
Anomaly Detection for Discrete
Sequences: A Survey

Varun Chandola, Arindam Banerjee, Member, IEEE, and Vipin Kumar, Fellow, IEEE

Abstract—This survey attempts to provide a comprehensive and structured overview of the existing research for the problem of

detecting anomalies in discrete/symbolic sequences. The objective is to provide a global understanding of the sequence anomaly

detection problem and how existing techniques relate to each other. The key contribution of this survey is the classification of the

existing research into three distinct categories, based on the problem formulation that they are trying to solve. These problem

formulations are: 1) identifying anomalous sequences with respect to a database of normal sequences; 2) identifying an anomalous

subsequence within a long sequence; and 3) identifying a pattern in a sequence whose frequency of occurrence is anomalous. We

show how each of these problem formulations is characteristically distinct from each other and discuss their relevance in various

application domains. We review techniques from many disparate and disconnected application domains that address each of these

formulations. Within each problem formulation, we group techniques into categories based on the nature of the underlying algorithm.

For each category, we provide a basic anomaly detection technique, and show how the existing techniques are variants of the basic

technique. This approach shows how different techniques within a category are related or different from each other. Our categorization

reveals new variants and combinations that have not been investigated before for anomaly detection. We also provide a discussion of

relative strengths and weaknesses of different techniques. We show how techniques developed for one problem formulation can be

adapted to solve a different formulation, thereby providing several novel adaptations to solve the different problem formulations. We

also highlight the applicability of the techniques that handle discrete sequences to other related areas such as online anomaly

detection and time series anomaly detection.

Index Terms—Discrete sequences, anomaly detection.

Ç

1 INTRODUCTION

SEQUENCE data are found in a wide variety of application
domains such as intrusion detection, bioinformatics,

weather prediction, system health management, etc. Anom-
aly detection for sequence data is an important topic of
research as it often leads to detection of actionable and
critical information such as intrusions, faults, and system
failures. There is extensive work on anomaly detection
techniques [1], [2], [3] that look for individual objects that
are different from normal objects. These techniques,
referred to as point-based anomaly detection [1], do not take
the sequence structure of the data into consideration. For
example, consider the set of user command sequences
shown in Table 1. While sequences S1-S4 represent normal
daily profiles of a user, the sequence S5 is possibly an
attempt to break into a computer by trying different
passwords. Though the sequence S5 is anomalous, each
command in the sequence by itself is normal.

A sequence is an ordered series of events. Sequences can

be of different types, such as binary, discrete, and continuous,

depending on the type of events that form the sequences.

Discrete and continuous sequences (or time series) are two

most important form of sequences encountered in real life
applications. In this survey, we will focus on discrete
sequences. Discrete or symbolic sequences are ordered sets
of events such that the events are symbols belonging to a
finite alphabet. For example, a text document is a sequence of
words, a computer program is executed as a sequence of
system calls, and a gene is a sequence of nucleic acids.

Anomaly detection for discrete sequences has been a
focus of many research papers. But most of the anomaly
detection techniques have been developed within specific
application domains and have been evaluated on specific
validation data sets. In particular, several techniques have
been developed to detect anomalies in operating system call
data [4], [5], [6], [7], [8], [9], [10]. Budalakoti et al. [11], [12]
present a study of anomaly detection techniques to detect
anomalies in the flight safety domain. Sun et al. [13] present
a probabilistic suffix tree-based technique and evaluate it on
biological sequences. Note that the nature of the sequence
data as well as the nature of anomalies can differ
fundamentally across domains, and hence if a technique is
shown to be effective within one domain, it does not follow
that it will be effective in a different domain.

Even though the existing techniques appear to have the
same objective, i.e., to detect anomalies in discrete
sequences, a deeper analysis reveals that different techni-
ques actually address different problem formulations. Most
of the existing research focuses on one of the following
three problem formulations:

1. Sequence-based anomaly detection—Detecting
anomalous sequences from a database of test
sequences.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012 823

. V. Chandola is with the Oak Ridge National Laboratory, 1 Bethel Valley
Road, Oak Ridge, TN 37830. E-mail: chandolav@ornl.gov.

. A. Banerjee and V. Kumar are with the Department of Computer Science
and Engineering, University of Minnesota, Minneapolis, MN 55455.
E-mail: {banerjee, kumar}@cs.umn.edu.

Manuscript received 1 May 2009; revised 10 Dec. 2009; accepted 26 July
2010; published online 18 Nov. 2010.
Recommended for acceptance by C. Clifton.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-05-0399.
Digital Object Identifier no. 10.1109/TKDE.2010.235.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

2. Contiguous subsequence-based anomaly detec-
tion—Detecting anomalous contiguous subse-
quences within a long sequence.

3. Pattern frequency-based anomaly detection—De-
tecting patterns in a test sequence with anomalous
frequency of occurrence.

These formulations are fundamentally distinct, and

hence require exclusive solutions. Even for a single problem

formulation, different techniques have been proposed that

utilize distinct approaches to detect anomalies. Fig. 1 shows

the categorization of existing anomaly detection research

for discrete sequences.
To the best of our knowledge, there is no other study that

provides a global understanding of the existing research

along the lines of Fig. 1. One reason for lack of such a study

is because the literature on anomaly detection for sequences

is scattered across varied application domains and hence

most of the studies have been domain oriented. For example,

a comparison of four different anomaly detection techniques

for discrete sequences was presented by Forrest et al. [4], but

all of the techniques focused on system call intrusion

detection. Another reason is that techniques solve different

problem formulations. For example, Chandola et al. [14]

provided a comparative evaluation of eight anomaly

detection techniques on sequence data collected from

different domains, but only focused on the sequence-based

problem formulation.

1.1 Our Contributions

This survey attempts to provide a comprehensive and

structured overview of the existing research for the problem

of detecting anomalies in discrete/symbolic sequences. The

objective is to provide a global understanding of the

sequence anomaly detection problem and how techniques

proposed for different domains relate to each other.
Our specific contributions are:

. We identify three distinct ways in which the
anomaly detection problem has been formulated
for discrete sequences and review techniques from
many disparate and disconnected application do-
mains that address each of these problem formula-
tions. Such a categorization helps us identify the
strengths and limitations of different techniques and
could assist researchers in understanding how
techniques that address one formulation can be
adapted to solve a different formulation.

. Within each problem formulation, we group techni-
ques into categories based on the nature of the
underlying algorithm. For each category, we provide
a basic anomaly detection technique, and show how
the existing techniques are variants of the basic
technique. This approach shows how different
techniques within a category are related or different
from each other. Our categorization reveals new
variants and combinations that have not been
investigated before for anomaly detection. We also
provide a discussion of relative strengths and
weaknesses of different techniques.

. We show how techniques developed for one problem
formulation can be adapted to solve a different
formulation; thereby providing several novel adap-
tations to solve the different problem formulations.

. We highlight the applicability of the techniques that
handle discrete sequences to other related areas
such as online anomaly detection and time series
anomaly detection.

This survey can be utilized in three ways. First, it provides a

well structured overview of the research landscape. Second,

it allows researchers in one application domain to under-

stand the existing work done in a different domain. Third, it

allows researchers focusing on a particular problem for-

mulation to see how techniques developed for a different

formulation can be applied to their problems.
Note that the three formulations covered in this survey

do not cover all possible ways in which the anomaly

detection problem can be posed for discrete sequences.

824 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 1. Overview of existing anomaly detection research for discrete sequences.

TABLE 1
Sequences of User Commands

However, most of the existing work can be covered under

these three formulations.

1.2 Terminology

We use the following terminology and notation in this paper:

. A discrete/symbolic sequence is defined as a finite
sequence of events, such that each event can be
represented as a symbol belonging to a finite
alphabet. The symbols may belong to a simple
alphabet, e.g., events in DNA sequences belong to a
four-letter alphabet—{A;C;G; T }, or to a complex
alphabet, e.g., the alphabet for system call sequences
(see Table 1) is the set of system calls executed by a
particular computer system. For simplicity, we will
use sequence to refer to a discrete sequence and
symbol to refer to an element of the sequence. Sets of
sequences will be denoted using bold capital letters,
e.g., S;T. Individual sequences will be denoted
using bold small letters, e.g., s; t. Length of a
sequence s will be denoted by ls. A sequence within
a set will be denoted as si 2 S; tj 2 T. A symbol
within a sequence s will be denoted as si.

. A string is defined as an ordered sequence of
symbols and hence is equivalent to a sequence in
this context. We will use the terms strings and
sequences interchangeably.

. A subsequence of a sequence is defined as a smaller
sequence that can be derived from the original
sequence by deleting some symbols without chan-
ging the order of the remaining symbols [15].
Formally, a sequence tð¼ t1t2 . . .Þ is a subsequence
of sð¼ s1s2 . . .Þ if there exists a set of integers
ði1 < i2 < . . .Þ, such that si1 ¼ t1; si2 ¼ t2

. A substring is defined as a contiguous subsequence
of a string or a sequence. In some papers, the term
segment is used instead of a substring. We denote a
substring of a sequence s as si:j; i � j which starts at
ith location and ends at the jth location of the
sequence s.

1.3 Organization

The rest of this survey paper is organized as follows:

Section 2 describes different application domains where

anomaly detection techniques for discrete sequences have

been developed. Section 3 describes the three different

problem formulations. Sections 4, 5, and 6 provide an

overview of techniques that have been proposed to solve

each one of these problem formulations. Section 7 discusses

how the different anomaly detection techniques discussed

in the survey are applicable in the context of online anomaly

detection. Conclusions and future directions of research are

presented in Section 8.

2 APPLICATIONS OF ANOMALY DETECTION FOR

DISCRETE SEQUENCES

A few application domains where anomaly detection

techniques have been developed to handle discrete

sequences are as follows:

1. Sequence of operating system calls/user commands [5],
[16], [17], [18]. The sequences are defined using an
alphabet of all possible system calls (�160 for Sun
Solaris operating system) or user commands
(�2;500 for a typical UNIX user). Anomalies in
such data sets correspond to anomalous program
behavior, often caused due to “break-ins” in the
computer system by a virus or a malicious user, or
unauthorized access of a computer system. Most of
the techniques in this domain solve the sequence-
based (e.g., identifying anomalous user profiles) or
subsequence-based (e.g., online monitoring of
system usage) problem formulations.

2. Biological sequences such as DNA sequences, protein
sequences [13], [15]. The sequences are defined using
an alphabet that corresponds to either four nucleic
acid bases or close to 20 amino acid bases. Anomalies
in such data sets correspond to either mutations, or a
condition of disease in the biological organism [19].
Techniques in this domain either solve sequence-
based (e.g., identifying anomalous protein sequences
[19]) or pattern frequency-based (e.g., identification
of mutations) problem formulations.

3. Sensor data from an operational system (such as aircraft
or space shuttle) [11], [12], [20]. The sequences are
collected during the operation of the system through
multiple discrete sensors. The alphabet size for such
discrete sequences is typically large (�1;000 for
aircraft data [12]). Anomalies in such data sets
correspond to fault scenarios in the operation of
the system or accidents. Techniques in this domain
typically solve the sequence-based problem formu-
lation to identify faulty operational runs.

4. Sequences of transactions from online banking, customer
purchases, and other retail commerce domains [21]. The
“symbols” in such sequences are “actions” by
customers and the alphabet size for such sequences
can also be large. Anomalies in such data sets
correspond to irregular or abnormal behavior by
customers. Techniques in this domain typically solve
the subsequence-based problem formulation to
identify anomalous customer behavior.

