent work in data stream
processing, including data models, query languages, con-
tinuous query processing, and query optimization. Re-
lated surveys include Babcock et al. [8], which discusses
issues in data stream processing in the context of the
STREAM project, and a tutorial by Garofalakis et al.
[40], which reviews algorithms for data streams.

The remainder of this paper surveys requirements of
streaming applications (Section 2), models and query
languages for data streams (Section 3), streaming op-
erators (Section 4), query processing and optimization
(Section 5), and related data models and query languages
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Figure 1: Abstract reference architecture for a data
stream management system.

(Section 6). We conclude in Section 7 with a list of cur-
rent academic projects related to data stream manage-
ment.

2 Streaming Applications

We begin by reviewing a collection of current and pro-
posed data stream applications in order to define a set
of query types that a data stream management system
should support. More examples may be found in the
Stream Query Repository [85] and in NEXMark [93]—a
proposed benchmark for data stream systems.

2.1 Sensor Networks

Sensor networks may be used for geophysical monitor-
ing, highway congestion monitoring, movement tracking,
medical monitoring of life signs, and supervision of man-
ufacturing processes. These applications involve complex
filtering and activation of an alarm upon discovering un-
usual patterns in the data. Aggregation and joins over
multiple streams are required to analyze data from many
sources, while aggregation over a single stream may be
needed to compensate for individual sensor failures (due
to physical damage or depletion of battery power). Sen-
sor data mining may require access to some historical
data. Representative queries include the following:

e Activate a trigger if several sensors in the same area
report measurements that exceed a given thresh-
old.

e Drawing temperature contours on a weather map:
Perform a join of temperature streams (on the tem-
perature attribute) produced by weather monitor-
ing stations. Join the results with a static table

containing the latitude and longitude of each sta-
tion, and connect all points that have reported the
same temperature with lines.

e Analyze a stream of recent power usage statistics
reported to a power station (group by location, e.g.
city block) and adjust the power generation rate if
necessary [23].

2.2 Network Traffic Analysis

Ad-hoc systems for analyzing Internet traffic in near-real
time are already in use, e.g. [27, 45, 87]. As in sen-
sor networks, joining data from multiple sources, packet
monitoring, packet filtering, and detecting unusual con-
ditions (e.g. congestion or denial of service) are required.
Support for historical queries and on-line mining is also
needed, perhaps to compare current traffic traces with
stored patterns corresponding to known events such as
a denial-of-service attack. Other requirements include
monitoring recent requests for popular URLs or find-
ing those customers who consume the most bandwidth.
These are particularly important as Internet traffic pat-
terns are believed to obey the Power Law distribution,
whose consequence is that a considerable amount of band-
width is consumed by a small set of “heavy” users. The
following are typical queries in network traffic analysis:

e Traffic matrices: Determine the total amount of
bandwidth used by each source-destination pair and
group by distinct IP address, subnet mask, and
protocol type. Note that IP traffic is statistically
multiplexed, therefore a traffic stream must be logi-
cally demultiplexed in order to reconstruct the un-
derlying TCP/IP sessions [27]. Moreover, divid-
ing the stream into sessions involves temporal se-
mantics, e.g. a session ends if the two parties have
not sent packets to each other for more than one
minute.

e Compare the number of distinct source-destination
pairs in the (logical) streams containing the second
and third steps, respectively, of the three-way TCP
handshake. If the counts differ by a large margin,
then a denial-of-service attack may be taking place
and permissions to connect are not being acknowl-
edged by the (spoofed) clients.

2.3 Financial Tickers

On-line analysis of stock prices involves discovering cor-
relations, identifying trends and arbitrage opportunities,



and forecasting future values [104]. Traderbot, a typical
Web-based financial ticker, allows users to pose queries
such as these [90]:

e High Volatility with Recent Volume Surge: Find
all stocks priced between $20 and $200, where the
spread between the high tick and the low tick over
the past 30 minutes is greater than three percent
of the last price, and where in the last five minutes
the average volume has surged by more than 300%.

e NASDAQ Large Cap Gainers: Find all NASDAQ
stocks trading above their 200-day moving average
with a market cap greater than $5 Billion that have
gained in price today between two and ten percent
since the opening, and are within two percent of
today’s high.

o Trading Near 52-week High on Higher Volume: Find
all stocks whose prices are within two percent of
their respective 52-week highs that trade at least
one million shares per day.

2.4 Transaction Log Analysis

On-line mining of Web usage logs, telephone call records,
and Automated Bank Machine transactions also conform
to the data stream model. The goal is to find interesting
customer behaviour patterns, identify suspicious spend-
ing behaviour that could indicate fraud, and forecast fu-
ture data values. As in other streaming applications, this
requires joining multiple streams, complex filtering, and
statistical analysis. The following are some examples:

e Find all Web pages on a particular server that have
been accessed in the last fifteen minutes with a rate
that is at least 40% greater than the running daily
average.

e Examine Web server logs in real-time and re-route
users to backup servers if the primary servers are
overloaded.

e Roaming diameter [26]: Mine cellular phone records
and for each customer, determine the greatest num-
ber of distinct base stations used during one tele-
phone call.

