
The VLDB Journal 11: 68–91 (2002) / Digital Object Identifier (DOI) 10.1007/s007780200062

Query processing techniques for arrays

Arunprasad P. Marathe∗, Kenneth Salem

Department of Computer Science, University of Waterloo, 200 University AvenueWest, Waterloo, Ontario N2L 3G1, Canada
e-mail:{apmarathe,kmsalem }@uwaterloo.ca

Edited by M. Carey. Received: 10 August 2001 / Accepted: 11 December 2001
Published online: 24 May 2002 –c© Springer-Verlag 2002

Abstract. Arrays are a common and important class of data.
At present, database systems do not provide adequate array
support: arrays can neither be easily defined nor conveniently
manipulated. Further, array manipulations are not optimized.
This paper describes a language called theArrayManipulation
Language(AML), for expressing array manipulations, and a
collection of optimization techniques for AML expressions.

In the AML framework for array manipulation, arbitrary
externally-defined functions canbeapplied to arrays in a struc-
turedmanner.AML can be adapted to different application do-
mains by choosing appropriate external function definitions.
This paper concentrates on arrays occurring in databases of
digital images such as satellite or medical images.

AML queries can be treated declaratively and subjected
to rewrite optimizations. Rewriting minimizes the number of
applications of potentially costly external functions required
to compute a query result.AML queries can also be optimized
for space. Query results are generated a piece at a time by
pipelinedexecution plans, and theamount ofmemory required
by a plan depends on the order in which pieces are generated.
An optimizer can consider generating the pieces of the query
result in a variety of orders, and can efficiently choose or-
ders that require less space. An AML-based prototype array
database system calledArrayDBhas been built, and it is used
to show the effectiveness of these optimization techniques.

Key words: Array manipulation language – Array query op-
timization – Declarative query language – User-defined func-
tions – Pipelined evaluation – Memory-usage optimization

1 Introduction

Arrays are an appropriate model for many types of data, in-
cluding digital images, digital video, and gridded outputs from

This research was partially supported by NSERC (Natural Sciences
and Engineering Research Council of Canada).We are grateful to the
anonymous reviewers for their comments and suggestions.
∗Present address:OpenTextCorporation, 185ColumbiaStreetWest,
Waterloo, Ontario N2L 5Z5, Canada
e-mail:amarathe@opentext.com

B
noise-reduced
band 3 image C

noise-reduced
band 4 image

TVI image

D

A

dim. 1

dim. 0
dim. 2 (spectral)

seven-band Thematic Mapper = image

Fig. 1.A Thematic Mapper image and several derived images

computational models. Array data are common in many ap-
plication domains, such as remote sensing and medical imag-
ing [3,21,22]. Most database management systems (DBMS),
however, provide very limited support for arrays.

This paper presents the Array Manipulation Language
(AML), which can be used to describe array queries. AML
expressions describe how arbitrary, externally defined func-
tions are used to generate a desired query result. Thus, by
appropriate choice of functions, AML can be customized for
a particular application. Because arrays may be large, and ar-
ray manipulations complex, array queries may be expensive.
This paper presents an array query processing algorithm that
generates optimized, pipelined query evaluation plans from
AML queries. The query processor is implemented in an array
database system calledArrayDB.

Figure 1 shows a remote sensing example that illustrates
the kind of array queries for which AML is well suited. The
three-dimensional arrayA in Fig. 1 represents amulti-spectral
image captured by the Landsat Thematic Mapper. Two of the
array dimensions are spatial, and the third is spectral. This
array can be thought of as a stack of seven two-dimensional
images of the same scene, each captured using a sensor sen-
sitive to a different band of the electromagnetic spectrum.

Often, multi-spectral images such asA are not used di-
rectly. Instead, useful parameters are derived from them. An

A.P. Marathe, K. Salem: Query processing techniques for arrays 69

fnr(v0, v1, v2, v3, v4, v5, v6, v7, v8) {
x← (v1 + v3 + v5 + v7)/4;
y ← (v2 + v4 + v6 + v8)/4;
z ← |x− y|;
if ((|v0 − x| > 2z) ∨ (|v0 − y| > 2z)) returny;
elsereturnv0;

}

Fig. 2.Anoise reduction filter.v0 is the original cell value;v1 through
v8 are the values of its eight neighbors, numbered clockwise from
the upper left

example of such a parameter is thetransformed vegetation
index(TVI). The TVI at any point is computed from the radi-
ance in the third and fourth spectral bands at the corresponding
point in the Thematic Mapper image, using the function [20,
Chap. 7]:

ftvi(b3, b4) =
[
b4 − b3
b4 + b3

+ 0.5
]0.5

, (1)

wherebi denotes the radiance in theith band. The TVI at each
point in the scene is indicative of the amount of green biomass
present there [20].

A Thematic Mapper image may include noise from a va-
riety of sources. Since noise can degrade the true radiometric
information content of the image, it may be desirable to at-
tempt to reduce the noise before performing further calcula-
tions, such as extraction of the TVI [20]. Thus, a TVI image
may be generated in two steps, as illustrated in Fig. 1. First,
noise reduction is applied to the third and fourth bands of
the Thematic Mapper image, resulting in arraysB andC re-
spectively. The TVI image (arrayD) is then derived from the
noise-reduced bands.

There are many kinds of noise reduction techniques. To
make the example concrete, we will assume that noise re-
duction is accomplished using a convolution filter. The filter
computes the noise-reduced radiance at a particular point from
original radiance at that point and the radiances of its eight im-
mediate neighbors. (Noise reduction is applied independently
to each of the bands of interest.) The exact calculation, which
is adapted from [20], is shown in Fig. 2.

This example illustrates several points. First, there is a
wide variety of complex, domain-specific array transforma-
tions that may be used to define the desired result, such as the
TVI array, of an array query. An array query language should
be flexible enough to express them.

Second, there is considerable room for query optimiza-
tion. Array queries may have a regular structure that can be
exploited. In the case of Fig. 1, it is not difficult to determine
which points in the original Thematic Mapper image (A) con-
tribute to the TVI at a particular point in arrayD. Thus, if only
part of arrayD is required, it may be possible to generate that
part without using all ofA. Also, the TVI values inD can be
calculated in any order.

There are other opportunities as well. Redundant calcula-
tions can be eliminated using techniques such as caching and
view materialization. For example, several different parame-
ters may be derived from the noise-reduced arraysB andC,
although only one is illustrated in Fig. 1. It that case, it might
be a good idea tomaterialize (compute and store) arraysB and

C. Finally, specific array transformationsmay have properties
that can be exploited by an optimizer that understands them.
For example, the noise reduction algorithm that produces ar-
raysB andC is a discrete two-dimensional convolution. An
optimizer with some knowledge of linear systems might be
able to infer, for example, that adding two noise-reduced im-
ages is equivalent to applying noise reduction to their sum.

This paper makes the following contributions. First, it
presents AML, a language for defining array queries. Each
of the arraysB, C andD from Fig. 1 can be described as an
AMLquery against the original LandsatThematicMapper im-
ageA. Since the result of anAML query is an array,AML can
be used to defineviews, such as the TVI image, on stored base
arrays, such as the multi-spectral Thematic Mapper image.

Second, it describes the array query processing techniques
that are implemented in ArrayDB. ArrayDB has a rewrite op-
timizer that transforms AML expressions into equivalent ex-
pressions that may be much cheaper to evaluate. From these
optimized expressions, ArrayDB generates pipelined query
evaluation plans. Arrays flow through the pipelines in small
chunks, and materialization of potentially large intermediate
results can often be avoided. ArrayDB’s optimizer does not
exploit all of the optimization opportunities that are described
above, primarily because AML itself does not capture every-
thing needed to exploit them. For example, the optimizer does
not “understand” convolution. However,AML is quite good at
capturing regular structure in array queries. ArrayDB exploits
this to reorder query operators, eliminate unnecessary work,
and reduce space requirements.

Third, it presents an empirical evaluation of ArrayDB’s
query processor. The evaluation is based on a small suite of
array queries, including the TVI query illustrated in Fig. 1.
The evaluation demonstrates the effectiveness of the query
processor. It also illustrates some of the limitations of AML,
and of ArrayDB’s query evaluation strategies.

The rest of thepaper is organizedas follows.Thearray data
model and the AML query language are desribed in Sect. 2
and Sect. 3 respectively. Section 4 describes ArrayDB, and
the techniques that it uses for optimizing and evaluatingAML
queries. Section 5 describes the array query suite that serves
as ArrayDB’s workload for the performance evaluation. The
evaluation itself is presented in Sect. 6. Section 7 consists of
a survey of related work. The scenario illustrated in Fig. 1 is
used as a running example throughout this paper.

2 Data model and terminology

Many of the definitions in this paper involve infinite vectors
of non-negative integers. The notationx[i] refers to theith
element of the vectorx. Indexing starts at zero. The vectors
consisting entirely of zeros or entirely of ones are denoted by
0 and1, respectively.

Operations on vectors are applied element by element, un-
less otherwise stated. Thus,z = �x/y� means that for all
i ≥ 0,z[i] = �x[i]/y[i]�. Similarly, predicates such asx < y
are true iffx[i] < y[i] for all i ≥ 0.

Definition 1 (Shape).A shapeis an infinite vector of non-
negative integers.

Shapes are written by listing the vector elements between an-
gled brackets. All elements not listed explicitly are assumed

70 A.P. Marathe, K. Salem: Query processing techniques for arrays

dim. 0

dim. 1

array A

a slab along
dimension 0

a slab along
dimension 1

a subarray of

A at x

x [1]

x [0]

Fig. 3.Subarrays and slabs

to be ones. Thus, the shapes〈1, 1, 2〉 and 〈4, 4〉 denote the
infinite vectors〈1, 1, 2, 1, 1, 1, . . .〉 and〈4, 4, 1, 1, 1, . . .〉, re-
spectively.

Definition 2 (Vector containment).A vectorx is contained
in a shapeA iff 0 ≤ x < A. We writex ∈ A or “ x inA”.