5. Navigational click sequences from websites [22], [23].
The “symbols” in such sequences correspond to
clicked links (websites), or categories to which the
links belong. The anomalies in such data correspond
to irregular or unauthorized user behavior. Techni-
ques in this domain also solve the subsequence-
based problem formulation.

3 PROBLEM FORMULATIONS

The three formulations of the sequence anomaly detection

problem, i.e., sequence-based, contiguous subsequence-

based, and pattern frequency-based anomaly detection,

are unique in terms of how the anomalies are defined. For

the first formulation, an entire sequence is anomalous if it is

significantly different from normal sequences. For the

second formulation, a contiguous subsequence within a

long sequence is anomalous if it is significantly different

from other subsequences in the same sequence. For the

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 825

third formulation, a given test pattern is anomalous if its
frequency of occurrence in a test sequence is significantly
different from its expected frequency in a normal sequence.

From the application perspective, the choice of the
problem formulation depends on the relevance of anoma-
lies to the requirement of the application domain. For
example, consider the following three scenarios that can
arise in the domain of operating system intrusion detection:

. Scenario 1: Sequence-based anomaly detection. A
security analyst is interested in detecting “illegal”
user sessions on a computer belonging to a corporate
network. An illegal user session is caused when an
unauthorized person uses the computer with mal-
icious intent. To detect such intrusions, the analyst
can use the first formulation, in which the past
normal user sessions (sequence of system calls/
commands) are used as the training data, and a new
user session (a test sequence) is tested for anomalies
against these training data.

. Scenario 2: Subsequence-based anomaly detection.
A security analyst is interested in detecting if a user’s
account was misused (hacked) at some point during
a given day. To detect this misuse, the analyst can use
the second formulation, in which the user’s day long
activity is considered as a long sequence, and is
tested for any (contiguous) anomalous subsequence.

. Scenario 3: Pattern frequency-based anomaly detec-
tion. A security analyst is interested in determining
if the frequency with which a user executed a
particular sequence of commands is higher (or
lower) than an expected frequency. Going back to
the example given in Table 1, the sequence login,
passwd,login,passwd corresponds to a failed login
attempt followed by a successful login attempt.
Occurrence of this sequence in a user’s daily profile
is normal if it occurs occasionally, but is anomalous
if it occurs very frequently, since it could correspond
to an unauthorized user surreptitiously attempting
an entry into the user’s computer by trying multiple
passwords. To detect such intrusions, the analyst can
use the third formulation, in which the sequence of
commands is the query pattern, and the frequency of
the query pattern in the user sequence for the given
day is compared against the expected frequency of
the query pattern in the daily sequences for the user
in the past, to detect anomalous behavior.

The next three sections discuss various techniques that
address these three problem formulations. Most techniques
discussed in this survey assign a score to a sequence,
contiguous subsequence, or pattern, indicating the magni-
tude with which the entity is considered to be anomalous or
normal by the given technique. This score can be used to
construct a ranked list of anomalies, or, with the help of a
threshold, converted into a binary label of normal or
anomalous. Some techniques directly assign a binary label
or normal or anomalous to the individual entities.

4 SEQUENCE-BASED ANOMALY DETECTION

Two variants of sequence-based anomaly detection for-
mulation exist:

. Semisupervised anomaly detection. A reference (or
training) database is assumed, containing only
normal sequences, and a test sequence is tested
against the normal reference database. Formally, this
variant can be stated as

Definition 1. Given a set of n sequences, S ¼ fs1; s2; . . . ; sng,
and a sequence t belonging to a test data set T, assign an
anomaly score to t with respect to the training sequences in S.

The length of sequences in S and the length of sequences
in T might not be equal.

. Unsupervised anomaly detection. The task is to detect
anomalous sequences from an unlabeled database of
sequences (unsupervised anomaly detection). Formally,
this variant can be stated as

Definition 2. Given a set of n sequences, S ¼ fs1; s2; . . . ; sng,
assign an anomaly score to each sequence in S with respect to
the rest of S.

In this section, we will primarily discuss techniques that
handle the semisupervised variant. A semisupervised
technique can be adapted to solve the unsupervised
problem by treating the entire data set as a training set,
and then scoring each sequence with respect to this training
set. Such adaptations assume that the given set contains few
anomalous sequences, and hence semisupervised technique
does not get affected by the presence of anomalies in the
training set.

Anomaly detection techniques in this section can be
classified based on the unit element of a test sequence that is
analyzed by the technique as follows:

. Similarity-based techniques. These techniques treat
the entire test sequence as a unit element in the
analysis, and hence are analogous to point-based
anomaly detection techniques. They typically apply
a proximity-based point anomaly detection techni-
que by defining an appropriate similarity measure
for the sequences.

. Window-based techniques. These techniques analyze a
short window of symbols—a short substring—
within the test sequence at a time. Thus, such
techniques treat a substring within the test sequence
as a unit element for analysis. These techniques
require an additional step in which the anomalous
nature of the entire test sequence is determined,
based on the analysis on the substrings within the
entire sequence.

. Markovian techniques. These techniques predict the
probability of observing each symbol of the test
sequence, using a probabilistic model, and use the
per-symbol probabilities to obtain an anomaly score
for the test sequence. These techniques analyze each
symbol with respect to previous few symbols.

. Hidden Markov model (HMM)-based techniques. These
techniques transform the input sequences into
sequences of hidden states, and then detect anoma-
lies in the transformed sequences.

826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

A detailed discussion of the above four categories of
techniques is given in the next four sections.

4.1 Similarity-Based Techniques

These techniques compute pairwise similarity between
sequences using a specific similarity (or distance) measure
and then make use of a traditional proximity-based point-
based anomaly detection algorithm [11], [12], [14].

A basic similarity-based technique operates as follows:
the similarity of the test sequence, t, to each sequence in the
training set, S, is computed. The similarities are then
combined, e.g., inverse of average similarity, to obtain an
anomaly score for t.

Several variants of the basic technique have been
proposed which use different point-based algorithms and
different similarity measures to compare a pair of sequences.

4.1.1 Using Different Point-Based Anomaly Detection

Algorithms

Two point-based anomaly detection algorithms that have
been used for discrete sequences are k-nearest neighbor
(kNN) based [24] and clustering based [25]. Chandola et al.
[14] proposed a kNN-based technique in which the
anomaly score of a test sequence is equal to the dissim-
ilarity1 to its kth nearest neighbor in the training data set S.

Budalakoti et al. [11], [12] proposed a clustering-based
technique in which the training sequences are first clustered
into a fixed number of clusters using the k-medoid
algorithm [26]. The anomaly score for a test sequence is
then computed as equal to the inverse of its similarity to its
closest medoid. Probabilistic clustering techniques, which
do not require an explicit similarity matrix to find clusters
in the training set, have also been used for anomaly
detection. For example, Yang and Wang [27] proposed a
technique that uses mixtures of Probabilistic Suffix Trees [28]
as cluster representations. Other probabilistic techniques
such as mixture of HMMs [29], [30] or mixture of Maximum
Entropy (maxent) models [23] can also be employed in the
same manner for clustering-based anomaly detection.

4.1.2 Using Different Similarity Measures

The simplest similarity measure for comparing a pair of
discrete sequences is the Simple Matching Coefficient (SMC)
[31] which counts the number of positions in which the two
sequences match as its similarity. While computing the
similarity is fast (linear in the length of the sequences), this
measure has a drawback that it requires the sequences to be
of equal lengths.

Several anomaly detection techniques use the length of
the longest common subsequence as a similarity measure
since it can compute similarity between two sequences of
unequal lengths [11], [12], [14]. This similarity (nLCS)
between two sequences si and sj, is computed as

nLCSðsi; sjÞ ¼
jLCSðsi; sjÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
jsiksjj

p ; ð1Þ

where LCSðsi; sjÞ is the longest common subsequence
shared by si and sj.

The disadvantage of using nLCS is the computational
complexity involved, though faster algorithms to compute

the LCS have been proposed [32]. A disadvantage of both
SMC and nLCS is that they do not incorporate the relation
between different pairs of symbols when computing the
similarity, i.e., all matches and mismatches are treated
equally, though alternative measures such as edit distance
can be employed to handle this issue.

Other similarity measures that do not require the
sequences to be of equal length can also be used instead
of nLCS. One such measure was proposed by Kumar et al.
[33] by converting the sequences into bitmaps and compar-
ing the bitmaps to determine the similarity. Liu et al. [19]
used edit distance to determine anomalous protein se-
quences from a database of sequences corresponding to
different organisms.

Advantages and disadvantages of similarity-based
techniques. The advantage of similarity-based techniques
is that one can use any existing or new similarity measure
for sequences [15], [18], [34] and any proximity-based point
anomaly detection technique [25], [35], and hence can
devise a unique anomaly detection which is best suited for a
given problem.

A disadvantage of similarity-based techniques is that
their performance is highly dependent on the choice of the
similarity measure. Similarity measures such as nLCS are
able to distinguish between normal and anomalous test
sequences only when anomalous sequences are signifi-
cantly different from the training sequences. If the
anomalies are localized in the test sequence, similarity
measures such as nLCS may fail to identify them. Another
disadvantage of similarity-based techniques is the Oðn2Þ
complexity involved in computing pairwise similarity
between sequences in S.

4.2 Window-Based Techniques

Window-based techniques extract fixed-length overlapping
windows from a test sequence. Each window is assigned an
anomaly score. The anomaly scores of all windows within a
test sequence are aggregated to obtain an anomaly score for
the entire test sequence. These techniques are particularly
useful when the cause of anomaly can be localized to one or
more shorter substring within the actual sequence [16]. If
the entire sequence is analyzed as a whole, the anomaly
signal might not be distinguishable (as in similarity-based
techniques) from the inherent variation that exists across
sequences. By analyzing a short window at a time, window-
based techniques try to localize the cause of anomaly within
one or a few windows.

The standard technique to obtain short windows from a
sequence is to slide a fixed-length window, one symbol at a
time, along the sequence. Let us assume that for a given
sequence s, the extracted windows are denoted by
!1; !2 . . .!t and each window !i can also be denoted as
!i1!i2 . . .!ik.

To further understand the motivation behind the win-
dow-based techniques, let us assume that an anomalous test
sequence t contains a substring t0 (of a certain length), which
is the actual cause of anomaly. In a sliding window-based
technique, if the length of the window is k, the anomalous
substring t0 will occur (partly or whole) in jt0j þ k� 1
windows. Thus, the anomalous sequence can be potentially
detected by detecting at least one of such windows. On the
other hand, if jt0j � jtj, a similarity-based technique might

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 827

1. An inverse function of similarity.

not be able to resolve the difference between anomalous and
normal test sequences.

A basic window-based technique operates as follows: in
the training phase, k-length sliding windows are extracted
from all training sequences and the frequency of occurrence
of each unique window in the training data set is
maintained (as a normal dictionary). In the test step, sliding
windows of length k are extracted from the test sequence, t.
A window !i is assigned a likelihood score Lð!iÞ which is
equal to the frequency associated with the window !i in the
normal dictionary. A threshold � is used to determine if a
particular window !i is anomalous (Lð!iÞ < �) or not
(Lð!iÞ � �). The anomaly score of the test sequence is
proportional to the number of anomalous windows in the
test sequence. The exact expression for the anomaly score of
a test sequence, t is given by

AðtÞ ¼ ji : Lð!iÞ < �; 1 � i � jtjj
jtj : ð2Þ

The above-mentioned basic window-based technique has
been proposed for operating system call intrusion detection
and is termed as threshold-based sequence time delay
embedding (t-STIDE) [4], [5].