2.5 Analysis of Requirements

The preceding examples show significant similarities in
data models and basic operations across applications.

There are some differences, but these are related to work-
load characteristics (e.g. stream arrival rates or amount
of historical data to be stored) and not to the under-
lying model. We list below a set of fundamental con-
tinuous query operations over streaming data, keeping
in mind that new streaming applications, possibly with
additional requirements, may be proposed in the future.

o Selection: All streaming applications require sup-
port for complex filtering.

e Nested aggregation [42]: Complex aggregates, in-
cluding nested aggregates (e.g. comparing a mini-
mum with a running average) are needed to com-
pute trends in the data.

o Multiplexing and demultiplexing: Physical streams
may need to be decomposed into a series of logical
streams and conversely, logical streams may need
to be fused into one physical stream (similar to
group-by and union, respectively).

o Frequent item queries: These are also known as
top-k or threshold queries, depending on the cut-
off condition.

e Stream mining: Operations such as pattern match-
ing, similarity searching, and forecasting are needed
for on-line mining of streaming data.

e Joins: Support should be included for multi-stream
joins and joins of streams with static meta-data.

o Windowed queries: All of the above query types
may be constrained to return results inside a win-
dow (e.g. the last 24 hours or the last one hundred
packets).

Data Models and Query Lan-
guages for Streams

As demonstrated above, data stream applications require
support for continuous queries and order-related opera-
tors such as moving windows. In this section, we survey
proposed data models and query languages for streaming
applications.

3.1 Data Models

A real-time data stream is a sequence of data items that
arrive in some order and may be seen only once [57].
Since items may arrive in bursts, a data stream may



instead be modeled as a sequence of lists of elements
[91, 92]. Individual stream items may take the form of
relational tuples or instantiations of objects. In relation-
based models (e.g. STREAM [75]), items are transient
tuples stored in virtual relations, possibly horizontally
partitioned across remote nodes. In object-based mod-
els (e.g. COUGAR [13] and Tribeca [87]), sources and
item types are modeled as (hierarchical) data types with
associated methods.

Stream items may arrive out of order and/or in a pre-
processed form, giving rise to the following list of possible
models [46]:

1. Unordered cash register: Items from various do-
mains arrive in no particular order and without
any preprocessing.

2. Ordered cash register: Individual items from var-
ious domains are not preprocessed but arrive in
some known order.

3. Unordered aggregate: Individual items from the
same domain are preprocessed and only one item
per domain arrives, in no particular order.

4. Ordered aggregate: Individual items from the same
domain are preprocessed and one item per domain
arrives in some known order.

In many cases, only an excerpt of a stream is of in-
terest at any given time, giving rise to window models,
which may be classified according the the following three
criteria [17, 42]:

1. Direction of movement of the endpoints: Two fixed
endpoints define a fized window, two sliding end-
points (either forward or backward, replacing old
items as new items arrive) define a sliding window,
while one fixed endpoint and one moving endpoint
(forward or backward) define a landmark window.
There are a total of nine possibilities as each of the
two endpoints could be fixed, moving forward, or
moving backward.

2. Physical vs. logical: Physical, or time-based win-
dows are defined in terms of a time interval, while
logical, (also known as count-based or tuple-based)
windows are defined in terms of the number of tu-
ples.

3. Update interval: Eager re-evaluation updates the
window upon arrival of each new tuple, while batch
processing (lazy re-evaluation) induces a “jumping

window”. If the update interval is larger than the
window size, the result is a series of non-overlapping
tumbling windows [14].

3.2 Continuous Query Semantics

Any monotonic persistent query that is incrementally up-
datable may be implemented as a continuous query over
a traditional database. In an append-only database, all
conjunctive queries are monotonic: once a tuple is added,
it either satisfies the query or it does not and the satis-
faction condition does not change over time. In con-
trast, adding negation may violate monotonicity (e.g. se-
lect from a stream of e-mail messages all those messages
that have not yet received a reply)®. Similarly, if the
database is not append-only, then no query is monotonic
as updated tuples may cease to satisfy a given query.

Less restrictive semantics of monotonic and non-mono-
tonic continuous queries over data streams have been de-
rived by Arasu et al. in [5]. Assuming for simplicity that
time is represented as a set of natural numbers and that
all continuous queries are re-evaluated at each clock tick,
let A(Q,t) be the answer set of a continuous query @ at
time t, 7 be the current time, and 0 be the starting time.
The answer set of a monotonic continuous query @ at
time T is:

-
A@Q.7) = JA@Q, 1) - A@Q.t ~ 1) UA(Q,0)

t=1

(1)

That is, it suffices to re-evaluate the query over newly
arrived items and append qualifying tuples to the result.
In contrast, non-monotonic queries may need to be re-
computed from scratch during every re-evaluation, giving
rise to the following semantics:

T

A@m) =A@

t=0

(2)

3.3 Stream Query Languages

Three querying paradigms for streaming data have been
proposed in the literature. Relation-based systems use
SQL-like languages to query timestamped relations, usu-
ally with enhanced support for windows and ordering.
Object-based languages also resemble SQL, but include
support for streaming abstract data types (ADTs) and
associated signal processing methods. Procedural sys-
tems construct queries by defining data flow through

INote that it may be possible to remove negation from some
queries with a suitable rewriting.



various operators. We describe the three groups of lan-
guages below and give example queries to illustrate their
differences, at times using simplified syntax to improve
readability. A summary is provided in Table 1.