Definition 3 (Array). An arrayA consists of a shapeA, a
value domainDA, and amappingMA. Theith element of the
shapeA,A[i], represents the length of the array in dimension
i. The domainDA is a non-empty set of values. The mapping
MA maps each vectorx ∈ A to an element ofDA.

AML arrays have an infinite number of dimensions, num-
bered from zero. Vectorsx that are inA are sometimes called
thecellsor elementsor pointsof A. A[x] denotes the value
of elementx of A. That is,A[x] = MA(x). (In contrast, as
mentioned in Definition 3,A[i] represents the length ofA in
dimensioni.) When the position of an array element in some
dimension is not specified, it is assumed to be zero. Thus, both
A[0, 1] andA[0, 1, 0, 0, . . .] denote value of the same element
of arrayA.

The mapping functionMA of an arrayA only defines
domain values for pointsx that are withinA. Sometimes,
however, it will be convenient to think of arrays as having
infinite lengths in all dimensions. For this purpose,A[x] is
defined to be⊥ for all pointsx �∈ A, where⊥ is a special
value distinct from any other value in any domain.

In programming languages, the “type” of an array is fre-
quently a composite made up of the array’s shape and the
array’s value domain. However, for our purposes it is more
convenient to keep these two aspects of type distinct from
each other. Therefore, Definition 3 distinguishes between the
shape (A) and the domain (DA) of arrayA.

Definition 4 (Size).Thesizeof an arrayA, written |A|, is∏∞
i=0 A[i].

Definition 5 (Dimensionality).Thedimensionalityof array
A is writtendim(A). If |A| is 0 thendim(A) is undefined; if
|A| is∞ thendim(A) is∞; otherwise,dim(A) is the smallest
i such thatA[j] = 1 for all j ≥ i. If dim(A) is d, thenA is
called ad-dimensionalarray.

Anarray having a length of zero in oneormore dimensions
is calledanull array, denotedbyNULL. Sucharrayshavezero
size and undefined dimensionality.

Definition 6 (Subarray).ArrayB is asubarrayat pointx of
array A iff DB = DA, x ∈ A, and for every pointy in B,
B[y] = A[x + y].

As Fig. 3 shows, a subarray is simply an array that is wholly
contained within another. The position of the subarray within
the containing array is identified by the position of the subar-
ray’s smallest point (indicated by a dot in Fig. 3).

Definition 7 (Array slab). Aslabof an arrayA in dimension
i (i-slabfor short) is a subarrayofAwith the shape〈. . . ,A[i−
1], 1,A[i + 1], . . .〉.
As illustrated in Fig. 3, ani-slab is simply a slice of unit width
through an array in theith dimension. There areA[i] i-slabs
in an arrayA.

3 The array manipulation language

AML is an algebra consisting of three operators that manip-
ulate arrays [26]. Each operator takes one or more arrays as
arguments, and produces an array as result.Subsample (sub
for short) is a unary operator that can delete data.Merge is
a binary operator that combines two arrays defined over the
same domain.Apply applies a user-defined function to an ar-
ray to produce a new array. The manner in which the function
is applied is described in Sect. 3.3.

All of the AML operators take bit patterns as parameters.

Definition 8 (Bit pattern). A bit patternP is an infinite bi-
nary vector of the formr∗, wherer is a finite binary vector.

The finite vectorr is used to represent the infinite pat-
tern P . For example, we writeP = 1011 to meanP =
101110111011 Notice that “01” and “0101” represent
the same pattern01010101 When appropriate, we use
run-length encoding to further compress the pattern nota-
tion. For example,P = 031202 means thatP consists
of an infinite number of repetitions of two ones sand-
wiched between three zeros and two zeros. That is,P =
000110000011000001100 P denotes the bit-wise com-
plement of a patternP . To simplify our notation, we define
thatP [i] = 0 for all i < 0.

Theoperator definitionsmakeuseof twopattern functions,
indexandcount.

Definition 9 (Index). If P is a bit pattern andk a positive
integer,index(P , k) is the index of thekth ‘1’ in P . If P = 0
(denoting the pattern0∗), index(P , k) is defined to be−1 for
all k > 0.

Definition 10 (Count). If P is a bit pattern andk a non-
negative integer,count(P , k) is the number of ones in the
first k + 1 positions ofP , i.e., fromP [0] toP [k], inclusive.

3.1 Thesubsample operation

The sub operator takes an array, a dimension number, and a
pattern as parameters, and produces an array. The dimension
number is written as a subscript, as in

B = subi(P , A),

whereA is an array,P is a pattern, andi is the dimension
number. The operator dividesA into slabs along dimension
i, and then retains or discards slabs based on the patternP .
If P [k] = 1, then slabk is retained, otherwise it is not. The
retained slabs are concatenated to produce the resultB.

A.P. Marathe, K. Salem: Query processing techniques for arrays 71

01 02 03 04 05

10

00

11 12 13 14 15

20 21 22 23 24 25

00 01 02 03 04 05

20 21 22 23 24 25

04 05

14 15

24

00 02 04

10 12 14

20 22 24

B = SUB (10, A)

B = SUB (10, A)

B = SUB (0000111, A)

1

1

0
array A

25

dim. 1

dim. 0

Fig. 4.Examples of thesubsample operation

Definition 11 (subsample). LetA be an array andP be a
pattern. The result ofsubi(P , A) is an array. The resulting
array, which will be calledB, is defined in terms ofA andP
as follows:

• DB = DA

• if A[i] > 0, thenB[i] = count(P ,A[i]−1), elseB[i] =
0

• for all j ≥ 0 exceptj = i,B[j] = A[j]
• for all pointsx inB,B[. . . ,x[i−1],x[i],x[i+1], . . .] =

A[. . . ,x[i − 1], index(P ,x[i] + 1),x[i + 1], . . .]

Several applications of thesubsample operator are illus-
trated in Fig. 4. With thesub pattern “10”, the arrayB in the
top expression in Fig. 4 is formed by choosing every other
1-slab of the arrayA. In the middle expression, thesub pat-
tern “10” selects every other0-slab (row) from the arrayA.
In the bottom expression, thesub selects the last two1-slabs
(columns) ofA. Note that in the expressionsubi(P , A), only
the firstA[i] (the length ofA in dimensioni) bits of the pattern
P are relevant.

In the example shown in Fig. 1, the expression

B′ = sub2(0010000, A) (2)

can be used to extract the third spectral band from Thematic
Mapper arrayA. Thesub operation is applied toA in dimen-
sion two, which is the spectral dimension. The ‘1’ in the third
position of thesub pattern indicates that the third band is to
be kept. A similar expression can be used to extract the fourth
spectral band in Fig. 1.

The following theorems follow easily from the definition
of subsample, and are stated without proof.1

Theorem 1 (Sub with NULL array).
subi(P ,NULL) = NULL.

Theorem 2 (Sub with ‘0’ pattern).
subi(0, A) = NULL.

Theorem 3 (Sub with ‘1’ pattern).
subi(1, A) = A.
1 Proofs of all of the nontrivial theorems involvingAML operators

can be found in [23]. To illustrate the general proof technique, a proof
of one such nontrivial theorem, Theorem 10, is given inAppendixA.

The next two theorems describe how two successivesub
operations can be combined or reordered.

Theorem 4 (Combining twosubs).
If P �= 0 andQ �= 0, then

subi(Q, subi(P , A)) = subi(R, A),

whereR is defined by

R[j] = P [j] ∧ Q[count(P , j) − 1]

for all j ≥ 0.

Note that in Theorem 4, it suffices to generateA[i] bits of
R, and treat it as ther in Definition 8 because subsequent bits
of R are not relevant. A similar observation applies to all of
the newpatterns that the subsequentAML rewrite rules define,
although we will not explicitly state it.

Theorem 5 (Reordering twosubs).
If i �= j then

subi(Q, subj(P , A)) = subj(P , subi(Q, A)).

3.2 Themerge operation

Themerge operator takes two arrays, a dimension number, a
pattern, and a default value as parameters. It merges the two
arrays to produce its result. The dimension number is written
as a subscript, as in

C = mergei(P , A,B, δ),

whereA andB are arrays,P is the pattern, andδ is the default
value. The explicit reference toδ will often be dropped if the
default is not important.Merge is defined only ifDA = DB

andδ ∈ DA.
Conceptually,merge divides bothA andB into slabs

along dimensioni. C is obtained by merging these slabs ac-
cording to the patternP ; ones inP correspond to slabs fromA
(the first array), and zeros to slabs fromB (the second array).
For example, ifP = 101 (which stands for the infinite pattern
101101101 · · ·), then a slab fromB is sandwiched between
two slabs fromA. The merging process repeats until all the
slabs from bothA andB are exhausted.

It is convenient to definemerge formally in two steps.
The first step generates an arrayC ′ by interleaving slabs from
A andB, as described above. Because of shape mismatches
betweenAandB, however, or becauseof theparticular pattern
P , some values inC ′ may be⊥. The second step eliminates
this problem by transforming any such⊥ values to the default
valueδ.

Definition 12 (merge). Let A and B be arrays such that
DA = DB . LetP be a pattern, andδ be a value fromDA. The
result ofmergei(P , A,B, δ) is an array. This array, which
will be calledC, is defined in two steps. First, an intermediate
arrayC ′ is defined as follows:

• DC′ = DA ∪ {⊥}
• if A[i] = 0 andB[i] = 0, thenC′[i] = 0; otherwise

C′[i] = max(index(P ,A[i]), index(P ,B[i])) + 1
• for all j ≥ 0 exceptj = i,C′[j] = max(A[j],B[j])

72 A.P. Marathe, K. Salem: Query processing techniques for arrays

a00 a01 a02 a03

a10 a11 a12 a13

b00 b01

b10 b11

a00

a10

a01

a11

a02

a12

a03

a13

b00

b10

b01

b11

a00 a01 a02 a03

a10 a11 a12 a13

b00 b01 δ δ

δ δ

δb10 b11

δ δ

δ

MERGE (110, A, B)

MERGE (101, A, B,)δ
0

1

A

B

dim. 0

dim. 1

Fig. 5.Examples of themerge operation

• for all pointsx in C′:
– if P [x[i]] = 1, thenC ′[. . . ,x[i−1],x[i],x[i+1], . . .]