Several variants of the t-STIDE technique have been
proposed, especially for system call intrusion detection [16],
[18], [34], [36], [37], [38], [39], [40]. These variants differ from
t-STIDE in terms of how they assign an anomaly score to a
window, and how they combine the scores to obtain a
global anomaly score for the test sequence.

4.2.1 Assigning Anomaly Scores to Windows

In the t-STIDE technique, the anomaly score for each
window !i (denoted as Að!iÞ) is equal to the inverse of
frequency of occurrence of the window in the normal
dictionary. Other techniques have been proposed to assign
a different anomaly score to a window. We will discuss
three types of such techniques here.

1. Using lookahead pairs. Techniques under this
category make use of lookahead pairs to assign a score to a
window, !i [16]. A lookahead pair is defined as h�; �ij, such
that the symbol � occurs in the jth location after the symbol
� in at least one of the windows in the normal dictionary.
Since the windows are of length k, j lies between 1 and
k� 1. All such lookahead pairs are added to a secondary
normal dictionary. During testing, for each window !i, all
potential lookahead pairs are extracted. For a length
k window, there can be kðk�1Þ

2 such potential pairs. The
number of potential lookahead pairs that do not exist in the
secondary normal dictionary is counted as the number of
mismatches. The anomaly score of the window is calculated
as the number of mismatches divided by total number of
potential mismatches (¼ kðk�1Þ

2).
2. Comparing against a normal dictionary. Techniques

under this category construct a normal dictionary (of fixed-
length windows) from training sequences and compare
each window from the test sequence to the normal
dictionary to obtain an anomaly score.

Hofmeyr et al. [5] use Hamming Distance (or number of
mismatches) between the test window !i and the closest
window in the normal dictionary as anomaly score Að!iÞ. In

the same paper, another technique to compute Að!iÞ is
presented. Að!iÞ is 1 if the window !i is not present in the
normal dictionary, and 0 if the window is present in the
normal dictionary. Hamming Distance has also been used in
[40], [41]. The latter approach has been adopted by [36],
[38], [39], [42].

Lane and Brodley [18], [34], [43] use the following
similarity measure to compute similarity Simð!i; #jÞ be-
tween a test window, !i and a window in the normal
dictionary, #j:

wð!i; #j; lÞ ¼
0; if i ¼ 0;

or !il 6¼ #jl;
1þ wð!i; #j; l� 1Þ; if !il ¼ #jl;

8<
: ð3Þ

and

Simð!i; #jÞ ¼
Xk
l¼0

wð!i; #j; lÞ; ð4Þ

where k is the length of the windows. In other words, if the
two windows match at a location l and the two windows
also matched at previous location, the total similarity will
be incremented more than if the two windows did not
match at previous location, in which case the increment will
be of 1. Thus, in the above similarity measure, a series of
consecutive matching symbols can accumulate a large
similarity, while even a single mismatch in the middle can
greatly reduce the similarity.

The anomaly score assigned to !i is equal to the inverse
of maximum similarity between !i and windows in the
normal dictionary. Lane’s PhD thesis [44] discusses other
variants of the above described similarity measure in the
context of anomaly detection.

As mentioned earlier, the dictionaries are typically built
for normal behavior. Certain techniques construct diction-
aries for only the anomalous behavior [42], [45], [46], [47],
[48]. For example, Dasgupta and Nino [42] first build a
normal dictionary of windows. They then generate random
windows from the given alphabet. Any window that does
not match a normal window is treated as anomalous
window and added to the anomaly dictionary. A compara-
tive study of using normal and anomaly dictionaries is
presented in [49].

3. Using a classifier. Instead of using the frequency of
occurrence of a window to compute its anomaly score, some
techniques use a classifier to assign an anomaly label to
each window. The training involves learning a classifier
from the set of k-length windows obtained from the training
data set S. If S contains both normal and anomalous
sequences, one way to obtain labeled windows was
proposed in [10]:

. Windows extracted from normal sequences of S are
assigned a normal label.

. If a window extracted from an anomalous sequence
of S occurs in any normal sequence also, it is
assigned a normal label, else it is assigned anom-
alous label.

If S contains only normal sequences, a random anomaly
generation approach is used [9], [39], [42]. All windows

828 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

extracted from sequences in S are assigned a normal label.
To obtain anomalous windows, random windows are
generated. If the window occurs in S, it is ignored, or else
it is assigned an anomalous label and added to the
training data set.

After constructing a training data set, a classifier is
learned. Different types of classification models have been
learned, such as HMM-based [10], neural networks [9],
[36], [39], [50], SVM [51], [52], and rule-based classifiers
[53]. During testing, the anomaly score for each
window !i obtained from test sequence t, Að!iÞ ¼ 0 if
the classifier labels it as normal, and Að!iÞ ¼ 1 if the
classifier labels it as anomalous.

4.2.2 Obtaining Anomaly Score for Test Sequence

Once all windows in a given test sequence, t, are assigned
an anomaly score, the next step is to combine the anomaly
scores (a vector of length jtj � kþ 1) to obtain an overall
anomaly score AðtÞ. One such technique was discussed
earlier for the t-STIDE technique. Here, we will describe
some other combination techniques that have been pro-
posed in the literature.

Hofmeyr et al. [5] propose two methods to compute the
overall anomaly score. The first method computes this as
the average of the strength of anomaly signal over all
windows in t.

AðtÞ ¼ 1

t

Xlt�kþ1

i¼1

Að!iÞ; ð5Þ

where lt is the length of t. The second method checks if any
window in t has a mismatch.

AðtÞ ¼ 1; if 9 i : Að!iÞ � 1;
0; otherwise:

�
ð6Þ

Forrest et al. [4] proposed a technique to obtain AðSqÞ,
known as locality frame count (LFC). For every mismatching
window Að!iÞ ¼ 1, the technique counts the number of
mismatching windows in the previous n windows of t (n is
a user defined parameter). If this number is greater than a
threshold, AðSqÞ is incremented. The LFC technique
considers a sequence highly anomalous only when a
significant number of anomalous windows occur close to
each other. If the anomalous windows are located far apart
across t, the LFC method gives a lower anomaly score to t.
A similar technique has been proposed by Gao et al. [10].

The intuition behind the LFC approach is that anomalies
in actual anomalous sequences typically occur as tempo-
rally clustered anomalous symbols; hence, aggregating the
anomaly scores across the entire sequence t might “wash
out” the anomaly signal; the local combination techniques
on the other hand would capture such behavior.

A combination technique similar to LFC was proposed in
[39] called the leaky bucket. They use the vector obtained of
anomaly scores for the windows in the test sequence. For
each anomalous window, 1 is added to the global anomaly
score and for each normal window, 1 is subtracted (the
score is never allowed to fall below 0). Thus, consecutive
anomalies result in the global score to increase. If at any
time the global score goes above a threshold, the entire test

sequence is declared to be anomalous. This technique
provides the same benefit as LFC technique.

Advantages and disadvantages of window-based tech-

niques. A key advantage of window-based techniques over
similarity-based techniques is that they are better suited to
detect anomalies which are localized in a short region in the
test sequence. Constructing normal dictionaries is simple to
implement and can be done efficiently using appropriate
data structures.

One disadvantage of window-based techniques is that
they are highly reliant on the value of k (length of the
window). If k is chosen to be very small, most k-length
windows will have a high probability of occurrence in the
training sequences, while if k is chosen to be very large,
most k-length windows will have a low probability of
occurrence in the training sequences. Thus, in either case,
the discriminatory power of the k-length windows to
differentiate between normal and anomalous sequences
will be low. Setting an optimal value for k is challenging.
Another disadvantage is that storing all unique windows
that occur in training sequences and their frequencies can
require a large amount of memory.

4.3 Markovian Techniques

The third category of techniques that solve sequence-based
formulation learn a model from the training sequences. The
model is used as an approximation of the “true” distribu-
tion that generated the normal data. Typically, the prob-
ability of a given sequence tð¼ ht1; t2; . . . tlti) is factorized
using the chain rule:

P ðtÞ ¼
Ylt
i¼1

P ðtijt1t2 . . . ti�1Þ; ð7Þ

where lt is the length of t.
Markovian techniques utilize the short memory property

of sequences, which is observed across different domains
[28]. The short memory property is essentially a higher
order Markov condition which states that the conditional
probability of occurrence of a symbol ti, given the sequence
observed so far can be approximated as

P ðtijt1t2 . . . ti�1Þ ¼ P ðtijti�kti�kþ1 . . . ti�1Þ; ð8Þ

where k > 1.
Markovian techniques operate in two phases, training

and testing. Training involves learning the parameters of a
probabilistic model of the training sequences and testing
involves computing the likelihood of the test sequence
given the parameters (see (7)).

4.3.1 Fixed Markovian Techniques

Such techniques use a fixed history (of length k) to estimate
the conditional probability of a symbol in the test sequence.

A basic fixed Markovian technique “learns” the condi-
tional probability of occurrence of a given symbol ti as

P ðtijti�k . . . ti�1Þ ¼
fðti�k . . . ti�1tiÞ
fðti�k . . . ti�1Þ

; ð9Þ

where fðti�k . . . ti�1tiÞ is the frequency of occurrence of the
substring ti�k . . . ti�1ti in the sequences in S and

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 829

fðti�k . . . ti�1Þ is the frequency of occurrence of the substring
ti�k . . . ti�1 in the sequences in S.

Different variants of the basic technique have been
proposed. Ye [54] proposed one such technique for k ¼ 1.
For this special case, the conditional probability of occur-
rence of given symbol ti can be written as

P ðtijti�1Þ ¼
fðti�1tiÞ
fðti�1Þ

: ð10Þ

An issue with the basic fixed Markovian technique is that
storing all transition frequencies (see (9)) can potentially
require a huge amount of space. For an alphabet set size of
�, the total number of frequencies required by the basic
technique will be ¼ ð�� 1Þ�k.

Michael and Ghosh [6] address this issue by storing the
frequencies in an Extended Finite State Automata (EFSA) [6].
The EFSA is like a traditional FSA but with frequencies
associated with the nodes and the transitions from one node
to another. Each node denotes a k-length substring. A node
has a transition to another node only if the substring for the
second node can be obtained from the substring for the first
node by removing the first symbol of the first node and
appending any symbol at the end of the substring. The
number of times the substring for a node occurs in the
sequences in S is stored at the node. The number of times a
transition from one node to another is observed in the
sequences in S are stored at the transitions. Only those
nodes and transitions that are observed in the training
sequences are stored in the EFSA. Thus, the size of EFSA is
typically smaller than the total possible size.

During testing, ðkþ 1Þ sized windows are extracted from
the test sequence t. The first k symbols determine the
current state in the EFSA while the last k symbols denote the
next state in the EFSA. If a transition between the two states
is defined, the conditional probability for the last symbol of
the window is computed by using the frequencies stored in
the current node and the next node (see (9)). If the transition
is not defined, the symbol is ignored. Chandola et al. [14]
proposed a variant of the EFSA technique in which if the
transition is not defined, the conditional probability of the
last symbol of the window is set to 0.

Michael and Ghosh [6] extended the EFSA-based
technique to compute the conditional probability for more
than one symbol, given the previous k symbols, to obtain
the final anomaly score for t.