3.3.1 Relation-Based Languages

Three proposed relation-based languages are CQL [5, 75],
StreaQuel [15, 17], and AQuery [65]. CQL (Continuous
Query Language) is used in the STREAM system, and
includes sliding windows and operators that translate re-
lations to streams. It is possible to PARTITION a win-
dow on an attribute and specify the width of a window
(e.g. ROWS 100 or RANGE 100 MINUTES). For example, if
a stream S contains telephone call records, the following
query computes the average length of the ten most recent
long-distance calls for each customer:

SELECT AVG(S.call_length)
FROM S [PARTITION BY S.customer_id
ROWS 10

WHERE S.type = ’Long Distance’]

Queries over entire streams may specify [UNBOUNDED]
or [NOW] in the window type, with the latter being used
for monotonic queries (e.g. selections) that need not con-
sider any old items. Moreover, there are three relation-
to-stream operators, which can be used to explicitly spec-
ify the query semantics (as defined in Equations (1) and
(2)). Additionally, the sampling rate may be explicitly
defined, e.g. ten percent, by following a reference to a
stream with the statement 10 % SAMPLE.

StreaQuel, the query language of TelegraphCQ, also
provides advanced windowing capabilities. Each query
definition is followed by a for-loop construct with a vari-
able t that iterates over time. The loop contains a Win-
dowIs statement that specifies the type and size of the
window. Let S be a stream and let ST be the start time
of a query. To specify a sliding window over S with size
five that should run for fifty days, the following for-loop
may be appended to the query:

for (t=ST; t<ST+50; t++)
WindowIs(S, t-4, t)

Changing to a landmark window could be done by
replacing t-4 with some constant in the WindowIs state-
ment. Changing the for-loop increment condition to t=
t+5 would cause the query to re-execute every five time
units.

AQuery consists of a query algebra and an SQL-based
language for ordered data. Table columns are treated

as arrays, on which order-dependent operators such as
next, previous (abbreviated prev), first, and last may be
applied. For example, a continuous query over a stream
of stock quotes that reports consecutive price differences
of IBM stock may be specified as follows:

SELECT price - prev(price)
FROM Trades ASSUMING ORDER timestamp
WHERE company = ’IBM’

The clause ASSUMING ORDER defines the ordering field
of the table. Note that performing this query in conven-
tional sequence languages (discussed in Section 6) re-
quires a self join of the Trades relation with a copy of
itself that is shifted by one position.

3.3.2 Object-Based Languages

One approach to object-oriented stream modeling is to
classify stream contents according to a type hierarchy.
This method is used in the Tribeca network monitor-
ing system, which implements Internet protocol layers
as hierarchical data types [87]. Another possibility is to
model the sources as ADTs, as in the COUGAR sys-
tem for managing sensor data [13]. Each type of sen-
sor is modeled by an ADT, whose interface consists of
signal-processing methods supported by this type of sen-
sor. The proposed query language has SQL-like syntax
and also includes a $every() clause that indicates the
query re-execution frequency; however, few details on the
language are available in the published literature, so we
do not include a summary of COUGAR’s query language
in Table 1. For a simple example, a query that runs every
sixty seconds and returns temperature readings from all
sensors on the third floor of a building could be specified
as follows:

SELECT R.s.getTemperature()
FROM R

WHERE R.floor = 3 AND $every(60).

3.3.3 Procedural Languages

An alternative to declarative query languages is to let the
user specify how the data should flow through the sys-
tem. In the Aurora system [14], users construct query
plans via a graphical interface by arranging boxes (cor-
responding to query operators) and joining them with di-
rected arcs to specify data flow, though the system may
later re-arrange, add, or remove operators in the opti-
mization phase. Aurora includes several operators that
are not explicitly defined in other languages: map applies



Language/ Motivating Allowed Basic Supported windows Custom
system applications inputs operators type | base | execution | operators?
AQuery stock quotes, sorted relational, “each”, fixed, time not via “each”

network traffic | relations order-dependent landmark, and discussed operator
analysis (first, next, etc.) sliding, count in [65]
Aurora sensor data streams | o,m,U,>, group-by, fixed, time | streaming via map
only resample, drop, landmark, and operator
map, window sort sliding count
CQL/ all-purpose streams relational, currently | time | streaming allowed
STREAM and relation-to-stream, only and
relations sample sliding count
StreaQuel/ sensor data streams all time | streaming allowed
TelegraphCQ and relational types and or
relations count | periodic
Tribeca network single o, T, fixed, time | streaming allows
traffic input group-by, union landmark, and custom
analysis stream aggregates sliding count aggregates

Table 1: Summary of existing and proposed data stream languages.

a function to each item (this operator is also defined in
AQuery, where it is called “each”), resample interpolates
values of missing items within a window, while drop ran-
domly drops items if the input rate is too high.