= A[. . . ,x[i − 1], count(P ,x[i]) − 1,x[i + 1], . . .],
– otherwiseC ′[. . . ,x[i − 1],x[i],x[i + 1], . . .] =

B[. . . ,x[i − 1], count(P ,x[i]) − 1,x[i + 1], . . .]

Next, arrayC is defined asC ′ with ⊥ values replaced byδ.
That is:DC = DA; for all i ≥ 0, C[i] = C′[i]; and for
all pointsx in C, if C ′[x] = ⊥, thenC[x] = δ, otherwise
C[x] = C ′[x].

Figure 5 illustrates themerge operation. The first example
illustrates amerge in dimension 1. That is, columns ofA are
merged with columns ofB. The second example shows a row
(dimension zero)merge. The second example also shows how
the default value (δ) is used by amergei operation. It serves
two purposes. First, in a dimensionj �= i, the lengths of the
two arraysmay not match. If so, the shorter array (B in Fig. 5)
is expanded, usingδ values, until it matches the length of
the longer array. Second, as the two arrays are interleaved in
dimensioni, the operation may exhaust the slabs of one array
before it exhausts the slabs of the other. In this case also, slabs
filled with δ values are used in place of the array slabs from
the exhausted array.

For somemerge operators with particular patterns, the
arraysC andC ′ from Definition 12 are identical. If so, the
merge operator is said to bebalanced.

Definition 13 (Balanced merge). The merge operation
mergei(P , A,B, δ) is balancedif both of the following con-
ditions hold:

1. For all dimensionsj �= i,A[j] = B[j].
2. C[i] = (A[i] + B[i]).

whereC is the array defined by themerge.

In Fig. 5, the topmerge is balanced, whereas the bottom
merge is not. An AML expression in which allmerge op-
erations are balanced is said to be inmerge-balancedform.
Theorems 10 and 11 that follow hold only for AML expres-
sions that are in merge-balanced form.

In the running example of Fig. 1, arrayB can be put on
top of arrayC using the expression

D′ = merge2(10, B,C). (3)

(D′ is not explicitly shown inFig. 1.)When theTVI function is
applied toD′, the TVI imageD results. As Eq. (3) illustrates,
merge can be used to increase the dimensionalities of arrays.

Theorems 6–8 follow easily from the definition ofmerge.

Theorem 6 (Merge with ‘0’ pattern).
mergei(0, A,B, δ) = B.

Theorem 7 (Merge with ‘1’ pattern).
mergei(1, A,B, δ) = A.

Themerge operator is commutative and associative, pro-
vided that the merge patterns are properly adjusted.

Theorem 8 (Commutativity of merge).
mergei(P , A,B, δ) = mergei(P , B,A, δ).

Theorem 9 (Associativity ofmerge).
If P �= 0, P �= 1,Q �= 0,Q �= 1, and the expression on the
left is merge-balanced, then

mergei (Q,mergei(P , A,B, δ), C, δ) =
mergei(R, A,mergei(S, B,C, δ), δ),

where

R[j] = Q[j] ∧ P [count(Q, j) − 1],

and

S[j] = Q[index(R, j + 1)],

for all j ≥ 0. Furthermore, the AML expression on the right-
hand side is merge-balanced.

The following two theorems show thatsub andmerge
operators can be reordered. In particular, they describe how a
sub can be pushed through a subsequentmerge operator. A
proof of Theorem 10 appears in Appendix A.

Theorem 10 (Pushingsub through merge, version 1).
If P �= 0, P �= 1, Q �= 0 and the expression on the left is
merge-balanced, then

subi (Q,mergei(P , A,B, δ)) =
mergei(T , subi(R, A), subi(S, B), δ),

where

R[j] = Q[index(P , j + 1)],

and

S[j] = Q[index(P , j + 1)],

and

T [j] = P [index(Q, j + 1)],

for all j ≥ 0. Furthermore, themerge operation on the right
is balanced.

Theorem 11 (Pushingsub through merge, version 2).
If i �= j and themerge on the left is balanced, then

subi (Q,mergej(P , A,B, δ)) =
mergej(P , subi(Q, A), subi(Q, B), δ).

Furthermore, themerge operation on the right is balanced.

A.P. Marathe, K. Salem: Query processing techniques for arrays 73

P0 P1

B = APPLY(f, A, 10, 0110)

f:

dim. 1

dim. 0

0 1 2 3 4

0

1

2

3

0 1 2 3

0

1 f(A, [0,2])

f(A, [0,1])

f(A, [2,2])

array B

f(A, [2,1])

array A

Fig. 6.An illustration of theapply operation. The notationf(A, x) refers to the result of applyingf to the subarray ofA of shapeDf atx.
Thus,f(A, x) is an array of shapeRf . In this example,Df is 〈2, 2〉, andRf is 〈1, 2〉

3.3 Theapply operation

Theapply operator applies an externally-defined function to
an array to produce a new array. In its most general form, it is
written as

B = apply(f,A,P0,P1, . . . ,Pd−1),

wheref is the function to be applied,A is the array to apply
it to, Pi’s are patterns, andd = dim(A). Patterns that con-
sist entirely of ones are often dropped from the notation. In
particular, in the expression

B = apply(f,A),

all of the patterns are assumed to be ones.
A simple way to define an operation, likeapply, that ap-

plies an externally defined functionf would be to insist that
f map from arrays ofA’s shape and domain to arrays ofB’s
shape and domain. The operator would then simply compute
B = f(A). However, many common array functions have
some structural locality: the value found at a particular point
in B depends only on the values at certain points inA, not on
the values at all points inA. For example, iff is a smooth-
ing function that maps each point inA to the average of that
point and its neighbors, then to determine the value at some
point inB, we need only look at the corresponding point and
its neighbors inA. Such information can be very valuable for
optimizing the execution of an expression involving the array
operators.

Theapply operation is defined so that this kind of struc-
tural relationship can be made explicit when it exists.Apply
requires thatf be defined tomap subarrays ofA of some fixed
shapeDf to subarraysofB of somefixedshapeRf .Theshape
Df is called thedomain boxof f , andRf is called therange
box. Theapply operator appliesf to some or all of the sub-
arrays (of shapeDf) of A. The results of these applications
are concatenated to generateB. This process is illustrated in
Fig. 6.

The pattern arguments ofapply specify to which of the
possible subarrays of the input arrayA the functionf should
be applied. PatternPi can be thought of as selecting slabs in
dimensioni, with the selected slabs corresponding to the ones
in the pattern. The functionf is applied to the subarray atx

only if x falls in selected slabs in alld dimensions of the array;
that is, only ifPi[x[i]] = 1 for all 0 ≤ i < dim(A).

In Fig. 6, the patternP0 = 10 (which means101010 . . .)
selects the first and third row slabs, whereas the patternP1 =
0110 selects the second and third column slabs. This leads
to a total of four applications of the functionf . The dashed
squares inA in Fig. 6 show the four subarrays to whichf
is applied. Each application off produces a result of shape
Rf = 〈1, 2〉. These four arrays are concatenated, as shown in
Fig. 6, to produce the final result.

Definition 14 (apply). Let A be an array,f be a function
that maps arrays of shapeDf over domainDA to arrays of
shapeRf over domainD, andP0,P1, . . . ,Pdim(A)−1 be
patterns. Letf(A,x), wherex ∈ A, represent the result of
applyingf to the subarray ofA of shapeDf atx. The result
of the expressionapply(f,A,P0,P1, . . . ,Pdim(A)−1) is an
array. This array, whichwill be calledB, is defined as follows:

• DB = D
• for all i ≥ 0,

– if A[i] < Df [i] or Pi = 0, thenB[i] = 0
– otherwiseB[i] = count(Pi,A[i] − Df [i]) · Rf [i]

• for all x inB,B[x] = f(A,y)[x mod Rf], wherey[i] =
index(Pi, �x[i]/Rf [i]� + 1) for all 0 ≤ i < dim(A)

Several important properties of this definition are illus-
trated in Fig. 6. First, although the subarrays to whichf is
applied may overlap inA, the resulting subarrays do not over-
lap in the arrayB. Second, the arrangement of resulting sub-
arrays inB preserves the spatial arrangement of the selected
subarrays inA. Finally, the subarrays to whichf is applied
must be entirely contained withinA. In the example in Fig. 6,
this means that even if the subarray at[3, 3] was selected by
the patterns,f(A, [3, 3]) would not be evaluated, since that
subarray lies partially outside ofA.

In the running example in Fig. 1, arrayB results from
applying the noise reduction functionfnr to the third spectral
band–arrayB′ defined by Eq. (2).fnr maps arrays of shape
〈3, 3〉 to arrays of unit size. That is,Dnr is 〈3, 3〉, andRnr is
〈1, 1〉. TheAML expression that computes arrayB from array
B′ is simply

B = apply(fnr, B
′). (4)

74 A.P. Marathe, K. Salem: Query processing techniques for arrays

Recall that an intermediate arrayD′ that putsB on top ofC
is defined by Eq. (3). The TVI arrayD can be defined using

D = apply(ftvi, D
′), (5)

assuming that the functionftvi is defined to haveDtvi =
〈1, 1, 2〉andRtvi = 〈1, 1〉. Theapplyoperationappliesftvi to
the corresponding pairs of cells inD′. By combining Eqs. (4)
and (5) with Eqs. (2) and (3), we arrive at the full AML ex-
pression that defines the TVI array in terms of the seven-band
Thematic Mapper arrayA:

D = apply(ftvi,
merge2(10,

apply(fnr, sub2(0010000, A)),
apply(fnr, sub2(0001000, A)))).