Another variant of the basic technique was proposed by
Marceau [55] which uses suffix trees. In this technique, the
suffix tree only maintains the ðkþ 1Þ length substrings and
their k-length suffixes that exist in the sequences in S. Thus,
this technique learns a traditional FSA. During testing, all
ðkþ 1Þ length substrings are extracted from t and fed into
the FSA. An anomaly is detected if the FSA reaches a state
from where there is no outgoing edge corresponding to the
last symbol of the current substring.

4.3.2 Variable Markovian Techniques

An issue with fixed Markovian techniques is that they
force each symbol of a test sequence to be conditioned on
the previous k symbols (see (9)). Often, the frequency of a
k-length substring, i.e., ðti�k . . . ti�1Þ, may not be sufficiently

large to provide a reliable estimate of the conditional
probability of a symbol that follows this substring. For
example, let us assume that the substring aabbb occurs once
across all training sequences and is followed by symbol b
in that solitary occurrence. A fixed Markovian technique
(k ¼ 5) will assign a conditional probability of 1 to
P ðbjaabbbÞ. But this conditional probability is not reliable,
and hence might give undesirable results. Variable
Markovian techniques try to address this issue by allowing
symbols to be conditioned on a variable length history. For
the above example, P ðbjaabbbÞ might be substituted with
P ðbjabbbÞ if the context abbb is more optimal to a given
pruning criterion, e.g., frequency of abbb is greater than a
certain threshold. Models such as Probabilisitic Suffix Trees
(PSTs) [28] and Interpolated Markov Models (IMM) can be
used to efficiently compute the variable length conditional
probabilities of a symbol.

One such technique was proposed by Sun et al. [13]
using PSTs. A PST is a compact tree representation of a
variable Markov chain, which uses classical suffix trees as its
index structure. In a PST, each edge is labeled using a
symbol, and each node represents the substring obtained by
traversing the path from root to the node, as well as the
number of times the substring is observed in the training
sequences. Each node also stores the conditional probability
of observing each symbol in the alphabet, given the
substring represented by the node. The PST is grown
(training phase) by scanning the training sequences. The
maximum depth of the tree is fixed at k, which is a user
defined parameter. Several pruning criteria are applied to
the PST to ensure that the PST contains only those paths
that occur significantly enough number of times in the
training sequences. The pruning can be done by applying
thresholds to the frequency of a node label, or to the
conditional probability of a symbol emanating from a given
node. If no pruning is applied, the PST is equivalent to the
EFSA technique discussed in Section 4.3.1.

The PST-based technique computes the likelihood for the
test sequence t with respect to the PST. Sun et al. [13]
investigate two likelihood-based measures, Odds measure
and Normalized measure. The Normalized measure is
computed as

LðtÞ ¼ 1

lt

Xlt
i¼1

logP ðtijti�kþ1 . . . ti�1Þ
 !

: ð11Þ

The PST provides an efficient data structure to compute the
conditional probability, P ðtijti�kþ1 . . . ti�1Þ ¼ P ðtijti�jþ1 . . .
ti�1Þ, where ðj � kÞ, such that ti�jþ1 . . . ti�1 is the longest
suffix of ti�kþ1 . . . ti�1 which occurs as a path in the PST.

The Odds measure is computed as

LðtÞ ¼
Qlt

i¼1 P ðtiÞQlt
i¼1 pðtijti�kþ1 . . . ti�1Þ

; ð12Þ

where pðtiÞ is the empirical probability of symbol ti in S

and j � k.
Sun et al. [13] have shown that the Normalized measure in

(11) performs better than the Odds measure in (12) for
anomaly detection using protein sequences.

830 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

4.3.3 Sparse Markovian Techniques

Variable Markovian techniques described above allow a
symbol ti to be analyzed with respect to a history that could
be of different lengths for different symbols; but they still
choose contiguous and immediately preceding symbols to
ti 2 t. Sparse Markovian techniques are more flexible in the
sense that they estimate the conditional probability of ti
based on symbols within the previous k symbols, which are
not necessarily contiguous or immediately preceding to ti.
In other words, the symbols are conditioned on a sparse
history. Using the example from Section 4.3.2, if the
sequence “aabbb” occurs rarely in the training sequence,
the conditional probability P ðbjaabbbÞ can be potentially
replaced with P ðbjaXbXbÞ where X can be replaced with
any symbol of the alphabet.

One such sparse technique has been proposed by Eskin
et al. [17], using Sparse Markov Transducers (SMTs) [56].
SMTs, similar to probabilistic suffix trees, estimate a
probability distribution conditioned on an input sequence.
SMTs generalize probabilistic suffix trees by allowing for
wild cards in the conditioning sequences. The proposed
technique estimates the probability distribution of an
output symbol, conditioned on an input sequence. SMTs
are sparse in the sense that they allow some positions in the
conditioning input sequence to be ignored by introducing
wild cards. In the training phase, a forest of SMTs is learned
from the training sequences to account for wild cards at
different positions in the paths from the root. The depth of
the SMTs is fixed at a user defined depth k. The testing
phase is exactly like the testing phase for the PST technique
described earlier.

Lee et al. [7] proposed a different sparse Markovian
technique that uses a classification algorithm (RIPPER [57])
to build sparse models for sequences. In this technique,
k-length windows are extracted from the training sequences
in S. The first ðk� 1Þ positions of these windows are treated
as ðk� 1Þ categorical attributes, and the kth position is
treated as the target class. RIPPER is used to learn rules
from this categorical data set to predict the kth symbol
given the first ðk� 1Þ symbols. During testing, for each
symbol ti, the first rule that fires for the vector ti�kþ1 . . . ti�1

is chosen. If the target of the selected rule is ti, then the
probability P ðtijti�kþ1 . . . ti�1Þ ¼ 1. If the target of the
selected rule is not ti, then P ðtijti�kþ1 . . . ti�1Þ is the inverse
of the confidence associated with the selected rule. Since the
precedent of a RIPPER rule is an instance of the subset of
the ðk� 1Þ attributes, the RIPPER-based technique learns a
sparse model from the training data.

Advantages and disadvantages of Markovian techni-

ques. The key advantage of Markovian techniques is that
they analyze each event with respect to its immediate
context. Thus, such techniques are able to detect anom-
alous sequences even if the anomalies are localized within
a long sequence. The variable and sparse Markovian
techniques provide flexibility in terms of the size of context
(or the length of the history, k), with respect to which a
symbol is analyzed. The advantage of such flexibility can
be illustrated using following example. Let us assume that
in a database of normal sequences, the probability of
observing a particular symbol after any k-length substring

is significantly low, but the probability of observing that
symbol after one or more k

2 length substrings is sufficiently
high. In that case, the fixed Markovian techniques with
history k will assign a high anomaly score to any
occurrence of that symbol in a test sequence, thereby
increasing the false positive rate. On the other hand, the
variable and sparse techniques will condition that symbol
with respect to a k

2 length history, and hence will assign it a
low anomaly score in a test sequence.

The above-mentioned strength of variable and sparse
Markovian techniques can also become a disadvantage. For
these techniques, the probability of a “truly” anomalous
symbol will be boosted since it will be conditioned on a
shorter history, whereas the fixed Markovian technique
will still assign a low probability to such a symbol. Thus,
the variable and sparse techniques might suffer with
higher false negative rate. Chandola et al. [14] compare a
fixed Markovian technique with a variable and a sparse
Markovian technique on data from different application
domains and show that the fixed Markovian technique
(using EFSA) outperforms the variable (using PST) and the
sparse (using RIPPER) techniques on many data sets. The
same paper also provides scenarios in which the variable
and sparse Markovian techniques can be better than the
fixed Markovian techniques.

4.4 Hidden Markov Models-Based Techniques

Hidden Markov Models are powerful finite state machines
that are widely used for sequence modeling [58]. An HMM
is parameterized by a hidden state transition matrix and an
observation matrix. The three key learning tasks associated
with HMMs are: 1) for a given set of observation
sequences, learn the most likely HMM parameters which
result in maximum likelihood for the observation se-
quences, 2) for a given HMM, compute the hidden state
sequence that is most likely to have generated a given test
sequence, and 3) for a given HMM, with given state
transition and observation matrices, compute the prob-
ability of a given test sequence. Thus, HMMs can be used
not only to estimate the probability of a test sequence
(task 3) but also to transform an observation sequence into
a hidden state sequence (task 2). Both of these capabilities
of HMMs can be used to solve the anomaly detection
problem for discrete sequences.

One approach to use HMMs for anomaly detection is to
first learn an HMM that best describes the normal training
sequences (task 1), and then compute the probability of each
test sequence using the learned HMM. The negative log of
the probability can be used as the anomaly score for the test
sequence. The learning step is typically done using the
Baum Welch algorithm [59], while the probability computa-
tion is done using the forward algorithm. This approach has
been used by Lane [44], [60] to identify anomalous
computer usage in system call data corresponding to user
behavior. Yamanishi and Maruyama use a similar approach
for identifying anomalies in system log data [61], the only
difference being that they use a mixture of HMMs to model
the normal sequences.

Another approach to using HMMs for anomaly detection
is to analyze the most likely or optimal hidden state
sequence (task 2), which can be obtained using the Viterbi

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 831

algorithm [62]. Florez et al. [63] label each state transition in
the optimal state sequence as normal or anomalous by
applying a threshold on the state transition probability. The
number of anomalous state transitions for a test sequence is
used as its anomaly score. Alternatively, Forrest et al. [4]
compute the average state transition probability for the
entire test sequence and use the average value to compute
the anomaly score for the test sequence.

The computation of the optimal hidden state sequence
from an observation sequence can also be viewed as a data
transformation step. Once all training and test observation
sequences are converted to corresponding state sequences,
any sequence anomaly detection technique that has been
discussed in previous sections can be applied to estimate
the anomaly score for the test sequence. Qiao et al. [64]
apply a window-based technique in the hidden state space.
An extension to the latter technique was proposed by
Zhang et al. [65], in which the state transition sequences
from the HMM are used to train another HMM. The state
transition sequences from the second HMM are then used
as input to a window-based anomaly detection technique.

Advantages and disadvantages of HMM-based techni-
ques. Key strength of HMM-based techniques is that they
can model complex systems. Even when the normal
observation sequences appear significantly different from
each other, the corresponding hidden state sequences will
be, in principle, more similar to each other and different
from the anomalous sequences. Forrest et al. [4] compared
HMMs against window-based and Markovian techniques
for system call sequences and concluded that the perfor-
mance of HMM was comparable, and sometimes better
than the other techniques.

The key assumption for HMM-based techniques is that
the normal sequences are generated from a probabilistic
model, i.e., the HMM. If this assumption does not hold true
or the parameters are not estimated accurately (due to
suboptimal initializing conditions), the HMM-based tech-
nique will not be able to effectively distinguish between
normal and anomalous sequences. The computational
complexity associated with HMM-based learning is another
drawback of such techniques, as noted by Forrest et al. [4].

5 CONTIGUOUS SUBSEQUENCE-BASED ANOMALY

DETECTION

Techniques under this category solve the following anom-
aly detection problem:

Definition 3. Detect short contiguous subsequences in a long
sequence t, that are anomalous with respect to rest of t.

Techniques in this category try to identify anomalous
contiguous subsequences (or substrings) of a long se-
quence, though the formulation can also be applied to
detecting noncontiguous subsequences. The anomalous
contiguous subsequences are also defined as discords by
Keogh et al. [66]: discords are subsequences of a longer time
series that are maximally different from the rest of the time series
subsequences. Note that, many papers in this category [66]
use the term “subsequence” (which can have gaps) even
though they primarily deal with contiguous subsequences

(or substrings). To avoid confusion, we will use the term
discord to denote “contiguous subsequences” even though
the original papers may use the term subsequence only.