3.3.4 Comments on Query Languages

Table 1 summarizes the proposed streaming query lan-
guages. Note that periodic execution refers to allowing
the users to specify how often to refresh results. All lan-
guages (especially StreaQuel) include extensive support
for windowing. In comparison with the list of fundamen-
tal query operators in Section 3.3, all required operators
except top-k and pattern matching are explicitly defined
in all the languages. Nevertheless, all languages allow
user-defined aggregates, which should make it possible
to define pattern-matching functions and extend the lan-
guage to accommodate future streaming applications.

It appears that relation-based languages with addi-
tional support for windowing and sequence operators are
the most popular paradigm at this time. Notably, in
CQL, a (window excerpted from a) stream is a relation
and relation-to-stream operators are needed to convert
query output to streams, while in StreaQuel, all query
inputs and outputs are streaming.

4 Implementing Streaming Oper-
ators

While proposed streaming languages may resemble stan-
dard SQL, their implementation, processing, and opti-
mization present novel challenges. In this section, we
highlight the differences between streaming operators and
traditional relational operators, including non-blocking
behaviour, approximations, and sliding windows. Note
that simple operators such as projection and selection
(that do not keep state information) may be used in
streaming queries without any modifications.

4.1 Non-Blocking Operators
4.1.1 Windowing and Pipelining

Recall that some relational operators are blocking. For
instance, prior to returning the next tuple, the Nested
Loops Join (NLJ) may potentially scan the entire inner
relation and compare each tuple therein with the current
outer tuple. Some operators, such as joins [53, 94, 98,
100] and simple aggregates [55, 99], have non-blocking
counterparts. For example, a pipelined symmetric hash
join [100] builds hash tables on-the-fly for each of the
participating relations. Hash tables are stored in main
memory and when a tuple from one of the relations ar-
rives, it is inserted into its table and the other tables
are probed for matches. It is also possible to incremen-
tally output the average of all the items seen so far by
maintaining the cumulative sum and item count. When



|| Method | Functions | References ||
Counting Order statistics, frequent items [30, 48, 73]
Hashing Distinct value counts, frequent items [34, 38]
Sampling | Order statistics, distinct value counts, frequent items, [30, 34, 37, 43, 73, 74]
testing near-sortedness
Sketches | Frequency moments, distinct value counts, aggregates, | [2, 18, 25, 32, 36, 39, 42, 46, 59|
histograms, frequent items
Wavelets Aggregates [41, 46, 49]

Table 2: Approximate data stream algorithms classified according to method of generating synopses.

a new item arrives, the item count is incremented, the
new item’s value is added to the sum, and an updated
average is computed by dividing the sum by the count.
There remains the issue of memory constraints if an oper-
ator requires too much working memory, so a windowing
scheme may be needed to bound the memory require-
ments.

4.1.2 Exploiting Stream Constraints

Another way to unblock query operators is to exploit con-
straints over the input streams. Schema-level constraints
include synchronization among timestamps in multiple
streams, clustering (duplicates arrive contiguously), and
ordering [11]. If two streams have nearly synchronized
timestamps, an equi-join on the timestamp can be per-
formed in limited memory: a scrambling bound B may
be set such that if a tuple with timestamp 7 arrives, then
no tuple with timestamp greater than 7 — B may arrive
later [75].

Constraints at the data level may take the form of
control packets inserted into a stream, called punctua-
tions [91, 92]. Punctuations are constraints (encoded as
data items) that specify conditions for all future items.
For instance, a punctuation may arrive asserting that
all the items henceforth shall have the A attribute value
larger than ten. This punctuation could be used to par-
tially unblock a group-by query on A since all the groups
where A < 10 are guaranteed not to change for the re-
mainder of the stream’s lifetime, or until another punc-
tuation arrives and specifies otherwise. Punctuations
may also be used to synchronize multiple streams in
that a source may send a punctuation asserting that
it will not produce any tuples with timestamp smaller
than 7 [5]. There are several open problems concern-
ing punctuations—given an arbitrary query, is there a
punctuation that unblocks this query? If so, is there an
efficient algorithm for finding this punctuation?

| | Function | References | |
Aggregates [32, 42]
Distinct value counts 2, 25, 38, 43
Frequency moments 2, 36, 39, 59
Frequent items [18, 30, 34, 73]
Histograms [50, 51]
Order Statistics [43, 48, 74]
Testing near-sortedness [37]

Table 3: Approximate data stream algorithms classified
according to function.

4.2 Streaming Algorithms

As shown above, unblocking a query operator may be ac-
complished by re-implementing it in an incremental form,
restricting it to operate over a window, and exploiting
stream constraints. However, there may be cases where
an incremental version of an operator does not exist or is
inefficient to evaluate, where even a sliding window is too
large to fit in main memory, or where no suitable stream
constraints are present. In these cases, compact stream
summaries may be stored and approximate queries may
be posed over the summaries. This implies a trade-off
between accuracy and the amount of memory used to
store the summaries. An additional restriction is that
the processing time per item (amortized) should be kept
small, especially if the inputs arrive at a fast rate. Table 2
classifies approximate algorithms for the infinite stream
model according to the method used to summarize the
stream, while Table 3 groups the algorithms according
to function.