(6)

Often, it is necessary to apply an externally-defined func-
tion to all non-overlapping subarrays of a particular shape. For
example, an inexpensiveway to compute a low-resolution ver-
sion of an array is to tile the array, and to replace each tile with
a single cell having the average value of the cells under the
tile. Since this type of function application is quite common,
thetiled apply operator is defined to support it. Assuming
thatdim(A) = d, it is defined as follows:

tiled apply(f,A) ≡
apply(f,A, 10Df [0]−1, 10Df [1]−1, . . . , 10Df [d−1]−1). (7)

The following theorem follows immediately from the def-
inition of apply.

Theorem 12 (Apply with a ‘0’ pattern).
apply(f,A,P0,P1, . . . ,Pi, . . .) = NULL if anyPi = 0.

The next two theorems show how the structural locality
captured by anapply operator can be used to reduce the num-
ber of applications of an externally-defined function, or to
identify and eliminate unnecessary portions of the input array.

Theorem 13 shows that if anapply operation produces
data that asubsequentsuboperationdeletes, thenunder certain
conditions, theapply operation’s patterns can be adjusted so
that it can avoid producing such data in the first place. Specifi-
cally, if thesub operation deletesall of the data produced by a
particular function application, then that function application
can be eliminated. However, if any portion of the function’s
range box is not eliminated by thesub, then the function ap-
plication cannot be eliminated since some of the values that it
produces are required.

Theorem 13 (Pushingsub into apply).
If Pi �= 0,Q �= 0, andRf [i] > 0, then

subi (Q,apply(f,A,P0,P1, . . . ,Pi, . . .)) =
subi(S,apply(f,A,P0,P1, . . . ,P

′
i, . . .)),

where

P ′
i[j] =

(
∨Rf [i]−1

t=0 Q[((count(Pi, j) − 1) · Rf [i]) + t]
)

∧ Pi[j],

and

S[j] = Q[(count(Pi, index(P ′
i, �j/Rf [i]� + 1) − 1)

· Rf [i]) + (j mod Rf [i])],

for all j ≥ 0.

When Theorem 13 is applied, the newapply pattern,P ′
i

will contain fewerones than theoriginal patternPi.Asa result,
theapply operator will apply its functionf fewer times.

Theorem 14 is similar to Theorem 13, except that it ap-
plies to the input of anapply operator. Theorem 14 says that
if there are slabs of anapply’s input array that are not used by
any of the function applications that theapply performs, then
those slabs can be eliminated from the input array. Slab elim-
ination is accomplished by introducing asub operator prior
to theapply. This does not reduce the number of function ap-
plications that theapply operation must perform. The benefit
of Theorem 14’s rewrite is that it may be possible to push the
newly introducedsuboperation down to and into earlierapply
operations using the other rewrite rules. That is, the newsub
operation may be used to make earlierapply operations less
expensive.

Theorem 14 (Pullingsub out of apply).
If Pi �= 0 andA[i] ≥ Df [i] > 0, then

apply (f,A,P0,P1, . . . ,Pi, . . .) =
apply(f, subi(Q, A),P0,P1, . . . ,P

′
i, . . .),

where for0 ≤ j ≤ (A[i] − Df [i]),

Q[j] = ∨j
t=j−Df [i]+1Pi[t];

and for(A[i] − Df [i] + 1) ≤ j < A[i],

Q[j] = 0;

and for all j ≥ 0,

P ′
i[j] = Pi[index(Q, j + 1)].

3.4 More on patterns and shapes

Patterns appearing inAML operations can be defined in terms
of the shapes of array(s), domain boxes, or range boxes. For
example, the expression

sub0(10A[0], A)

selects only the first0-slab (row) of arrayA. Aliases can be
used to define names for intermediate arrays. In the AML ex-
pression

sub0(10B[0],apply(f,A) as B),

the aliasB refers to the array that results from theapply oper-
ation. The definition of thetiled apply operator (Equation 7)
illustrates the use of a domain box shape to define a pattern.

Pattern definitions are not allowed to refer to array element
values.A consequenceof this restriction is that the shapeof the
result of anAMLoperation canalways bedetermined (without
actually evaluating the operator) if the shapes of the operator’s
arrayargumentsareknown.By induction,wecanshow that the
shape of the result of an arbitrary AML expression can be de-
termined once the shapes of the expression’s terminal, or leaf,
arrays are known.2 This property is useful when evaluating
AML expressions because it implies that the space required to
implement an AML operation can be determined in advance.

2 TheFISh programming language— an experimental functional
programming language for array programming — also puts a lot of
emphasis on static shape analysis [17].

A.P. Marathe, K. Salem: Query processing techniques for arrays 75

3.5 On AML’s expressiveness

A query language is expressive if it can perform many useful
operations in its application domain. AML’s expressiveness
in image processing can be judged by an answer to the ques-
tion: What image processing operations can AML express?
Notice that AML can expressanyoperation that produces an
array from an array by using asingletonapply operation —
an apply operation that directly maps from the input array
to the output array. Of course, this characterization is neither
interesting nor useful. AML is designed to exploit structural
locality often found in array manipulations: an output array
element can often be computed from a small set of adjacent
elements of the input arrays. An AML evaluator is expected
to optimize and efficiently evaluate array queries that con-
tain structural locality. Since user-defined functions are not
interpreted byAML, expressions that contain singletonapply
operators will probably not be optimized effectively. There-
fore, the expressiveness question should be rephrasedas:What
image processing operations can AML expresswithoutusing
singletonapplys?

There is no single, widely-accepted image processing lan-
guage; no universal set of image processing operations exists.
To gauge AML’s ability to express image processing opera-
tions, we compared it to ImageAlgebra [33,34]— a language
believed to be very expressive in the image processing do-
main. Ritter andWilson [34] have gathered over80 computer
vision algorithms and their formulations in Image Algebra.3

At least one array database system, RasDaMan, has chosen a
query language based on Image Algebra. RasDaMan’s query
language RasQL [3,43] is based on a subset of the Image Al-
gebra operators.

Thedetailed comparison is reported in [23]. For the sakeof
brevity, we only summarize the conclusions of that study here.
Despite containing only three operators, AML does a reason-
able job of expressingmany ImageAlgebra operators.Without
resorting to singletonapplys, AML can express the follow-
ing image-manipulating operators of ImageAlgebra: induced
operators, global reduce operators, some spatial transforma-
tions, image catenation, range restrictions, some domain re-
strictions, and image extension.AML’sapply can also express
the non-recursive version of image-template product — Im-
age Algebra’s most useful operator. On the other hand, AML
cannot express the following image-manipulating operators
of Image Algebra without resorting to singletonapplys: ar-
bitrary spatial transformations, arbitrary domain restrictions,
and recursive image-template product. Using recursive image-
template product, one can enforce the order inwhich the pixels
of an image are processed— for example, row-major order or
serpentine scan order. It will be seen in Sect. 4 that an AML
query processor that we have built considers several alterna-
tive orders when processing input array elements, but there is
no way tospecifysuch an order in an AML query. We view
this feature as one of AML’s strengths: the query processor
has the flexibility to choose an appropriate order.

Image Algebra’s primary design goals seem to have been
expressivenessandgenerality.Optimizability is not of primary
concern. For AML, the design goals were optimizability and

3 It should be noted that some of these algorithms use assignment
statements and loops in addition to Image Algebra statements.

Preprocessing Catalogs

Merge-balanced AML Query

Optimized AML Query

Query Evaluation Plan

Refined Query Evaluation Plan

Plan
Refinement

Plan
Generation

Logical
Rewriting

Plan
Evaluation Input Arrays

Array Result

AML Query

Fig. 7.Overview of Query Processing in ArrayDB

extensibility with an emphasis on the former goal. It is ac-
curate to say that we included only those operators in AML
that we knew we could optimize. Other operations must be
implemented using singletonapplys.

4 AML query processing

To process anAMLquery,ArrayDB first generates an efficient
evaluationplan for thequery, and thenexecutes theplan to pro-
duce the array that the query defines [27]. As shown in Fig. 7,
four steps are used to convert anAMLquery into an evaluation
plan prior to execution: preprocessing, logical rewriting, plan
generation, and plan refinement. The remainder of this section
describes these steps in more detail.

4.1 Query preprocessing

Thepreprocessorbeginsbyparsing theAMLquery, generating
a parse tree with one internal node for eachsub, merge, and
apply operator in the query, and a leaf node for each input
array.

ArrayDB treats a leaf array as a special type of tiledapply
operator which has no input array. Conceptually, the leaf
apply operator generates the corresponding leaf array. Like
otherapply operations, each leafapply is associated with an
externally-defined function. In the case of a leafapply, this
function is called anaccessor function. A leaf apply opera-
tor generates a portion of its output array with each call to its
accessor function. In a non-leafapply, each external function
call uses a portion of the input array to produce a portion of
the output array. In the case of a leafapply, each call to the
accessor function generates a portion of the output by reading
the stored representation of the leaf array. Leafapply oper-
ations also have pattern parameters. These patterns have the
same meaning that they do for non-leafapplys: they specify
which portions of the result array need to be generated. The
ArrayDB preprocessor assigns to each leafapply node pat-
terns that indicate that the entire leaf array is to be generated.
However, these patterns may get modified during the logical
rewriting phase.

76 A.P. Marathe, K. Salem: Query processing techniques for arrays

a11a10 a12

b10

a13

δ

δb11

0 101

δ

δ

b01b00

MERGE ()

δ

δ δ δ δ

a01 a02 a03

a10

δ δ

a12 a13

MERGE ()0 110 MERGE ()1 1100

a03

δ

a00

δ δ

δ δb00 b01

b10 b11

array B DEFAULT array

b00 b01

b10 b11 δ δ

δ δ

a02

a11

a01

δ δ δ δ

array A DEFAULT array

a01 a02 a03

a10

a00

a11 a12 a13

a00

dim. 0

dim. 1

Fig. 8. Illustration of merge balancing

Once the query tree has been created, the preprocessor as-
sociates type information with eachapply (leaf and non-leaf)
in the query by consulting the ArrayDB catalogs. ArrayDB
maintains three catalogs:

Function Catalog: The function catalog records the name, do-
main and range box shapes, and domain and range element
type names of each external function known to ArrayDB.