The contiguous subsequence-based problem formulation
is natural for several application domains, where an activity
is being monitored over a long period of time. For example,
in credit card fraud detection, an individual’s credit card
transactions are continuously monitored, and a discord, i.e.,
an anomalous sequence of actions (purchases), may indicate
a case of identify theft/misuse.

A basic anomaly detection technique can be described as
follows: first, all k-length windows are extracted from the
given sequence t and stored as a database of fixed-length
windows, denoted as T k. Each window is assigned an
anomaly score by comparing it with rest of the windows in
T k, e.g., computing average distance of the window to the
windows in T k. The windows with anomaly scores above a
user defined threshold are chosen as the top discords. Since
the length of the “true” discord is not known a priori, it is
generally assumed that the discords are contained within a
contiguous subsequence (or a window) of fixed length k.

This basic technique is at the heart of a number of
techniques investigated by Keogh et al. [66], [67], [68]. Note
that these techniques were originally presented in the
context of time series data, but can be extended to discrete
sequences by discretizing the time series using techniques
such as Symbolic ApproXimation (SAX) [69].

An issue with the basic technique is that when any
window is compared with the other windows in T k, the
windows which overlap with the given window in t, will
be highly “similar” to the given window. For example,
any window will differ in at most one position with the
immediately next window in the given sequence. This
property will be exhibited by both normal windows as
well as windows that contain discords, and can bias the
computation of anomaly score for a window. Keogh et al.
[67] propose a simple solution (referred to as nonself match
in the paper) to this issue by comparing a window with
only the windows in T k that do not overlap with the
given window.

Several variants of the basic techniques have been
proposed, and can be broadly grouped into two categories.
The first category of techniques scores the windows
differently, while the second category of techniques
addresses the time complexity of the basic technique.

5.1 Window Scoring Techniques

One possible technique for scoring the windows is to count
the number of times a window occurs in the database of all
windows, T k (this is similar to the window-based techni-
ques such as t-STIDE, discussed in Section 4.2). The
anomaly score of the window will be the inverse of this
count. While for smaller values of k this is a reasonable
technique, it might not be possible to find exact matches of
the window in T k when the value of k is large.

In another possible technique, the anomaly score of a
window is calculated as equal to its distance to its
mth nearest neighbor in T k. One such variant, called
HOTSAX [67], was proposed by Keogh et al., in which
m ¼ 1, i.e., the anomaly score of a window is equal to its
distance to its nearest neighbor in T k (only the nonself

832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

matches are considered). One drawback of the nearest
neighbor-based technique is that they involve an additional
parameter, m, which needs to be set carefully, though
approaches such as using the weighted sum of distance to
the m nearest neighbors to compute the anomaly score can
be used to reduce the sensitivity on m.

Another variation of the basic anomaly detection
technique, known as Window Comparison Anomaly Detection

(WCAD), was proposed by Keogh et al. [70]. To assign an

anomaly score to each window in the sequence t, the
window is compared against rest of the sequence (say t0)
using an information theoretic measure called Compression-

Based Dissimilarity (CDM). For a window !i 2 T k, the CDM
is defined as

CDMð!i; t0Þ ¼
Cð!it0Þ

Cð!iÞ þ Cðt0Þ
; ð13Þ

where CðxÞ is the compression attained by any standard
compression algorithm on a given string x. The intuition
behind using the measure defined in (13) is that if the
window !i is normal, it will match the rest of the
sequence very well and hence will not require extra space
when both !i and t0 are compressed together. On the other
hand, if !i is a discord, it will not match the rest of the

sequence and hence the value of Cð!it0Þ, and hence the
anomaly score, will be high.

Wei et al. [71] proposed a variation of the basic technique
by sliding two adjacent windows along the sequence. The
anomaly score of each window is computed by comparing
its bitmap with the bitmap of the previously adjacent
window. The length of the preceding window is not
required to be same as the current window. The underlying
assumption for this technique is that a normal window will
be similar to the previously adjacent window, while a
window containing a discord will be significantly different.

Several of the above-mentioned variants measure simi-

larity/distance between a pair of windows. A number of
similarity/distance measures such as Simple Matching

Coefficient, edit distance, length of longest common subsequence,
weighted SMC, chaos bitmaps [71] can be used.

5.2 Optimizing the Complexity of the Basic
Technique

An issue with the basic technique that solves contiguous
subsequence-based formulation is that it requires Oðl2t Þ
comparisons of window pairs, where lt is the length of the
sequence t. Several faster variations have been proposed
that can run in approximately linear time in the context of
continuous time series [67], [68], [72], [73], [74], and can be
extended to discrete sequences.

One general technique for reducing complexity of the
basic technique makes use of the following fact. Instead of
scoring all windows, they score as many windows as
required to get the top p anomalous windows. Thus, a
window can be pruned if at anytime its distance to its

current mth nearest neighbor is lower than the anomaly
score of the current window with pth largest anomaly score.
Since the distance of the window to its actual mth nearest
neighbor is upper bounded by the current distance, this

window will never figure in the top p anomalous windows,
and hence can be pruned.

Since a vast majority of windows tend to be normal, the
technique has the potential for substantial pruning, espe-
cially if the anomalous windows are discovered early.

Such pruning has been successfully used for traditional
anomaly detection [75], and has been applied to discord
detection [67], [68], [72]. It should be noted that this pruning
method guarantees the same result as the basic technique,
but can result in lower execution time.

5.3 Segmentation Techniques

Choosing an optimal value of k is challenging. If k is set to
be very small, all k-length windows might appear highly
probable, resulting in high false negative rates. If k is set to
be very large, all k-length windows might have a low
occurrence probabilities, resulting high false positive rates.
This challenge becomes more significant if the sequence
contains multiple discords, of varying length. In this case, a
single value of k might not be enough to detect all discords.

One approach to address this challenge is to extract
unequal length segments (or substrings) from the given
sequence t, as proposed by Chakrabarti et al. [21].
Originally, this segmentation-based technique was pro-
posed for a sequence of market baskets, but this can be
easily generalized to a discrete sequence, by encoding the
alphabets as bit vectors, and hence treating them as market
baskets. In this approach, T is segmented into unequal
length segments, such that the sum of the number of bits
required to encode each segment (using Shannon’s Source
Coding Theorem) is minimized. The segments which require
highest number of bits for encoding are treated as discords.
It is shown that an optimal Oðl2t Þ solution exists to find such
segmentation when the number of items is 1, i.e., for a
binary sequence. Approximate algorithms are proposed to
handle the case when the number of items is more than 1,
though the technique is limited to small item set sizes, or
small alphabets. Gwadera et al. [76] proposed a variable
Markov chain (similar to the variable Markovian model
discussed in Section 4.3.2) based segmentation technique for
discrete sequences which can also be employed in a similar
manner to identify discords.

5.4 Relationship between Sequence-Based and
Contiguous Contiguous Subsequence-Based
Anomaly Detection Techniques

Techniques that handle sequence-based formulation and
the techniques that handle contiguous subsequence-based
formulation have been developed independently since they
solve distinct problems. Here, we will discuss how
techniques belonging to the first category can be used to
solve the second problem, and vice versa.

5.4.1 Using Sequence-Based Anomaly Detection

Techniques to Detect Contiguous Contiguous

Subsequence-Based Anomalies

The basic contiguous subsequence-based anomaly detection
technique assigns an anomaly score to a given window !i
with respect to a database of windows Tk (a majority of
which are assumed to be normal). Any sequence-based
anomaly detection technique, described in Section 4, can be

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 833

applied here by considering Tk � !i as the training data set
S and the given window !i as a test sequence Sq. For
Markovian techniques, such as EFSA and PST, extracting
windows from T is not explicitly required, since a model
can be constructed using the single long sequence T , and
then a window can be tested against the model to obtain an
anomaly score.

The key issue with using techniques, such as EFSA and
PST, is that a model has to be constructed for every window
!i, using the data set Tk � !i. A simple solution to this issue
is to construct a single model using the entire sequence Tk,
and then score each window against this model, but the
model will get biased from the discords that exist in the
original sequence T . However, this bias will be small as
long as the size of the discord is small compared to the
entire sequence. Unsupervised techniques such as cluster-
ing and k-nearest neighbor can also be applied to assign an
anomaly score to each window, though the self match issue,
discussed earlier, needs to be explicitly handled.

5.4.2 Using Contiguous Contiguous

Subsequence-Based Anomaly Detection

Techniques to Detect Sequence-Based Anomalies

If all training sequences in S and the given test sequence
Sq in sequence-based formulation are arranged linearly, in
no particular order, a long sequence can be constructed.
An anomaly detection technique discussed to handle
contiguous contiguous subsequence-based formulation
can be applied to detect all anomalous fixed-length
windows. The anomaly score of the test sequence Sq can
be assigned as equal to the number of windows of Sq that
are detected as discords. The key issue with this adapta-
tion is that the entire test sequence will be compared (as a
window) with other training sequences, and hence will
face same challenges as the similarity-based techniques
discussed in Section 4.1. Another issue with this approach
is that the windows which span across two sequences are
an artifact of the concatenation and might affect the
performance of the technique.

6 PATTERN FREQUENCY-BASED ANOMALY

DETECTION

Techniques under this category solve the following anom-
aly detection problem:

Definition 4. Given a short query pattern �, a long test sequence
t, and a training set of long sequences S, determine if the
frequency of occurrence of � in t is anomalous with respect to
frequency of occurrence of � in S.

This problem has also been referred to as surprise
detection in the context of time series data [69], [77]. Keogh
et al. [77] define a pattern to be surprising “if the frequency of
the pattern differs substantially from that expected by chance,
given some previously seen data.” Note that patterns with both
greater or smaller frequencies are of interest.

The pattern frequency-based formulation is motivated
from Scenario 3 discussed in Section 3 where a pattern is
anomalous if its frequency in the given sequence is
significantly different from its expected frequency in

normal sequences. This formulation is also related to case
versus control analysis [78], used in epidemiological studies.
The idea is to detect patterns whose frequency of occur-
rence in a given test data set (case) is different from its
occurrence in a normal data set (control). Such techniques
aim to prioritize the patterns (�) occurring in a known
anomalous sequence (t) based on their frequency in the
sequences in S.

6.1 A Basic Technique to Solve Pattern
Frequency-Based Formulation

A basic technique to solve the above problem assigns an
anomaly score to the query pattern, �, as the difference
between the frequency of occurrence of � in the sequence t
and the average frequency of occurrence of � in the
sequences in set S.