Counting methods, used mainly to compute quan-
tiles and frequent item sets, typically store frequency
counts of selected item types (perhaps chosen by sam-
pling) along with error bounds on their true frequencies.
Hashing may also be used to summarize a stream, espe-
cially when searching for frequent items—each item type



may be hashed to n buckets by n distinct hash functions
and may be considered a potentially frequent flow if all
of its hash buckets are large. Sampling is a well known
data reduction technique and may be used to compute
various queries to within a known error bound. How-
ever, some queries (e.g. finding the maximum element in
a stream) may not be reliably computed by sampling.

Sketches were initially proposed by Alon et al. [2] and
have since then been used in various approximate algo-
rithms. Let f(i) be the number of occurrences of value
7 in a stream. A sketch of a data stream is created by
taking the inner product of f with a vector of random
values chosen from some distribution with a known ex-
pectation. Moreover, wavelet transforms (that reduce
the underlying signal to a small set of coeflicients) have
been proposed to approximate aggregates over infinite
streams.

4.3 Data Stream Mining

As is the case in traditional query operators, on-line
stream mining operators must be incrementally updat-
able without making multiple passes over the data. Re-
cent results in (possibly approximate) algorithms for on-
line stream mining include computing stream signatures
and representative trends [26], decision trees [33, 58],
forecasting [103], k-medians clustering [19, 52], nearest
neighbour queries [63], and regression analysis [23] A
comprehensive discussion of similarity detection, pattern
matching, and forecasting in sensor data mining may be
found in a tutorial by Faloutsos [35].

4.4 Sliding Window Algorithms

Many infinite stream algorithms do not have obvious
counterparts in the sliding window model. For instance,
while computing the maximum value in an infinite stream
is trivial, doing so in a sliding window of size N requires
Q(N) space—consider a sequence of non-increasing val-
ues, in which the oldest item in any given window is the
maximum and must be replaced whenever the window
moves forward. Thus, the fundamental problem is that
as new items arrive, old items must be simultaneously
evicted from the window.

4.4.1 Windowed Aggregates

Simple aggregates over sliding windows may be com-
puted in limited memory by dividing the window into
small portions (called basic windows in [104]) and only
storing a synopsis and a timestamp for each portion.

When the timestamp of the oldest basic window expires,
its synopsis is removed, a fresh window is added to the
front, and the aggregate is incrementally re-computed.
This method has been used to compute correlations be-
tween streams [104] and to find frequently appearing
items [29], but results are refreshed only after the stream
fills the current basic window; if the available memory is
small, the refresh interval is large. Moreover, some statis-
tics may not be incrementally computable from a set of
synopses.

One way to stream new results after each new item
arrives is to maintain a windowed sample [9] and esti-
mate the answer from the sample. Another is to bound
the error caused by delayed expiration of basic windows.
Datar et al. [28] show that restricting the sizes of the
basic windows to powers of two and imposing a limit on
the number of basic windows of each size yields a space-
optimal algorithm that approximates simple aggregates
to within € using logarithmic space (with respect to the
sliding window size). This algorithm has been used to
approximately compute the sum [10, 44] as well as vari-
ance and k-medians clustering [28].

4.4.2 Windowed Joins

The symmetric hash join [100] and an analogous sym-
metric NLJ may be extended to operate over two [62] or
more [47] sliding windows by periodically scanning the
hash tables (or whole windows in case of the NLJ) and
removing stale items. Interesting trade-offs appear in
that large hash tables are expensive to maintain if tuple
expiration is performed too frequently [47].

5 Continuous Query Processing
and Optimization

Having surveyed issues in designing continuous query
languages and implementing streaming operators, we now
discuss problems related to processing and optimizing
continuous queries. In what follows, we outline emerging
research in cost metrics, query plans, quality-of-service
guarantees, and distributed optimization of streaming
queries.

5.1 Memory Requirements

As already discussed, some query operators (e.g. joins)
may require infinite working memory, even when rewrit-
ten into an incremental form. Consequently, a possible
first step in processing a continuous query is to decide



whether it may be answered exactly in bounded memory
or whether it should be approximated based on stream
summaries. Computing the memory requirements of con-
tinuous queries has been studied by Arasu et al. [4] for
monotonic conjunctive queries with grouping and aggre-
gation. Consider two unbounded relational data streams:
S(A,B,C)and T(D, E). The query m4(0 A=DAA>10AD<20
(S x T)) may be evaluated in bounded memory whether
or not the projection preserves duplicates. To preserve
duplicates, for each integer i between 11 and 19, it suf-
fices to maintain the count of tuples in S such that A =4
and the count of tuples in T" such that D = i. To remove
duplicates, it is necessary to store flags indicating which
tuples have occurred such that S.A =i and T.D = i for
i € [11,19]. Conversely, the query ma(ca=p(S x T)) is
not computable in finite memory either with or without
duplicates.