Array Catalog: The array catalog records the name, shape,
element type name, location, and accessor function name
of each stored array known to ArrayDB.

Type Catalog: The type catalog records the name and repre-
sentation size of each element type known to ArrayDB.

After the catalogs have been consulted, the preprocessor per-
forms bottom-up type inference to determine the shape and
element type of the array produced by each AML operator in
the query. As was noted in Sect. 3.4, AML is designed so that
this is always possible.

Finally, the preprocessor converts theAML query into the
merge-balanced form that was defined in Sect. 3.2. Merge-
balancing involves replacing unbalancedmerge operations
with expressions involving balancedmerge operations and
new leaf array constants.4 For example, thebottomunbalanced
merge in Fig. 5 is balanced as illustrated in Fig. 8. In theworst
case, merge-balancing may add up to2dn nodes to the query
tree, wheren is the number of nodes before merge-balancing,
and d is the maximum dimensionality of the arrays in the
query [23].

4.2 Logical rewriting

During logical rewriting, ArrayDB systematically transforms
the AML query into an equivalent form that is expected to be
more efficient to evaluate. Specifically, the logical rewriting
phase aims to reduce thefunction costof an AML query.

Definition 15 (Function cost).Suppose that an AML query
Q containsk apply operators, including its leaves (which are

4 All elements of these new arrays have the same value, and Ar-
rayDB represents them using constant space, irrespective of the size
of the array.

treated likeapplys). Eachapply operator applies its asso-
ciated function some number of times. Letci represent the
number of function applications performed by theith apply
operator. The function cost ofQ, writtencost(Q), is

∑k
i=1 ci;

i.e., it is the total number of function applications performed
byQ.

The logical rewriting procedure rewrites anAML query so
that its function cost is minimized, in a restricted sense that
is explained below. Since no step in the rewriting procedure
increases the number of applications of any function, function
costminimizationmeans that noapply operationwill perform
more function applications in the rewritten query than it did
in the original. We expect that a reduction in the number of
function applications should lead to a reduction in the time re-
quired to evaluate the query. Furthermore, since data retrieval
is modeled as function applications, reductions in the number
of function applications in the query’s leaves translate directly
to reductions in the amount of disk I/O.

The logical rewriting procedure finds a query with mini-
mum function cost fromamong thequeries that are both equiv-
alent to andapply-consistentwith the original queryQ. (A
proof of this claim appers in [23].) Queries that areapply-
consistent withQ apply the same functions, in the same order,
as those that are applied byQ, although the number of appli-
cations of each function may vary.

Definition 16 (Apply-consistent). An AML query Q′ is
apply-consistentwith another AML queryQ if there exists
a total mappingm from theapply operations inQ′ to the
apply operations inQ such that both of the following condi-
tions hold:

• For everyapply operationx in Q′, x andm(x) use the
same external function.

• For all pairs x1, x2 of apply operations inQ′, if x1 pre-
cedesx2, thenm(x1) precedesm(x2) in Q.

Even though ArrayDB’s rewriting procedure finds a
minimum-cost,apply-consistent equivalent query, it is pos-
sible that there are lower-cost equivalent queries that are not
apply-consistent with the original. For example, it may be
possible to transformapply(fb,apply(fa, A)) into an equiv-
alent expressionapply(fc, A), wherefc is a composition of
fb andfa. ArrayDB does not attempt to find such rewrites. In-
deed, it cannot find them since it knows nothing about external
functions except their domains and ranges.5

The equivalence theorems from Sect. 3 are the basis for
ArrayDB’s rewrite transformations. Figure 9 summarizes the
transformations that are used during rewriting. ArrayDB ap-
plies these transformations by makingd top-down passes
through the query tree, whered is the maximum dimension-
ality of any array appearing in the query.6 When the rewrite
process visits a nodex on itsith top-down pass, it attempts to

5 Even with such limited knowledge, adjacent functions could be
composed, albeit in some very special cases. For example, if the two
adjacent functionsfa andfb map scalar elements to scalar elements,
a composite functionfc that callsfa andfb in sequence could be
“created.” ArrayDB does not attempt such rewrites.

6 This includes leaf arrays, the result array, and intermediate arrays
produced by the query’s operators.

A.P. Marathe, K. Salem: Query processing techniques for arrays 77

Rewrites forsubi on theith rewrite pass
Number Transformation Theorem

1

SUB i

X
NULL

Theorem 2

2

SUB i

X
X Theorem 3

6 SUB i

SUB i

SUB i

Theorem 4

7

SUB i

SUB j SUB i

SUB j

Theorem 5

8 MERGE i

SUB i MERGE i

SUB i SUB i Theorem 10

9

SUB i

SUB i SUB iMERGE j

MERGE j

Theorem 11

10

SUB i

APPLY

SUB i

APPLY Theorem 13
Rewrites formergei on theith rewrite pass

Number Transformation Theorem

3

MERGE i

X

Y

Y Theorem 6

4

MERGE i

X

X

Y Theorem 7

Rewrites forapply on theith rewrite pass
Number Transformation Theorem

5

APPLY

NULL
X Theorem 12

11 SUB i

APPLY APPLY

Theorem 14

Fig. 9.ArrayDB logical rewrite. The tables show the rewrites consid-
ered by ArrayDB during itsith top-down rewriting pass through the
query tree. The “current” node before and after the transformation is
indicated using bold lines

apply a rewrite atx if x is one ofsubi,mergei, orapply; oth-
erwise,x is ignored. If a rewrite can be applied atx, the query
tree is modified as illustrated in Fig. 9, and the pass continues

in the modified tree.7 The time complexity of the rewriting
procedure isO(d2n), wheren is the number of nodes in the
query tree prior to the first rewriting pass [23].

An example of the logical rewriting

Consider the AML query in Expression 8, which returns the
lower-left quadrant of the TVI array (arrayD) from Fig. 1 in
Sect. 1.We have assumed that the Thematic Mapper arrayA’s
shape is〈1024, 2024, 7〉. That is, each of the seven bands are
of the shape〈1024, 1024〉. The TVI array’s shape will then
be 〈1022, 1022〉. The two outermostsub operations clip the
lower-left quadrant:sub1(15110511) keeps only the first511
columns of the TVI array, andsub0(15110511) keeps only the
first 511 rows. The remainder of the expression is simply the
definition of the TVI array in terms of the Thematic Mapper
array (arrayA), as given in Eq. (6). (The functionfA is the
accessor function associated with the arrayA.)

sub1(15110511,
sub0(15110511,

apply(ftvi,
merge2(10,

apply(fnr,
sub2(0010000,

apply(fA, A)))
apply(fnr,

sub2(0001000,
apply(fA, A)))))))

(8)

ArrayDB’s logical rewriting procedure produces Expres-
sion 9 from Expression 8. In the unoptimized expression (Ex-
pression8), theapply(fA, A)operations read in theentireTVI
array one band at a time, and the subsequentsub2 operations
filter all but the desired bands. In the optimized formula, the
sub2 operations have been pushed into theapply operations
below them. Instead of reading the entire TVI array, each of
these leafapply operations now reads only the band that is
required for the computation, as specified by the patternsP2
in theapplys.

apply(ftvi,
merge2(10,

apply(fnr,
sub0(15130511,

sub1(15130511,
apply(fA, A,P2 = 0010000)))),

apply(fnr,
sub0(15130511,

sub1(15130511,
apply(fA, A,P2 = 0001000))))))

(9)

Similarly, the two outersub operations that performed the
clipping in Expression 8 have been pushed through the ap-
plications offtvi andfnr. (In this example, they cannot be
pushed all the way into the leafapply operations, since the
accessor functionfA reads the stored Thematic Mapper array
a full band at a time.) As a result, many fewer applications of
fnr andftvi are needed to evaluate Expression 9 than Expres-
sion 8. Notice that as the clippingsubs are pushed through

7 Another alternative is to try to apply every possible rewrite in all
of thed dimensions at a node before proceeding to its children.

78 A.P. Marathe, K. Salem: Query processing techniques for arrays

Operator Arity Parameters Memory cost (buffer space
required ini-order)

Restrictions

apply p 1 external functionf |Rf | elements input chunk shape isDf ,
output chunk shape isRf

replicate p 1 output chunk shape (Cout),
chunk order, patterns

Cout[i] i-slabs of the input
array, plus|Cout| elements

input chunks must be of unit
size

regroup p 1 chunk order, input chunk
shape (Cin)

Cin[i] i-slabs of the input ar-
ray, plus1 element

output chunksareofunit size

combine p k (k ≥ 1) chunk order, filter patterns,
write patterns

1 element input and output chunks are
of unit size

leaf p 0 accessor function (f), chunk
order, patterns

|Rf | elements

reorder p 1 input chunk order, output
chunk order, chunk shape
(C)

entire input array, plusC el-
ements

input and output chunk
shapes are identical

Fig. 10.Properties of ArrayDB’s physical operators

theapply operations, the clipping window expands slightly.
The larger window is required so thatfnr can be applied prop-
erly to elements on the window’s boundary. By exploiting its
knowledge of the shapes of the domain and range boxes of
the applied functions, ArrayDB’s rewrite procedure is able to
determine when such adjustments are necessary.

4.3 Plan generation

ArrayDB’s plan generator generates a query evaluation plan
from an AML expression. A query evaluation plan consists
of a tree of physical operators. Each (non-leaf) operator in the
plan consumesdataproducedby its children.The root operator
produces the query result. Conceptually, each physical oper-
ator produces an array, and consumes the arrays produced by
its children. However, operators do not normally fully materi-
alize the arrays that they produce. Instead, arrays are produced
and consumed a chunk at a time. Chunks are non-overlapping
rectangular subarrays.

ArrayDB’s physical operators areiterators [11]. Specifi-
cally, they are array chunk iterators.A chunk iterator produces
its output chunks one at a time, in response toNextChunkre-
quests from its parent in the query plan. To obtain the data it
needs to produce a chunk, a chunk iterator may, in turn, make
one or moreNextChunkrequests to its children.