More formally, the following two quantities may be
defined, �ftð�Þ and �fSð�Þ:

�ftð�Þ, also called the relative frequency of the query
pattern, is the frequency with which the query pattern
occurs in the test sequence t, normalized by the length of t,
and can be directly computed as

�ftð�Þ ¼
ftð�Þ
lt

; ð14Þ

where ftð�Þ is the frequency of the query pattern in the test
sequence. �fSð�Þ is the average frequency of the query
pattern to occur in a sequence in S normalized by the length
of the sequence. �fSð�Þ can be estimated as

�fSð�Þ ¼
1

jSj
X
8si2S

fsi
ð�Þ
jlsi j

: ð15Þ

The anomaly score of the query pattern � is computed as

Að�Þ ¼ j�fSð�Þ � �fSð�Þj: ð16Þ

6.2 Variations of the Basic Technique

In the basic technique, a query pattern � is considered to
“occur” in a sequence if � is a substring of the sequence. An
issue with considering substrings is that it forces the query
pattern to occur exactly. If � is long, it is unlikely for entire
� to occur in a training sequence. Another issue is that in
many domains, it is reasonable to assume that the symbols
of the query pattern can occur interspersed with other
symbols, and hence only considering substring matches will
miss such occurrences. To address these issues, following
three variations of the basic technique have been proposed:

. Counting the number of times asubstringof the query
pattern � occurs in a sequence. Keogh et al. [77] find the
largest l in the interval ½1; l�Þ, such that every l length
substring of � occurs at least once in the training
sequences.

The frequency fSð�Þ from (15) is then replaced
with the following quantity:

fSð�Þ)
Qm�l

j¼1 fSð�j:jþlÞQm�l
j¼2 fSð�j:jþl�1Þ

;

where �j:k denotes the substring of � starting at
jth location and ending at the kth location.

834 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

The idea is to estimate the occurrence of the query
pattern � using a set of substrings of �. By searching
for a set in which all substrings occur at least once,
the frequency estimation is more reliable.

. Counting the number of times the query pattern � occurs
as a noncontiguous subsequence in a sequence. An issue
with the basic technique is that counting the number
of times � occurs as a subsequence in a long
sequence is expensive. To make the formulation
more tractable, Gwadera et al. [79] extract all
windows of a fixed length (greater than the length
of �), from the sequence and then determine all
those windows that contain � as a subsequence.
Thus, a query pattern � is considered to “occur” in a
sequence if there exists a window such that � is a
subsequence of the given window. The number of
fixed-length windows which contain � as a subse-
quence is counted. These counts are used as ftð�Þ
and fsi

ð�Þ in (14) and (15), respectively.
. Counting the number of times any permutation of the

query pattern � occurs as a noncontiguous subsequence in
a sequence. This alternative was proposed by Gwadera
et al. [80] as an extension to the subsequence
matching technique [79]. For the permutation ap-
proach, the number of fixed-length windows which
contain any permutation of � is counted. The
motivation behind considering all permutations is
that in certain scenarios, the ordering of events (or
symbols) within the query pattern � does not matter.

6.3 Issues with the Basic Technique and
Techniques for Addressing Them

The basic technique and its variations have following two
key issues:

6.3.1 Computational Complexity

For each query pattern, the time required to compute its
anomaly score is linear in the length of t and the length and
number of sequences in S. If there are multiple query
patterns, e.g., all short contiguous subsequences that occur
in t, the total time required to score all query patterns adds
up to a high value. To address this issue, Keogh et al.
proposed a technique called TARZAN [69], [77] which uses
suffix trees to efficiently compute the frequency of occur-
rence of a query pattern in a given sequence. Suffix trees are
created for t and for each sequence in S.2 Only two suffix
trees are required, one for the sequences in S and for the
sequence t, and can be constructed with complexity linear
in the length of the sequences. The counts for a query
pattern �, can be obtained with complexity linear in the
length of �. Gwadera et al. [81] use Interpolated Markov
Models to efficiently find the number of windows extracted
from a sequence that contain the query pattern.

6.3.2 Scoring of Anomalies

The basic technique assigns an anomaly score to the query
pattern (15) but does not declare if the query pattern is
anomalous or not. For the TARZAN technique, since there

are multiple query patterns to be scored, a relative
ordering can be obtained using the anomaly scores, and
top few patterns with highest scores could be declared as
anomalous. But if there is only one query pattern, a
method is needed for declaring the query pattern to be
anomalous or normal, based on its anomaly score.
Gwadera et al. [79] address this issue by assuming that
the relative frequency, �ftð�Þ, is generated from a normal
distribution �NðE½fSð�Þ�; V ar½fSð�Þ�Þ. The expected value
or mean, E½fSð�Þ�, and the variance, V ar½fSð�Þ�, of the
distribution are estimated using sequences in S. The
anomaly score for the query pattern is computed as the
z-score of the observed relative frequency:

zscore ¼ ftð�Þ � E½fSð�Þ�ffi
V ar½fSð�Þ�

q : ð17Þ

A threshold on the zscore is used to determine if the
occurrence of � is anomalous or not.

6.4 Relationship between Pattern Frequency-Based
and Sequence-Based Anomaly Detection
Techniques

Pattern frequency-based anomaly detection techniques
assign an anomaly score to a short pattern �, while the
basic window-based sequence anomaly detection technique
(see Section 4.2) assigns an anomaly score to each short
window belonging to the test sequence. Both techniques
appear to be similar in this step, but they are actually quite
distinct. While the basic technique discussed in this section
assigns an anomaly score to a pattern based on its frequency
in the test sequence and its average frequency in normal
sequences, the basic window-based technique assigns an
anomaly score to a window based on its similarity to the
windows in the normal sequences. To be more precise, the
basic window-based technique for sequence-based anomaly
detection uses �fSð�Þ as the anomaly score of each window,
while the basic technique for pattern frequency-based
anomaly detection compares this value with the relative
frequency of occurrence of the window in the test sequence
to compute its anomaly score (see (16)).

Nevertheless, techniques for pattern frequency-based
formulation can also be used to find certain types of
anomalies in the context of sequence-based anomaly
detection. An alternate cause of an anomaly could be that
a test sequence is anomalous because it contains one or
more patterns whose frequency of occurrence in the test
sequence is significantly different from their frequency of
occurrence in the training sequences. Such anomalous
sequences can be detected as follows: for the given test
sequence, fixed-length windows are extracted. Each win-
dow is assigned an anomaly score using the basic technique
that deals with the pattern frequency-based formulation.
The anomaly scores of all windows are aggregated to obtain
an overall anomaly score for the test sequence.

A direction adaptation of contiguous subsequence-based
anomaly detection techniques to solve the pattern fre-
quency-based formulation, and vice versa, is not feasible,
since contiguous subsequence-based formulation deals
with only one sequence while pattern frequency-based

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 835

2. TARZAN was originally proposed to handle the case when S contains
only one sequence.

formulation requires a training set of sequences, a test
sequence, and a query pattern.

7 ONLINE ANOMALY DETECTION

Several application domains collect sequence data in a
streaming fashion [82], e.g., system call data collected by a
computer system, data generated by an aircraft during its
flight, etc. Such domains often require the anomalies to be
detected in such sequences in an online fashion, i.e., as soon
as they occur [83], [84]. Online anomaly detection has the
advantage that it can allow analysts to undertake pre-
ventive or corrective measures as soon as the anomaly is
manifested in the sequence data.

For example, in aircraft health monitoring, the current
flight sequence for an aircraft is tested if it is anomalous or
not, with respect to a database of historical normal flight
sequences of the aircraft. Determining that the current flight
sequence has an anomaly, as soon as it occurs (even before
the entire flight sequence is collected) might help the health
monitoring system to raise an early alarm.

Among the different categories of techniques that handle
the sequence-based formulation, some can be easily
adapted to operate in an online fashion. The window-based
and Markovian techniques assign anomaly score to win-
dows (or symbols) as they are collected. By applying a
threshold on the anomaly score, the sequence can be
declared to be anomalous even before observing the entire
sequence. Hence, such techniques can be easily adapted to
operate in an online fashion. For example, Larrahondo et al.
[85] have proposed an online HMM-based anomaly detec-
tion technique which can compute the optimal state
sequence for a given observation sequence in an online
fashion by modifying the forward backward algorithm. In
contrast, similarity-based techniques measure the similarity
of entire test sequence with training sequences, and hence
are not suitable for online detection problem.

Techniques for the subsequence-based formulation can
also be easily adapted to detect anomalies in an online
fashion. In the online setting, each successive subsequence
of symbols could be assigned an anomaly score with respect
to the sequence observed so far. A threshold on the score
computed for each window can be used to declare it to be
normal or anomalous, as soon as it is observed. To obtain
reliable anomaly scores, such techniques will require
observation of a significantly long portion of the sequence
initially before scoring the incoming subsequences.

The pattern frequency-based formulation is more diffi-
cult to handle in an online setting, in which the test
sequence S is collected in an online fashion. The reason is
that the frequency of occurrence of the query pattern in the
test sequence will have to be estimated without observing
the entire test sequence.

8 CONCLUDING REMARKS

One of the most interesting aspect of the problem of
anomaly detection for sequences is the rich diversity of
problem formulations. In this survey, we have discussed
three different problem formulations that are relevant in
varied application domains. We note that these three

formulations are not exhaustive and the anomaly detection
problem might be formulated in other ways also, though
most of the existing work can be covered under the three
formulations discussed here.

For each problem formulation, there are distinct groups
of techniques that use a specific approach to detect
anomalies. Within each group, we have identified a basic
technique and shown how different existing techniques are
variations of the corresponding basic technique. This results
in a better understanding of the current state of research as
well as allows future researchers to develop novel varia-
tions. For example, in the similarity-based techniques for
sequence-based formulation (Section 4.1), using a different
combination of a point-based anomaly detection algorithm
and a similarity measure, a different anomaly detection
technique can be developed. Similarly, by using different
techniques to compare a pair of windows, one can develop
novel variations of the basic window-based technique
discussed in Section 5.1. In addition, techniques from one
problem formulation can be adapted to solve a different
formulation, thereby enriching the set of techniques to
choose from, for a given formulation.

Although the focus of this survey paper has been on
discrete sequences, many of the techniques discussed here
are also applicable to continuous sequences (or time series).
For example, similarity-based techniques can be adapted for
continuous sequences by using an appropriate similarity/
distance measure, such as euclidean Distance [86], [87] and
Cross Correlation [88], [89]. Window-based techniques can be
adapted by using the euclidean distance to kth closest
window from the training sequence set to assign anomaly
score to the window [87]. Markovian techniques can be
adapted by substituting the Markovian model with a time
series prediction model, which can determine the likelihood
of observing a real valued event, given a finite history of
events [90]. HMM-based techniques can be adapted by
using a continuous version of HMM [91]. While some of
these adaptations have already been proposed, others are
subject of future research.

This paper has focused on techniques that deal with
univariate discrete sequences. Many real-world applica-
tions deal with sequences of multivariate events, where the
events might contain discrete [92], continuous [93], or a
mixed set of observations [94]. Some of the techniques
discussed in this paper are relevant to such settings, though
additional thought still needs to be given on how to handle
such complex sequences. For example, similarity and
window-based techniques for sequence-based formulation,
as well as the basic technique for subsequence-based
problem formulation can be easily extended to multivariate
sequences as long as a similarity measure can be developed
to compare two multivariate discrete sequences. Recent
work in the area of ranking patterns in sequences of item
sets [95] can be extended to identify subsequence-based
anomalies (low frequency patterns) in multivariate discrete
sequences. Similarly, the recently proposed multievent
pattern discovery [92] can be employed to identify pattern
frequency-based anomalies.

While the literature on anomaly detection for discrete
sequences is rich, there are several research directions that
need to be explored in the future. In this survey, we have
provided a high level comparison of strengths and limita-
tions of various techniques. An experimental study of these

836 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

techniques is essential for a more in-depth understanding of

their characteristics. Adapting existing solutions to other

related problems, such as online anomaly detection and

handling multivariate sequences, is also an important

direction for future research.