Interestingly, 74 (04>105) is computable in finite mem-
ory only if duplicates are preserved; any tuple in S with
A > 10 is added to the answer as soon as it arrives. On
the other hand, the query ma(0B<paas10aa<20(S X T))
is computable in bounded memory only if duplicates are
removed: for each integer ¢ between 11 and 19, it suffices
to maintain the current minimum value of B among all
the tuples in S such that A = ¢ and the current maximum
value of D over all tuples in 7.

5.2 Cost Metrics and Statistics

Traditional DBMSs use selectivity information and avail-
able indices to select plans that require fewest disk ac-
cesses. This cost metric, however, does not apply to
(possibly approximate) continuous queries over infinite
streams, where processing cost per-unit-time is more ap-
propriate [62]. Below, we list possible cost metrics for
streaming queries along with necessary statistics that
must be maintained.

e Accuracy and reporting delay vs. memory usage:
Allocating more memory for synopses should im-
prove accuracy, while sampling and load shedding
[88] decrease memory usage by increasing the er-
ror. It is necessary to know the accuracy of each
operator as a function of the available memory, and
how to combine such functions to obtain the overall
accuracy of a plan. Furthermore, batch processing
[8] may be done instead of re-evaluating a query
whenever a new item arrives, at a cost of increased
reporting delay.

e Qutput rate: If the stream arrival rates and output
rates of query operators are known, it is possible

to optimize for the highest output rate or to find
a plan that takes the least time to output a given
number of tuples [97]. In related work, Urhan and
Franklin discuss scheduling of pipelined hash joins
in order to quickly produce the initial portion of
the result [95].

e Power usage: In a wireless network of battery-
operated sensors, energy consumption may be min-
imized if each sensor’s power consumption char-
acteristics (when transmitting and receiving) are

known [70, 101].

5.3 Continuous Query Plans

In relational DBMSs, all operators are pull-based: an op-
erator requests data from one of its children in the plan
tree only when needed. In contrast, stream operators
consume data pushed to the system by the sources. One
approach to reconcile these differences, as considered in
Fjords [68] and STREAM [8], is to connect operators
with queues, allowing sources to push data into a queue
and operators to retrieve data as needed. Problems in-
clude scheduling operators so as to minimize queue sizes
and queuing delays in the presence of bursty streams
[7], and maintaining quality-of-service guarantees [14].
Another challenge in continuous query plans deals with
supporting historical queries. Designing disk-based data
structures and indices to exploit access patterns of stream
archives is an open problem [15].

5.4 Processing Multiple Queries

Two approaches have been proposed to execute similar
continuous queries together: sharing query plans (e.g.
NiagaraCQ [22]) and indexing query predicates (CACQ
[71] and PSoup [16]). In the former, queries belonging to
the same group share a plan, which produces the union
of the results needed by each query in the group. A
final selection is then applied to the shared result set.
Problems include dynamic re-grouping as new queries are
added to the system [20], choosing whether to push se-
lections below joins or pull them above (the latter allows
many queries to share one materialized join, but perfor-
mance may suffer if the join is expensive to maintain)
[21], shared evaluation of windowed joins with various
window sizes [54], and plan sharing for complex queries.

In the indexing approach, query predicates are stored
in a table. When a new tuple arrives for processing, its
attribute values are extracted and looked up in the query
table to see which queries are satisfied by this tuple. Data
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and queries are treated as duals, reducing query process-
ing to a multi-way join of the query predicate table and
the data tables. The indexing approach works well for
simple SPJ queries, but is currently not applicable to,
e.g. windowed aggregates [16].

5.5 Query Optimization
5.5.1 Query Rewriting

A useful rewriting technique in relational databases deals
with re-ordering a sequence of binary joins in order to
minimize a particular cost metric. There has been some
preliminary work in join ordering for data streams in the
context of the rate-based model [97, 98] and in main-
memory sliding window joins [47]. In general, each of the
query languages outlined in Section 3 introduces rewrit-
ings for its new operators, e.g. selections and projections
commute over sliding windows [5, 17].

5.5.2 Adaptivity

The cost of a query plan may change for three reasons:
change in processing time of an operator, change in se-
lectivity of a predicate, and change in the arrival rate
of a stream [6]. Initial efforts on adaptive query plans
include mid-query re-optimization [61] and query scram-
bling, where the objective was to pre-empt any opera-
tors that become blocked and schedule other operators
instead [3, 96]. To further increase adaptivity, instead of
maintaining a rigid tree-structured query plan, the Ed-
dies approach (introduced in [6], extended to multi-way
joins in [79], and applied to continuous queries in [16, 71])
performs scheduling of each tuple separately by routing
it through the operators that make up the query plan.
In effect, the query plan is dynamically re-ordered to
match current system conditions. This is accomplished
by tuple routing policies that attempt to discover which
operators are fast and selective, and those operators are
scheduled first. There is, however, an important trade-
off between the resulting adaptivity and the overhead
required to route each tuple separately.