Achunk iterator produces thechunksof its output array ina
particular order, e.g., column-major order or row-major order.
Similarly, it expects to be able to consume its input chunks in
a particular order. In a plan, successive operators must have
compatible chunk shapes and chunk generation orders. For
example, if an operator produces chunks of shape〈3, 3〉 in
row-major order, then its parent must consume〈3, 3〉 chunks
in row-major order.

The plan generator produces plans in which the chunk
shapes of successive operators are compatible. It leaves the
operators’ chunk generation orders unspecified. Chunk gen-
eration orders are chosen during the plan refinement phase,
which is described in Sect. 4.4.

4.3.1 ArrayDB physical operators

ArrayDB has six physical operators:apply p, replicate p,
regroup p, combine p, leaf p, andreorder p. (The suffix

“ p” emphasizes that these are physical operators.) The phys-
ical operators are summarized in Fig. 10.

apply p: Theapply p operator applies an externally-defined
function to each input chunk. Each function application
produces one output chunk. The input chunk shape of an
apply p operator matches the domain box shape of the
function it is applying, and its output chunk shapematches
the function’s range box shape.

Leaf p: The leaf p operator is similar to theapply p op-
erator, except thatleaf p does not take input from other
operators. Instead,leaf p operators feed stored array data
into a plan. ArrayDB assumes that arrays are stored using
regular tiling [35,9]. A regularly tiled array is (conceptu-
ally) made up of non-overlapping subarrays (tiles). All of
the tiles are of the same shape, and they completely span
the array. The individual array elements within a tile are
stored contiguously on a physical storage device such as
a disk.
On eachNextChunkcall, leaf p invokes an externally-
defined accessor function to retrieve one array tile. Thus,
theleaf p operator’s output chunks have the same shape
as the tile shape.
A leaf p operator can be configured so that it will pro-
duce some, but not all, of the chunks of the stored array.
The chunks to be produced are determined by a set of bit
patterns which are supplied to aleaf p operator as pa-
rameters. Aleaf p operator takes one pattern parameter
for each dimension of its stored array. The patterns act as
masks on the slabs of array tiles (chunks) in each dimen-
sion. Specifically, the tiles in thejth slab in dimensioni
are produced by theleaf p operator only if thejth bit of
theith pattern parameter is set.

regroup p: The regroup p operator obtains chunks of a
given shape (C in), and produces chunks of unit size. Fig-
ure 11 illustrates the effect of a regrouping operation on
a 〈6, 6〉 array with the input chunk shape of〈2, 2〉. A
regroup p operator neither generates nor destroys array
elements. Its output array is identical to its input array,
except that it is chunked differently.
In general, aregroup p operator will have to buffer the
chunks that it consumes so that it can produce its output
chunks in the proper order. For example, in the scenario
illustrated in Fig. 11, theregroup p operator will have

A.P. Marathe, K. Salem: Query processing techniques for arrays 79

REGROUP_P

Fig. 11.Regrouping a〈6, 6〉 array with〈2, 2〉 input chunks, in row-
majororder (0-order). Input chunksareconsumed in row-majororder,
as illustrated by the arrow. Output chunks (which have unit size) are
produced in row-major order

REPLICATE_P

16

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

1 2
5 6
5 6
910
910

1314

2
6
6

10
10
14

3
7
7

11
11
15

3
7
7

11
11
15

4
8
8

12
12
16

Fig. 12.Replicate p in row-major orderwith output chunks of shape
〈2, 2〉 applied to a〈4, 4〉 array. Elements of the input array are num-
bered to indicate the order in which they will be consumed by the
operator. The output chunks, indicated by the bold lines, are pro-
duced in row-major order. The numbers in the cells of the output
array indicate the input cells to which they correspond

to buffer each row of three input chunks.8 The amount
of buffering required depends on the shape of the array
and on the shapes of the input chunks. In general, it may
also depend on the order in which theregroup p operator
produces and consumes the chunks.This issue is discussed
in more detail in Sect. 4.4.

replicate p: A replicate p operator consumes chunks of
unit sizeandproducesoutput chunkswithaspecifiedshape
Cout. The operator produces all possible (overlapping)
subarrays of shapeCout of its input array. Figure 12 shows
an example of its behavior. Likeregroup p, replicate p
must, in general, buffer more input chunks because it has
to produce output chunks in the proper order, and because
each element of the input array may appear in more than
one output chunk.
Like leaf p, replicate p can be configured so that it will
produce some, but not all, of the possible output chunks.
The chunks to be produced are specified by a set of pattern
parameters, one for each dimension of the input array. As
was the case forleaf p, the patterns act as masks. The
replicate p produces the chunk at positionx only if, for
all dimensions0 ≤ i < d, thex[i]th bit of theith pattern
parameter is set.

combine p: ArrayDB’s combine p operator was designed to
replace a logical subtree made up entirely ofsub and
merge operations. If the subtree hasx input arrays (x ≥
1), then thecombine p operator will bex-ary. Replacing
such a subtree by a singlecombine p operator avoids the
generation of intermediate arrays.
ArrayDB’s implementation ofcombine p requires that the
input andoutput chunksbeof unit size.That is, it consumes

8 Alternatively, it would be possible forregroup p to reopen its
input operator and reread chunks from its input array. However, re-
generation of the input array may be substantially more expensive
than reusing buffered chunks, and this operation is not supported in
ArrayDB.

a2 a3

a8 a9

b1 b3
b4 b6

1 1
1 1

1

1

0
0

0

0
1
1

write patterns for A

write patterns for B

COMBINE_P
filter patterns

a6
a9

a1 a2 a3
a4 a5
a7 a8

0 11

1
0
1

Input Array A

Input Array B

b1 b2 b3
b4 b5 b6

1 0 1

1
1

Fig. 13.combine p with two input arrays.Array element labels indi-
cate which input array elements appear in the output, and where they
appear

REORDER_P

Fig. 14.A reorder p operator with〈2, 2〉 chunks, row-major input,
and column-major output

its input arrays one element at a time, and produces its
output array one element at a time.
The behavior of acombine p operator is controlled by
a set of pattern parameters. For each of its input arrays,
a combine p operator accepts onefilter patternand one
write patternfor each dimension of the input array. (Filter
patterns and write patterns are computed from the patterns
of thesub andmerge operations that thecombine p op-
erator replaces. The details of the computations are given
in [23].)Thefilter patternsact asmasks todeterminewhich
of the input array’s elements will appear in the output of
combine p. An array element in thejth slab in dimension
i of the input array will appear in the output array only if
thejth bit of theith filter pattern is set. The write patterns
determine where the unfiltered input elements will appear
in the output. If thejth set bit of the dimension-i write
pattern occurs in thekth position, then elements from the
jth unfilteredi-slab in the input are placed in thekth i-slab
in the output. The net effect of the filter and write patterns
is to map, in each dimensioni, i-slabs of the input array
to i-slabs of the output array. The mapping is one-to-one
and onto, and is, in general, partial. Figure 13 shows an
example of the operation of acombine p operator.

reorder p: Thereorder p operator reorders the chunks of
its input array. It does not change the chunk shape, and
it does not affect the values of the chunk elements. For
example, areorder p operator can consume array chunks
in row-major order and produce them in column-major
order, as illustrated in Fig. 14.Reorder p buffers its entire
input array so that it can produce its output chunks in the
correct order. Note that in the sense of relational query
optimization, chunk order is aphysicalproperty— that is,
a property of the implementation plans that is not visible
at the logical level.Reorder p then plays the role of a
physical propertyenforcer.

80 A.P. Marathe, K. Salem: Query processing techniques for arrays

APPLY APPLY_P

REPLICATE_P

T
REGROUP_P

T

Fig. 15.Plan for anapply node

T1

MERGE

MERGE

SUB

SUB

SUB

T T2 3

COMBINE_P

REGROUP_PREGROUP_P REGROUP_P

T1 T2 T3

Fig. 16.Plan for a subtree made up ofsub andmerge nodes

4.3.2 Plan generation algorithm

A query evaluation plan is generated by a recursive, top-down
translation of an AML expression tree. The AML operators
are translated into physical operators as follows.

Non-leafapply: If the root operator of the AML expression
tree is a non-leafapply with domain boxDf and range
boxRf , anapply p operator, areplicate p operator, and
a regroup p operator are added to the plan as shown in
Fig. 15. Theapply p operator’s input chunk shape isDf

and its output chunk shape isRf . Thereplicate p op-
erator generates only those chunks required by the subse-
quentapply p operator. Thus, the pattern arguments for
the replicate p are the pattern arguments of the AML
apply operator. The purpose of theregroup p operator is
to change thechunksproducedby the input expressionT to
the unit chunks required by the subsequentreplicate p
operator. Note that theregroup p andreplicate p op-
erators change, in two steps, the (arbitrary) chunk shape
produced by input expressionT to match the domain box
shape of theapply’s external function.

Leafapply: If the root node of the expression tree is a leaf
apply, a leaf p operator is generated. Theleaf p oper-
ator’s patterns are those of the leafapply operator in the
AML query.

Sub ormerge: If the root operator of the AML expression
tree is asub or a merge, the plan generator finds the
maximal tree ofsub andmerge operations rooted there.
The tree is translated into ak-ary combine p operator
and k regroup p operators, wherek is the number of
leaves of the tree. This translation is shown in Fig. 16.
Thecombine p operator’s write and filter patterns are de-
rived from thesub andmerge patterns. The purpose of the
regroup p operations is to produce chunks of unit size,
as required by thecombine p operator.

The plan generation algorithm converts the AML expres-
sion given inEq. (9) for the optimizedTVI query to the iterator
plan shown in Fig. 17a.

4.4 Plan refinement

The plan refinement phase minimizes thememory costof an
AML iterator plan.

Definition 17 (Memory cost).Thememory costof an AML
iterator plan is the sum of the buffer space requirements of the
individual operators in the plan. Thememory costs of individ-
ual plan operators are defined in Fig. 10.