ACKNOWLEDGMENTS

This work was supported by NASA under award

NNX08AC36A and US National Science Foundation (NSF)

Grants CNS-0551551 and IIS-0713227. Access to computing

facilities was provided by the Digital Technology Con-

sortium. Varun Chandola was with the Department of

Computer Science and Engineering, University of Minne-

sota, during the time of writing this paper.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection - A
Survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, July
2009.

[2] V. Hodge and J. Austin, “A Survey of Outlier Detection
Methodologies,” Artificial Intelligence Rev., vol. 22, no. 2, pp. 85-
126, 2004.

[3] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
Comparative Study of Anomaly Detection Schemes in Network
Intrusion Detection,” Proc. SIAM Int’l Conf. Data Mining, May
2003.

[4] S. Forrest, C. Warrender, and B. Pearlmutter, “Detecting Intru-
sions Using System Calls: Alternate Data Models,” Proc. IEEE
Symp. Security and Privacy (ISRSP), pp. 133-145, 1999.

[5] S.A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection
Using Sequences of System Calls,” J. Computer Security, vol. 6,
no. 3, pp. 151-180, citeseer.ist.psu.edu/hofmeyr98intrusion.html,
1998.

[6] C.C. Michael and A. Ghosh, “Two State-Based Approaches to
Program-Based Anomaly Detection,” Proc. 16th Ann. Computer
Security Applications Conf., p. 21, 2000.

[7] W. Lee, S. Stolfo, and P. Chan, “Learning Patterns from Unix
Process Execution Traces for Intrusion Detection,” Proc. AAAI 97
Workshop AI Methods in Fraud and Risk Management, 1997.

[8] W. Lee and S. Stolfo, “Data Mining Approaches for Intrusion
Detection,” Proc. Seventh USENIX Security Symp., 1998.

[9] F.A. Gonzalez and D. Dasgupta, “Anomaly Detection Using Real-
Valued Negative Selection,” Genetic Programming and Evolvable
Machines, vol. 4, no. 4, pp. 383-403, 2003.

[10] B. Gao, H.-Y. Ma, and Y.-H. Yang, “Hmms (Hidden Markov
Models) Based on Anomaly Intrusion Detection Method,” Proc.
Int’l Conf. Machine Learning and Cybernetics, pp. 381-385, 2002.

[11] S. Budalakoti, A. Srivastava, R. Akella, and E. Turkov, “Anomaly
Detection in Large Sets of High-Dimensional Symbol Sequences,”
Technical Report NASA TM-2006-214553, NASA Ames Research
Center, 2006.

[12] S. Budalakoti, A. Srivastava, and M. Otey, “Anomaly Detection
and Diagnosis Algorithms for Discrete Symbol Sequences with
Applications to Airline Safety,” Proc. IEEE Int’l Conf. Systems, Man,
and Cybernetics, vol. 37, no. 6, 2007.

[13] P. Sun, S. Chawla, and B. Arunasalam, “Mining for Outliers in
Sequential Databases,” Proc. SIAM Int’l Conf. Data Mining, 2006.

[14] V. Chandola, V. Mithal, and V. Kumar, “A Comparative
Evaluation of Anomaly Detection Techniques for Sequence Data,”
Proc. Int’l Conf. Data Mining, 2008.

[15] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge Univ. Press, 1997.

[16] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Security
and Privacy (ISRSP ’96), pp. 120-128, citeseer.ist.psu.edu/
forrest96sense.html, 1996.

[17] E. Eskin, W. Lee, and S. Stolfo, “Modeling System Call for
Intrusion Detection Using Dynamic Window Sizes,” Proc. DARPA
Information Survivability Conf. and Exposition (DISCEX), citeseer.
ist.psu.edu/portnoy01intrusion.html, 2001.

[18] T. Lane and C.E. Brodley, “Temporal Sequence Learning and Data
Reduction for Anomaly Detection,” ACM Trans. Information
Systems and Security, vol. 2, no. 3, pp. 295-331, 1999.

[19] G. Liu, T.K. McDaniel, S. Falkow, and S. Karlin, “Sequence
Anomalies in the cag7 Gene of the Helicobacter Pylori Pathogeni-
city Island,” Proc. Nat’l Academy of Sciences USA, vol. 96, no. 12,
pp. 7011-7016, 1999.

[20] A.N. Srivastava, “Discovering System Health Anomalies Using
Data Mining Techniques,” Proc. Joint Army Navy NASA Airforce
Conf. Propulsion, 2005.

[21] S. Chakrabarti, S. Sarawagi, and B. Dom, “Mining Surprising
Patterns Using Temporal Description Length,” Proc. 24th Int’l
Conf. Very Large Data Bases, pp. 606-617, 1998.

[22] D. Pavlov and D. Pennock, “A Maximum Entropy Approach to
Collaborative Filtering in Dynamic, Sparse, High-Dimensional
Domains,” Proc. Advances in Neural Information Processing Systems,
2002.

[23] D. Pavlov, “Sequence Modeling with Mixtures of Conditional
Maximum Entropy Distributions,” Proc. Third IEEE Int’l Conf. Data
Mining, pp. 251-258, 2003.

[24] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for
Mining Outliers from Large Data Sets,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 427-438, 2000.

[25] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A
Geometric Framework for Unsupervised Anomaly Detection,”
Applications of Data Mining in Computer Security, pp. 78-100,
Kluwer Academics, 2002.

[26] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice-
Hall, Inc., 1988.

[27] J. Yang and W. Wang, “CLUSEQ: Efficient and Effective Sequence
Clustering,” Proc. Int’l Conf. Data Eng., pp. 101-112, 2003.

[28] D. Ron, Y. Singer, and N. Tishby, “The Power of Amnesia:
Learning Probabilistic Automata with Variable Memory Length,”
Machine Learning, vol. 25, nos. 2/3, pp. 117-149, 1996.

[29] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White,
“Visualization of Navigation Patterns on a Web Site Using Model-
Based Clustering,” Proc. Sixth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 280-284, 2000.

[30] P. Smyth, “Clustering Sequences with Hidden Markov Models,”
Proc. Advances in Neural Information Processing Systems, vol. 9, 1997.

[31] R.R. Sokal and C.D. Michener, “A Statistical Method for
Evaluating Systematic Relationships,” Univ. of Kansas Scientific
Bull., vol. 38, pp. 1409-1438, 1958.

[32] J.W. Hunt and T.G. Szymanski, “A Fast Algorithm for Computing
Longest Common Subsequences,” Comm. ACM, vol. 20, no. 5,
pp. 350-353, 1977.

[33] N. Kumar, V.N. Lolla, E.J. Keogh, S. Lonardi, and C.A.
Ratanamahatana, “Time-Series Bitmaps: A Practical Visualization
Tool for Working with Large Time Series Databases,” Proc. SIAM
Int’l Conf. Data Mining (SDM), 2005.

[34] T. Lane and C.E. Brodley, “Sequence Matching and Learning in
Anomaly Detection for Computer Security,” Proc. AI Approaches to
Fraud Detection and Risk Management, Fawcett, Haimowitz,
Provost, and Stolfo, eds., pp. 43-49, 1997.

[35] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, “Lof:
Identifying Density-Based Local Outliers,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 93-104, 2000.

[36] D. Endler, “Intrusion Detection: Applying Machine Learning to
Solaris Audit Data,” Proc. 14th Ann. Computer Security Applications
Conf., pp. 268-279, 1998.

[37] H. Debar, M. Dacier, M. Nassehi, and A. Wespi, “Fixed vs.
Variable-Length Patterns for Detecting Suspicious Process Beha-
vior,” Proc. Fifth European Symp. Research in Computer Security,
pp. 1-15, 1998.

[38] A.K. Ghosh, A. Schwartzbard, and M. Schatz, “Using Program
Behavior Profiles for Intrusion Detection,” Proc. SANS Third Conf.
and Workshop Intrusion Detection and Response, citeseer.ist.psu.
edu/ghosh99learning.html, Feb. 1999.

[39] A. Ghosh, A. Schwartzbard, and M. Schatz, “Learning Program
Behavior Profiles for Intrusion Detection,” Proc. First USENIX
Workshop Intrusion Detection and Network Monitoring, pp. 51-62,
Apr. 1999.

[40] J.B.D. Cabrera, L. Lewis, and R.K. Mehra, “Detection and
Classification of Intrusions and Faults Using Sequences of System
Calls,” SIGMOD Record, vol. 30, no. 4, pp. 25-34, 2001.

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 837

[41] A.P. Kosoresow and S.A. Hofmeyr, “Intrusion Detection via
System Call Traces,” IEEE Software, vol. 14, no. 5, pp. 35-42,
Sept./Oct. 1997.

[42] D. Dasgupta and F. Nino, “A Comparison of Negative and Positive
Selection Algorithms in Novel Pattern Detection,” Proc. IEEE Int’l
Conf. Systems, Man, and Cybernetics, vol. 1, pp. 125-130, 2000.

[43] T. Lane and C.E. Brodley, “An Application of Machine Learning
to Anomaly Detection,” Proc. 20th Nat’l Information Systems
Security Conf., pp. 366-380, 1997.

[44] T. Lane, “Machine Learning Techniques for the Computer
Security Domain of Anomaly Detection,” PhD dissertation,
Purdue Univ., 2000.

[45] D. Dasgupta and N. Majumdar, “Anomaly Detection in Multi-
dimensional Data Using Negative Selection Algorithm,” Proc.
IEEE Conf. Evolutionary Computation, pp. 1039-1044, May 2002.

[46] S. Forrest, P. D’haeseleer, and P. Helman, “An Immunological
Approach to Change Detection: Algorithms, Analysis and Implica-
tions,” Proc. IEEE Symp. Security and Privacy, pp. 110-119, 1996.

[47] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri, “Self-Nonself
Discrimination in a Computer,” Proc. IEEE Symp. Security and
Privacy, pp. 202-212, 1994.

[48] S. Forrest and D. Dasgupta, “Novelty Detection in Time Series
Data Using Ideas from Immunology,” Proc. Fifth Int’l Conf.
Intelligence Systems, 1996.

[49] S. Forrest, F. Esponda, and P. Helman, “A Formal Framework for
Positive and Negative Detection Schemes,” IEEE Trans. Systems,
Man and Cybernetics, Part B, vol. 34, no. 1, pp. 357-373, Feb. 2004.

[50] A.K. Ghosh, J. Wanken, and F. Charron, “Detecting Anomalous
and Unknown Intrusions against Programs,” Proc. 14th Ann.
Computer Security Applications Conf., pp. 259-267, 1998.

[51] M. Wang, C. Zhang, and J. Yu, “Native Api Based Windows
Anomaly Intrusion Detection Method Using SVM,” Proc. IEEE
Int’l Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing,
vol. 1, pp. 514-519, 2006.

[52] S. Tian, S. Mu, and C. Yin, “Sequence-Similarity Kernels for Svms
to Detect Anomalies in System Calls,” Neurocomputing, vol. 70,
nos. 4-6, pp. 859-866, 2007.

[53] X. Li, J. Han, S. Kim, and H. Gonzalez, “Roam: Rule- and Motif-
Based Anomaly Detection in Massive Moving Object Data Sets,”
Proc. Seventh SIAM Int’l Conf. Data Mining, 2007.

[54] N. Ye, “A Markov Chain Model of Temporal Behavior for
Anomaly Detection,” Proc. Fifth Ann. IEEE Information Assurance
Workshop, 2004.