5.6 Distributed Query Processing

In sensor networks, Internet traffic analysis, and Web
usage logs, multiple data streams are expected to arrive
from remote sources, suggesting a distribution of query
operators among the participating nodes. We classify
distribution strategies according to the envisioned appli-
cation: some are all-purpose, while others are designed
specifically for sensor networks.
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All-purpose strategies aim at decreasing communica-
tion costs by performing computations at the sources.
These include re-ordering of query operators across sites
[24, 84] and specifically, performing simple query func-
tions (e.g. filtering, aggregation or signal compression
[64]) locally at a sensor or a network router [27, 56, 69, 72,
102]. For example, if each remote node pre-aggregates its
results by sending to the co-ordinator the sum and count
of its values, the co-ordinator may then take the cumu-
lative sum and cumulative count, and compute the over-
all average. Other techniques include selecting leader
nodes to stream pre-processed results to the front-end
[102], caching [16, 31, 101], and sending updates to the
co-ordinator only if new data values differ significantly
from previously reported values [76].

Distributed techniques for ad-hoc sensor networks ex-
ploit the fact that query dissemination and result collec-
tion in a wireless sensor network proceed along a routing
tree (or a DAG) via a shared wireless channel. [69, 72].
The two main objectives are decreasing the number of
transmissions in order to extend battery life and deal-
ing with poor wireless connectivity. For example, if a
sensor reports its maximum local value x in response to
a MAX query, a neighbouring sensor that overhears this
transmission need not respond if its local maximum is
smaller than x (assuming that the neighbouring sensor
has not powered down). Dealing with poor connectivity
includes sending redundant copies of data packets, e.g.
a sensor could broadcast its maximum value to several
other nodes, not just the node along the path to the
root. However, this does not work for other aggregates
such as SUM and COUNT, as duplicate values would con-
taminate the result. In these cases, a sensor may “split”
its local sum and send partial sums to each of its neigh-
bours. Even if one packet is lost, the remainder of the
sum should still reach the root.

6 Related Models and Query Lan-
guages

While data stream applications have begun to appear in
the last several years, there has been some prior work on
modeling (off-line) lists, sequences, and time series. We
discuss those next.

6.1 List-Based Models

Two types of list models have been defined in the litera-
ture: functional and object-oriented. Functional systems
(e.g. Tangram [67, 77]) operate on (possibly infinite) lists



by means of functional transformations called transduc-
ers, of which there are five types:

1. Enumerators produce new lists.

2. Maps apply a function to each item in a list.
3. Filters correspond to selection predicates.
4

. Accumulators compute aggregates over a list or a
sliding window.

5. Pattern Detectors consist of regular expressions on
values inside a list.

Object-oriented models (e.g. AQUA [86]) define a
LIST object to be composed of a set of CELLs and a
set of directed edges joining the cells. Supported opera-
tions resemble transducers: select (filter), apply (map),
and sub_select (selection of a regular-expression-like pat-
tern within a list). There are also two novel operators:
descendants and ancestors, which return the portion of a
list preceding and following a match, respectively. Each
operator preserves the ordering of the list.

6.2 Time Series Models

A time-series extension to SQL, called SQL-TS [80], mod-
els time series as relations sorted by timestamps and ex-
tends SQL by allowing the following constructs to be
included in the FROM clause:

e A CLUSTER BY clause which effectively demultiplexes
a stream into separate logical streams.

e A SEQUENCE BY clause which sorts the time series
on the provided timestamp.

e An AS clause used to bind tuples to variable names.
As in regular expressions, recurring patterns may
be expressed with a star.

Each tuple that is bound to a variable is logically mod-
eled to contain pointers to the previous and next tuples
in the time series, forming a doubly linked list. For in-
stance, to find the maximal periods during which the
price of a stock fell more than 50 percent, the following
SQL-TS query may be used:

SELECT X.name, X.date as START_DATE,
Z.previous.date as END_DATE

FROM  stock_quotes
CLUSTER BY name
SEQUENCE BY date
AS (X, *Y, Z)
WHERE Y.price < Y.previous.price

AND Z.previous.price < 0.5 * X.price
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6.3 Sequence Models
6.3.1 Modeling and Querying Sequences

The SEQ sequence model and algebra were introduced by
Seshadri et al. in [81, 82, 83]. SEQ defines an ordering
function from the integers (or another ordered domain
such as calendar dates) to each item in the sequence.
Some operators, such as selection, projection, various set
operations, and aggregation (including moving windows)
are carried over from the relational model. There are five
new operators:

e The Group construct is a group-by operator that
divides a sequence into sub-sequences.

e The Positional Offset returns an output sequence
that is identical to the input sequence except that
the ordering domain has been shifted by a specified
number of positions.

e The Positional Join joins two sequences on the or-
dering attribute.

e The Collapse operator is a many-to-one surjective
function from one ordering domain to another. For
instance, a sequence of daily stock quotes may be
collapsed into a sequence of average (or top, or min-
imum) weekly stock quotes.

e The Ezpand operator is the “inverse” of Collapse.
However, note that collapsing and then expanding
a sequence S does not return S unless the original
sequence is also stored.