Reducingmemorycost of aplan is important because it can
make the difference between a plan that can execute entirely in
memory and one that cannot. In the latter case, it is necessary
to split the plan by materializing partial results on secondary
storage, with a corresponding increase in execution cost.

The plan refinement phase achieves memory cost reduc-
tion in two ways. First, it eliminates unnecessary operations
from the plan. Second, it determines the order in which each
plan operator will produce and consume array chunks. The
orders are intelligently chosen such that the plan’s memory
cost is minimized.

The first task is relatively straightforward. Aregroup p
operator is unnecessary if its input and output chunk shapes
are the same. Acombine p operator is unnecessary if: (1) it
has only one child, and (2) its filter patterns consist only of
ones. Eliminating unnecessaryregroup p andcombine p op-
erations not only reducesmemory cost, but also avoids unnec-
essary data copying. The plan shown in Fig. 17a contains five
unnecessaryregroup p nodes (indicated by arrows). They are
deleted during the plan refinement phase, resulting in the plan
shown in Fig. 17b.

The second task is more involved. As was noted in
Sect. 4.3, each physical operator produces and consumes ar-
ray chunks in a particular order. Many chunk orders are pos-
sible. The chunk order is important because it can affect the
number of chunks that must be buffered byregroup p and
replicate p, thus affecting the memory costs of these two
operators.

Figure 18 illustrates how chunk order affects memory cost
for the case of aregroup p operator with a〈2, 4〉 input chunk
shape operating on a〈8, 8〉 array. The left-hand side of the
figure illustrates how the operation is performed in row-major
order. The solid arrow indicates the order in which the output
chunks (unit size) must be produced. Clearly, theregroup p
operatormust buffer at least two input chunks if it is to produce
the output chunks in the proper row-major order. The right-
hand side of the figure shows the same operation performed in
column-major order. In this case, theregroup p must buffer
four input chunks. Modifying the shape of the array would
change this comparison. For example, if the array was wider,
the memory requirement for row-major order would increase,
but the requirement for column-major order would remain
unchanged.

Because operators consume the chunks of their input ar-
rays in the order in which they are produced, the chunk orders
for the operators in a plan are not independent of one another.
Nevertheless, a producer and a consumer can use different
chunk orders if areorder poperator is inserted between them
in the plan. Areorder p operator itself has a memory cost,
since it must buffer chunks to reorder them. To determine the
best chunk order for each operator, the optimizermust balance
theadditional cost of reorderingwith thepotential downstream
benefits it may bring.

ArrayDBuses a dynamic programming algorithm to select
the chunk orders of a plan’s operators. If an operator’s input
array consists ofk chunks, there arek! ways those chunks

A.P. Marathe, K. Salem: Query processing techniques for arrays 81

<1,1>

REPLICATE_P

APPLY_P
<1,1,2>

tvi

<1,1>

REGROUP_P
<1,1>

REGROUP_P

REPLICATE_P

REGROUP_P

REPLICATE_P

COMBINE_P

<3,3,1>

<1,1>

<1,1> <1,1>

<1,1>

<1,1> <1,1>

<3,3,1>

REGROUP_P REGROUP_P
<1,1> <1,1>

REPLICATE_P

COMBINE_P

APPLY_P tvi

(b)

REPLICATE_P

COMBINE_P

REGROUP_P
<1024,1024,1> <1024,1024,1>

<1,1>

<1,1> <1,1>

<1,1> <1,1>

<1,1><1,1>

<1,1>

<1,1,2>

<3,3,1> <3,3,1>

REPLICATE_P

COMBINE_P

REGROUP_P

LEAF_PLEAF_P

(a)

COMBINE_P

REGROUP_P

COMBINE_P

REGROUP_P
<1024,1024,1> <1024,1024,1>

<1,1> <1,1>

LEAF_PLEAF_P

APPLY_P nr APPLY_P nr APPLY_P nr APPLY_P nr

Fig. 17.Initial (a) and refined (b) plans for the optimized TVI query (Eq. 9). Each edge is labeled with the shape of the chunks that flow along
that edge. Arrows are used in indicate operators in the initial plan that are unnecessary. These are eliminated in the refined plan

dim. 0

dim. 1

<2,4> chunks consumed

row-major order (0-order)
chunk production/consumption

column-major order (1-order)
chunk production/consumption

Fig. 18.Regrouping in0-order and in1-order

could be ordered. The optimizer does not consider all such
orderings. Instead, it considersd possible iteration orders for
each operator, whered is the maximum dimensionality of any
array appearing in the AML plan. Specifically, it considers
i-order, for0 ≤ i < d, as described in Definition 18. For
example,2-order means the chunks are sorted in dimension 2,
then dimension 0, then dimension 1, then dimension 3, then
dimension 4, and so on. In two-dimensional arrays,0-order
is row-major order, and1-order is column-major order. Other
orders, such as the Z-curve or the Hilbert curve [1], are also
possible, and possibly even useful, especially if chunks in the
base arrays have been laid out in such an order on secondary
storage. For simplicity’s sake, the optimizer does not consider
them.

Definition 18 (Chunk i-order). Chunk i-order (i-order for
short) for an arrayA is determined by sorting the chunks of
A using their positions in dimensioni as the primary sort key,
and their positions in the remaining dimensions, in order of
increasing dimension number, as secondary sort keys.

For ann-operator plan, there aredn possible assignments
of chunk orders to plan operators. The dynamic program-
ming algorithm finds a minimum memory cost assignment
in O(nd2) time. The algorithm proceeds bottom up through a
plan tree. At each nodex, it determines for each0 ≤ i < d
the minimum total memory cost of the plan subtree rooted at
x, assuming thatx’s output is ini-order. This cost, denoted by
Ci(x), is determined for each non-leaf node by the formula:

Ci(x) = ci(x) +
∑

y∈X min(Ci(y),

minj �=i(Cj(y) + cji(reord(y)))),
(10)

whereX is the set of children ofx, ci(x) is the memory cost
of operatorx itself in i-order, andcji(reord(y)) is the cost
of a j-order toi-orderreorder p operator inserted between
y andx in the plan. In other words, to producex’s result in
i-order, each child ofx either produces its result ini-order, or
it produces its result in some other order and areorder p is
inserted after that child to convert its output toi-order before
it reachesx. If x is aleaf p operator, thenCi(x) = ci(x).

82 A.P. Marathe, K. Salem: Query processing techniques for arrays

With each plan tree nodex, the dynamic programming al-
gorithmassociatesacost tablewithdentries.Theith entry is of
the form (Ci(x), choice1, choice2, . . . , choice |X |). choicej

records the iteration order for thejth child (1 ≤ j ≤ |X |)
that was used to achieve the minimum subtree costCi(x).
When the dynamic programming algorithm finishes,d plans
are available to evaluate the AML expression, each one gen-
erating the result array in a certain order. Out of thesed plans,
the cheapest plan is chosen for evaluation. The chunk orders of
the operators in the cheapest plan are determined using a final
top-down traversal of the plan tree to select the appropriate
“choice” entries from the cost tables. When the chunk orders
of two successive operators differ, areorder p operator is
inserted between them in the plan.

The costci(x) of a particular operatorx depends on de-
tails of its implementation, such as the granularity of memory
allocation. Each ArrayDB operator has an associated costing
method which can be invoked by the optimizer to obtain a
cost estimate for evaluation of that operator. The cost estimate
used for each of ArrayDB’s physical operators — the buffer
space required to implement the physical operation in a cer-
tain i-order — is given in Fig. 10. These estimates assume
that the unit of memory allocation is a slab of input chunks.
In addition, each operator is charged for a buffer to be used to
pass output chunks to its parent in the query plan. This buffer
is just large enough to hold one output chunk.

5 The query suite

One way to evaluate performance of a DBMS is to run it on a
benchmark. Since there are no benchmarks for array database
systems, we created a suite of array queries to be used to
measure ArrayDB’s performance. The queries in the suite are
described in this section. The empirical results obtained by
measuringArrayDB’s performance on the queries in the suite
are presented in Sect. 6.

The suite contains five queries from the digital image
processing domain. For easy reference, the queries in the
suite are given the following names: TVI, NDVI, DESTRIPE,
MASK, and WAVELET. TVI, NDVI, and DESTRIPE are
based on common image processing operations described
in [20]. MASK was inspired by a query described in [21].
WAVELET uses wavelet reconstruction as a method of con-
structingahigh-resolution image from four low-resolution im-
ages [38]. For simplicity and uniformity, all the queries except
WAVELET are constructed such that they manipulate one or
more bands of a multi-band satellite image such as the image
A shown in Fig. 1. For brevity, bands1 through7 of that image
will be denoted by the namesA1 throughA7.

5.1 DESTRIPE

Thedestripingprocedure [20, p. 483]—anoise removal oper-
ation— is an example of an image rectification and restoration
operation. Such operations correct distorted or degraded im-
age data to create amore faithful representation of the original
scene.

Somemulti-spectral scanners aboard satellites sweepmul-
tiple scan lines simultaneously. To do that, they have multiple

detectors in each band. Themultiple detectors— for example,
six — are carefully calibrated and matched prior to the satel-
lite launch. However, their radiometric response tends to drift
over time, resulting in relatively higher or lower values along
every sixth line in the image data (for example). Valid data is
present in the defective lines but it must be normalized with
respect to its neighboring observations. The normalization is
performed by subtracting a valueδ from every sixth line in
the original image. The valueδ is determined by computing a
histogram for scan lines 1, 7, 13 and so on; a second one for
lines 2, 8, 14, and so on; and so forth. These histograms are
compared in terms of their mean and median values to arrive
at the value ofδ. Lillesand and Kiefer show an illustration of
the destriping procedure [20, p. 484].