[55] C. Marceau, “Characterizing the Behavior of a Program Using
Multiple-Length N-Grams,” Proc. Workshop New Security Para-
digms, pp. 101-110, 2000.

[56] E. Eskin, W.N. Grundy, and Y. Singer, “Protein Family Classifica-
tion Using Sparse Markov Transducers,” Proc. Int’l Conf. Intelligent
Systems for Molecular Biology (ISMB ’08), pp. 134-145, 2000.

[57] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 12th Int’l
Conf. Machine Learning, A. Prieditis and S. Russell, eds., pp. 115-
123, July 1995.

[58] L.R. Rabiner and B.H. Juang, “An Introduction to Hidden Markov
Models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16, Jan. 1986.

[59] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization
Technique Occuring in the Statistical Analysis of Probabilistic
Functions of Markov Chains,” Annals of Math. Statistics, vol. 41,
no. 1, pp. 164-171, 1970.

[60] T. Lane, “Hidden Markov Models for Human/Computer Inter-
face Modeling,” Proc. IJCAI-99 Workshop Learning about Users,
pp. 35-44, 1999.

[61] K. Yamanishi and Y. Maruyama, “Dynamic Syslog Mining for
Network Failure Monitoring,” KDD ’05: Proc. 11th ACM SIGKDD
Int’l Conf. Knowledge Discovery in Data Mining, pp. 499-508, 2005.

[62] J. Forney, G.D., “The Viterbi Algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268-278, Mar. 1973.

[63] G. Florez, Z. Liu, S. Bridges, A. Skjellum, and R. Vaughn,
“Lightweight Monitoring of Mpi Programs in Real Time,”
Concurrency and Computation: Practice and Experience, vol. 17,
no. 13, pp. 1547-1578, 2005.

[64] Y. Qiao, X.W. Xin, Y. Bin, and S. Ge, “Anomaly Intrusion
Detection Method Based on Hmm,” Electronics Letters, vol. 38,
no. 13, pp. 663-664, 2002.

[65] X. Zhang, P. Fan, and Z. Zhu, “A New Anomaly Detection
Method Based on Hierarchical Hmm,” Proc. Fourth Int’l Conf.
Parallel and Distributed Computing, Applications and Technologies,
pp. 249-252, 2003.

[66] E. Keogh, J. Lin, S.-H. Lee, and H.V. Herle, “Finding the Most
Unusual Time Series Subsequence: Algorithms and Applications,”
Knowledge and Information Systems, vol. 11, no. 1, pp. 1-27, 2006.

[67] E. Keogh, J. Lin, and A. Fu, “Hot SAX: Efficiently Finding the Most
Unusual Time Series Subsequence,” Proc. Fifth IEEE Int’l Conf.
Data Mining, pp. 226-233, 2005.

[68] J. Lin, E. Keogh, A. Fu, and H.V. Herle, “Approximations to
Magic: Finding Unusual Medical Time Series,” Proc. 18th IEEE
Symp. Computer-Based Medical Systems, pp. 329-334, 2005.

[69] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A
Novel Symbolic Representation of Time Series,” Data Mining and
Knowledge Discovery, vol. 15, no. 2, pp. 107-144, 2007.

[70] E. Keogh, S. Lonardi, and C.A. Ratanamahatana, “Towards
Parameter-Free Data Mining,” Proc. 10th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 206-215, 2004.

[71] L. Wei, N. Kumar, V. Lolla, E.J. Keogh, S. Lonardi, and C.
Ratanamahatana, “Assumption-Free Anomaly Detection in Time
Series,” Proc. 17th Int’l Conf. Scientific and Statistical Database
Management, pp. 237-240, 2005.

[72] L. Wei, E. Keogh, and X. Xi, “Saxually Explicit Images: Finding
Unusual Shapes,” Proc. Sixth Int’l Conf. Data Mining, pp. 711-720,
2006.

[73] Y. Bu, T.-W. Leung, A. Fu, E. Keogh, J. Pei, and S. Meshkin, “Wat:
Finding Top-k Discords in Time Series Database,” Proc. Seventh
SIAM Int’l Conf. Data Mining, 2007.

[74] A.W.-C. Fu, O.T.-W. Leung, E.J. Keogh, and J. Lin, “Finding Time
Series Discords Based on Haar Transform,” Proc. Second Int’l Conf.
Advanced Data Mining and Applications, pp. 31-41, 2006.

[75] A. Ghoting, S. Parthasarathy, and M.E. Otey, “Fast Mining of
Distance-Based Outliers in High-Dimensional Datasets,” Proc.
SIAM Data Mining Conf., 2006.

[76] R. Gwadera, A. Gionis, and H. Mannila, “Optimal Segmentation
Using Tree Models,” ICDM ’06: Proc. Sixth Int’l Conf. Data Mining,
pp. 244-253, 2006.

[77] E. Keogh, S. Lonardi, and B.Y.C. Chiu, “Finding Surprising
Patterns in a Time Series Database in Linear Time and Space,”
Proc. Eighth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 550-556, 2002.

[78] J.J. Schlesselman, Case-Control Studies: Design, Conduct, Analysis
(Monographs in Epidemiology and Biostatistics). Oxford Univ. Press,
1982.

[79] R. Gwadera, M. Atallah, and W. Szpankowski, “Reliable Detection
of Episodes in Event Sequences,” Knowledge and Information
Systems, vol. 7, no. 4, pp. 415-437, 2005.

[80] R. Gwadera, M. Atallah, and W. Szpankowskii, “Detection of
Significant Sets of Episodes in Event Sequences,” Proc. Fourth IEEE
Int’l Conf. Data Mining, pp. 3-10, 2004.

[81] R. Gwadera, M.J. Atallah, and W. Szpankowski, “Markov Models
for Identification of Significant Episodes,” Proc. Fifth SIAM Int’l
Conf. Data Mining, 2005.

[82] R.A. Maxion and K.M.C. Tan, “Benchmarking Anomaly-Based
Detection Systems,” Proc. Int’l Conf. Dependable Systems and
Networks, pp. 623-630, 2000.

[83] A. Pawling, P. Yan, J. Candia, T. Schoenharl, and G. Madey,
“Anomaly Detection in Streaming Sensor Data,” Intelligent
Techniques for Warehousing and Mining Sensor Network Data, IGI
Global, 2008.

[84] D. Pokrajac, A. Lazarevic, and L.J. Latecki, “Incremental Local
Outlier Detection for Data Streams,” Proc. IEEE Symp. Computa-
tional Intelligence and Data Mining, 2007.

[85] G. Florez-Larrahondo, S.M. Bridges, and R. Vaughn, “Efficient
Modeling of Discrete Events for Anomaly Detection Using
Hidden Markov Models,” Information Security, vol. 3650, pp. 506-
514, 2005.

[86] G.K. Palshikar, “Distance-Based Outliers in Sequences,” Proc.
Second Int’l Conf. Distributed Computing and Internet Technology,
pp. 547-552, 2005.

[87] D. Yankov, E.J. Keogh, and U. Rebbapragada, “Disk Aware
Discord Discovery: Finding Unusual Time Series in Terabyte
Sized Datasets,” Proc. Int’l Conf. Data Mining, pp. 381-390, 2007.

[88] P. Protopapas, J.M. Giammarco, L. Faccioli, M.F. Struble, R. Dave,
and C. Alcock, “Finding Outlier Light Curves in Catalogues of
Periodic Variable Stars,” Monthly Notices of the Royal Astronomical
Soc., vol. 369, no. 2, pp. 677-696, 2006.

[89] U. Rebbapragada, P. Protopapas, C.E. Brodley, and C. Alcock,
“Finding Anomalous Periodic Time Series,” Machine Learning,
vol. 74, pp. 281-313, 2009.

838 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

[90] J. Ma and S. Perkins, “Online Novelty Detection on Temporal
Sequences,” Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 613-618, 2003.

[91] Z. Liu, J.X. Yu, L. Chen, and D. Wu, “Detection of Shape
Anomalies: A Probabilistic Approach Using Hidden Markov
Models,” Proc. IEEE 24th Int’l Conf. Data Eng., pp. 1325-1327,
Apr. 2008.

[92] R. Gwadera and F. Crestani, “Discovering Significant Patterns in
Multi-Stream Sequences,” Proc. Eighth IEEE Int’l Conf. Data
Mining, pp. 827-832, 2008.

[93] H. Cheng, P.-N. Tan, C. Potter, and S. Klooster, “Detection and
Characterization of Anomalies in Multivariate Time Series,” Proc.
Ninth SIAM Int’l Conf. Data Mining, 2009.

[94] R. Fujimaki, T. Nakata, H. Tsukahara, and A. Sato, “Mining
Abnormal Patterns from Heterogeneous Time-Series with Irrele-
vant Features for Fault Event Detection,” Proc. SIAM Int’l Conf.
Data Mining, pp. 472-482, 2008.

[95] R. Gwadera and F. Crestani, “Ranking Sequential Patterns with
Respect to Significance,” Proc. 14th Pacific-Asia Conf. Knowledge
Discovery and Data Mining, (PAKDD ’[10), pp. 286-299, 2010.

Varun Chandola received the PhD degree from
the University of Minnesota, Twin Cities, in 2009.
He is a postdoctoral research associate in the
Geographic Information Science and Technol-
ogy group at Oak Ridge National Labs. His
areas of expertise include data mining, time
series data analysis, machine learning, and
algorithm development. His research focus is
in the area of anomaly detection applied to
discrete sequences and time series data. He has

applied his research, with significant success, to varying application
domains, such as biomass monitoring, aviation safety, cyber intrusion
detection, tax fraud analysis, cardiac health monitoring, and click fraud
analysis.

Arindam Banerjee received the PhD degree
from the University of Texas at Austin in 2005.
He is an assistant professor and a McKnight
Land grant professor in the Department of
Computer Science and Engineering at the
University of Minnesota, Twin Cities. His re-
search interests are in data mining and machine
learning, and their applications to real-world
problems. His work currently focuses on statis-
tical and graphical models for learning and

predictive modeling with large-scale data. His research interests also
include information theory and convex analysis, and applications in
complex real-world learning problems including problems in text and
web mining, bioinformatics, and social network analysis. He is a member
of the IEEE.

Vipin Kumar received the BE degree in
electronics and communication engineering
from Indian Institute of Technology Roorkee
(formerly, University of Roorkee), India, in
1977, the ME degree in electronics engineering
from Philips International Institute, Eindhoven,
Netherlands, in 1979, and the PhD degree in
computer science from the University of Mary-
land, College Park, in 1982. He is currently
William Norris professor and head of the

Computer Science and Engineering Department at the University of
Minnesota. His current research interests include data mining, high-
performance computing, and their applications in Climate/Ecosystems
and Biomedical domains. He has authored more than 250 research
articles, and has coedited or coauthored 11 books including widely
used text books Introduction to Parallel Computing and Introduction to
Data Mining. He is a founding co-editor-in-chief of Journal of
Statistical Analysis, a cofounder of SIAM International Conference
on Data Mining, and editor of Data Mining and Knowledge Discovery
Book Series published by CRC Press/Chapman Hall. He received the
2009 Distinguished Alumnus Award from the Computer Science
Department, University of Maryland, College Park, and 2005 IEEE
Computer Society’s Technical Achievement Award for contributions to
the design and analysis of parallel algorithms, graph partitioning, and
data mining. He is a fellow of the ACM, IEEE, and AAAS.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANDOLA ET AL.: ANOMALY DETECTION FOR DISCRETE SEQUENCES: A SURVEY 839

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