Relational equivalences for projections and selections
apply, as does the predicate push-down heuristic. There
are also additional equivalences between sequence oper-
ators. For instance, the positional offset can be “pushed
through” any operator and the projection may be pushed
through any sequence operator, so long as all the at-
tributes that participate in the sequence operator are
included in the projection.

The SEQ model has been implemented in SRQL (Sort-
ed Relational Query Language) [78]. Sequences are im-
plemented as logically or physically sorted multi-sets (re-
lations) and the language attempts to exploit the sort
order. Four new operators have been added:

e The Sequence operator creates a new sequence by
choosing an ordering field(s) for a particular rela-
tional table.



e The Shiftall operator joins a sequence R with a
copy of itself, R’ whose ordering field is shifted with
respect to R

e The Shift operator is similar to ShiftAll but only
joins a sequence R with the ordering field of R’
instead of all the fields of R’.

o WindowAggregate computes sliding window aggre-
gates.

These operators implement the SEQ model, with the
exception of Fzpand and Collapse, which require tem-
poral capabilities beyond SQL’s power. For an example
taken from [78], consider a sequence of Volcano eruptions
with schema V(time, name) and a sequence of earth-
quakes with schema E(time, name, magnitude). Sup-
pose that the sequences are instantiated as seen in Ta-
ble 4. To find for each volcano eruption the most recent
earthquake that was greater than 7 on the Richter scale,
the following SRQL query may be posed:

SELECT V.name, E.name
FROM Volcano as V, Earthquake as E
WHERE E.time <= V.time
AND (SHIFT(E,1).time > V.time

OR SHIFT(E,1).time IS NULL)
AND E.magnitude > 7

Volcanoes || Earthquakes
time | name || time | name | magnitude
3 vl 1 el 8
4 v2 2 e2 2
5 v3 5 e3 8
8 v4 6 ed 9
9 vh 7 eb 8

Table 4: Volcano and Earthquake sequences.

That is, the earthquake times are shifted by one po-
sition (e.g. the time of el becomes 2 and the time of
e2 becomes 5 and so on until €5, whose time becomes
NULL) and this shifted time must be more recent than
the time of a volcano eruption to guarantee the most re-
cent earthquake. The result of this query is shown in
Table 5.

6.3.2 Materialized Views over Sequences

The Chronicle data model includes relations and sequenc-
ing attributes, and deals with maintaining materialized
views over sequences [60]. It is shown that views are
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V.name | E.name
v3 e3
v4 eb
v ed

Table 5: Result of the earthquake query.

incrementally updatable (i.e. updates take time propor-
tional to the size of the view, not to the length of the
underlying sequence) if sequence items arrive in increas-
ing order of the sequence numbers, and if the view def-
inition algebra does not include joins of two sequences,
unless these are equi-joins on the sequencing attribute
with one of the sequencing fields projected out. More-
over, the algebra must not have a group-by operator with
an aggregate that may not be computed incrementally.
The Chronicle model does not consider sliding windows.

7 Conclusions

We have shown that designing an effective data stream
management system requires extensive modifications of
nearly every part of a traditional database, creating many
interesting database problems such as adding time, or-
der, and windowing to data models and query languages,
implementing approximate operators, combining push-
based and pull-based operators in query plans, adaptive
query re-optimization, and distributed query processing.
Recent interest in these problems has generated a num-
ber of academic projects. There exist at least the follow-
ing systems:

e Aurora [14, 24] is a workflow-oriented system that
allows users to build query plans by arranging boxes
(operators) and arrows (data flow among opera-
tors). Web site: http://www.cs.brown.edu/
research/aurora.

COUGAR [12, 13] is a sensor database that models
sensors as ADTs and their output as time series.
Recent work in the COUGAR project deals with
query processing inside the sensor network [101,
102]. Web site: http://www.cs.cornell.edu/
database/cougar.

Gigascope [27] is a distributed network monitor-
ing architecture that proposes pushing some query
operators to the sources (e.g. routers).

NiagaraCQ [22] is a continuous query system de-
signed for monitoring dynamic Web content. The



system executes multiple continuous queries (ex-
pressed in XML-QL) over streaming data in groups,
where each group of similar queries shares an exe-
cution plan. Web site: http://www.cs.wisc.edu/
niagara.

OpenCQ [66] is another continuous query system
for monitoring streaming Web content. Its focus
is on scalable event-driven query processing. Web
site: http://disl.cc.gatech.edu/CQ

StatStream [104] is a stream monitoring system de-
signed to compute on-line statistics across many
streams. Web site: http://cs.nyu.edu/cs/
faculty/shasha/papers/statstream.html.

STREAM [75] is an all-purpose relation-based sys-
tem with an emphasis on memory management and
approximate query answering. Web site:
http://www-db.stanford.edu/stream.

TelegraphCQ [15] is a proposed continuous query

processing system that focuses on shared query eval-

uation and adaptive query processing. Web site:
http://telegraph.cs.berkeley.edu.

Tribeca [87] is an early on-line Internet traffic mon-
itoring tool.
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