For concreteness, letδ = 25. Suppose that theapply func-
tion deduct25with unit-sized domain and range boxes per-
forms the noise removal for one pixel value. Theapply pat-
tern in dimension0 can be used to applydeduct25selectively
to the scan lines 1, 7, 13, and so on. The corrected lines can
then be merged with a subsampled version of the original im-
agewhere the problem lines have been eliminated. In theAML
expression below, it is assumed that destriping is performed on
band five. The AML expression forA5 is sub2(0000100, A);
the other bands can also be extracted fromA similarly.

merge0(105,
apply(deduct25 , A5,P0 = 105), sub0(015, A5))

(11)

5.2 TVI

Computingvegetation indicesusingbetween-banddifferences
and ratios is a commonly used image enhancement method.
Image enhancement aims to create enhanced images from the
original image data to increase the amount of information that
can be visually interpreted from the data.

The TVI computation and its expression in AML have
already been described in detail in Sect. 1 and Sect. 3, re-
spectively. The following AML expression for TVI is just an
abbreviated form of Eq. (6).

apply(tvi ,
merge2(10,apply(nr , A3),apply(nr , A4)))

(12)

In the above expression,Dtvi = 〈1, 1, 2〉, Rtvi = 〈1, 1〉,
Dnr = 〈3, 3〉, andRnr = 〈1, 1〉.

5.3 NDVI

Like TVI, NDVI (normalized difference vegetation index) is
also a vegetation index. NDVI is computed from data in the
AVHRR (advanced very high-resolution radiometer) sensor’s
bands one and two using the formula

NDVI =
b2 − b1
b2 + b1

, (13)

whereb1 andb2 represent data from bands one and two, re-
spectively [20, p. 448]. Vegetated areas have positive NDVI
values; areaswith clouds,water, andsnowhavenegativeNDVI
values; rock and bare soil giveNDVI values near 0. It is prefer-
able that the data valuesb1 andb2 be in terms of radiance or

A.P. Marathe, K. Salem: Query processing techniques for arrays 83

reflectance [20, p. 448],9 rather than in units of pixel intensi-
ties.

Suppose that the pixel intensities in bandsA1 andA2 are
in the range0 to 255. Pixel intensity and absolute radiance are
related to each other by the following formula [20, p. 481]:

bout =
LMAX − LMIN

255
· bin + LMIN . (14)

Here,bout is the absolute spectral radiance value,bin is the
pixel intensity,LMIN is the spectral radiance corresponding
to the pixel intensity of 0, andLMAX is the spectral radiance
required to generate the maximum pixel intensity of 255. The
constantsLMIN andLMAX are sensor-specific.

Suppose that theapply functiondn2arperforms the con-
version described byEq. (14), and that theapply functionndvi
computes the NDVI as per Eq. (13). The AML query for the
NDVI computation can now be given as follows.

apply(ndvi ,
merge2(10,apply(dn2ar , A1),apply(dn2ar , A2)))

(15)

In the above expression,dn2ar has unit-sized domain and
range boxes,Dndvi is 〈1, 1, 2〉, andRndvi is 〈1, 1〉.

5.4 MASK

MASK is an example of an image classification operation.
Imageclassification categorizesall thepixels in adigital image
into one of several classes. MASK’s computation is described
as follows [21]: In an image, retrieve all the pixels whose
intensities, when averaged with all the neighboring pixels, are
between two constant values, say 10 and 100.

The result pixels of the MASK query might not form an
AML array and therefore, MASK’s result is defined to be a
binary image containing a ‘1’ in each position where the pixel
satisfies the criterion, and a ‘0’ in all the other positions —
these are the two classification classes.

Suppose that band one contains the originaln× n image,
and that the functionavg9with Davg9 = 〈3, 3〉 andRavg9 =
〈1, 1〉 calculates the average of the nine pixels (a central pixel
and its eight neighbors), compares it to the two constants 10
and 100, and returns either ‘0’or ‘1’. TheAML expression for
MASK is as follows.

apply(avg9 , A1) (16)

Due toapply’s semantics, the output array of MASK has
the shape〈n − 2, n − 2〉. If necessary, such a mask can be
expanded — usingmerge operators — by adding two rows
and two columns to it. The boundary pixels can be arbitrarily
assigned to the class ‘0’. (Otherwaysof handling theboundary
condition are also possible.)

5.5 WAVELET

WAVELET’s computation is an example of multi-resolution
image processing. In multi-resolution image processing, im-
ages need to be viewed at multiple resolutions. For example,

9 Radiance is a measure of the “brightness” of a point on the
ground, whereas reflectance is a measure of the amount of light re-
flected by a surface. Radiance and reflectance are related [20, p. 22].

h 1

h 1

h 2

h 1

h 2

h 2

A

B

C

D

E

F

G

low-frequency
components of A

high-frequency
components of A

dim. 1

dim. 2dim. 0

Fig. 19.Wavelet decomposition

h

h

low

D

E

F

G

B

C

H

I

J

k

A

high resolution

dim. 1

dim. 0 dim. 2

images
resolution

image

Fig. 20.Wavelet reconstruction

in remote sensing, the spatial resolution required to study an
urban area is usually much different than that needed to study
an agricultural area or the openocean [20, p. 599]. Thewavelet
transform is one way to decompose an image into many com-
ponents so that the image can be reconstructed at multiple
resolutions as needed. To understand howwavelet reconstruc-
tion works, it is first necessary to describe the wavelet-based
image decomposition.

Figure 19 shows ann × n imageA on the left. Wavelet
decomposition transforms each row ofA as follows. A row is
logically divided inton

2 groups of two adjacent pixels each.
(n is even.) Suppose that the pixel values in a group areb and
c. As per the wavelet transform with the Haar basis [38], two
functionsh1 andh2, defined by the following equations, are
applied tob andc.

h1 = (b + c)/2 (17)

h2 = (b − c)/2 (18)

Notice thath1 +h2 = b and thath1 −h2 = c. That is, the
transform is invertible without loss of information.

InFig. 19, imageB gathers the results of all theh1 function
applications, and imageC gathers the results of all theh2
function applications. ImagesB andC have shapesn × n

2 .
Next, the decomposition just described is applied to all the
columns in imagesB andC. As a result, the column lengths
shrink by half, and a set of fourn2 × n

2 imagesD, E, F , and
G is generated.D contains the low-frequency components
of A, whereasG contains the high-frequency components of
A. The decomposition may then proceed recursively on the
imageD. (n is conveniently chosen to be a power of two.)
The decomposition endswhen a set of “small”— for example,
32 × 32 — images is generated.

Wavelet reconstruction combines four low-resolution im-
ages to form a high-resolution image. Figure 20 illustrates

84 A.P. Marathe, K. Salem: Query processing techniques for arrays

wavelet reconstruction. Image names have been retained from
Fig. 19. Suppose thatD, E, F , andG aren

2 × n
2 images.

Wavelet reconstruction begins by combiningD andE by
putting one atop the other in dimension2 to generate the image
H. Likewise,F andG combine to formI.10 Suppose that (d,
e) is a pair of matching pixels inH with d coming fromD
ande fromE. According to the Haar wavelet transform, two
functionsĥ1 andĥ2 are applied to the pair (d, e) as follows.

ĥ1 = d + e (19)

ĥ2 = d − e (20)

In Fig. 20, the function̂h performs the tasks of̂h1 andĥ2
by producing a2×1 array with values (d+e, d−e) as output
for each pair of pixels (d, e). Therefore, the result of applying
ĥ toH (imageB) is twice as high asH. Similarly,ĥ applied to
I produces the imageC. The imagesB andC of shapesn× n

2
are put one atop the other to form the imageJ .11 The function
k̂ is similar toĥ except that one application ofk̂ produces a
1×2 array. Therefore, applyinĝk toJ produces ann×n high-
resolution imageA. Wavelet reconstruction can continue on
the imageA by combining it with three othern × n images.

Both wavelet decomposition and wavelet reconstruction
can be expressed using AML queries; the following descrip-
tion only shows how wavelet reconstruction is achieved us-
ingAML. Specifically, it is shown howAML can express one
stepofwavelet reconstructionwhereby the four low-resolution
imagesD, E, F , andG in Fig. 20 combine to form the high-
resolution imageA. The four low-resolution images are typ-
ically stored together in one array. Suppose that the arrayX
storesD, E, F , andG concatenated in dimension0. D can
be extracted fromX as follows; the other three images can be
extracted fromX similarly.

D = sub0(1n/203n/2, X) (21)

The AML expressions for the imagesB, C, andA are as
follows. (Dĥ = 〈1, 1, 2〉,Rĥ = 〈2, 1, 1〉,Dk̂ = 〈1, 1, 2〉, and
Rk̂ = 〈1, 2, 1〉.)
B = apply(ĥ,merge2(10, D,E)) (22)

C = apply(ĥ,merge2(10, F,G)) (23)

A = apply(k̂,merge2(10, B,C)) (24)

It is an interesting fact that all of the wavelet decomposi-
tion and reconstruction transforms (and not just the ones with
the Haar basis functions that we have chosen) have recursive
structures similar to the ones shown in Fig. 19 and Fig. 20.
Therefore, AML can express all such transforms.

6 Experimental results

This section presents an empirical evaluation ofArrayDB.The
evaluation is intended to answer two questions. First, are the
10 These two steps are unnecessary; they are included only because

later on in this section, AML will be used to express the wavelet
reconstruction computation. Having these steps facilitates a simple
translation of wavelet reconstruction to AML.
11 Once again, this step is performed only because it facilitates a

simple translation of wavelet reconstruction to AML.

query optimization techniques presented in Sect. 4 effective?
That is, do they reduce the cost of evaluating an array query?
The results presented in Sects. 6.2.1 and 6.2.2 show that Ar-
rayDB’s optimizations can significantly reduce the time and
space required for query evaluation with little optimization
overhead. Second, how efficient are ArrayDB’s optimized,
iterator-based evaluation plans? In absolute terms, can Ar-
rayDB execute array queries quickly? The results presented
in Sect. 6.3 show that ArrayDB’s query evaluation times are
close to those of custom, hand-coded programs in some cases,
but not in others. These results suggest several avenues of im-
provement for ArrayDB.

6.1 Workload and evaluation environment

In all of theexperimentsdescribed in this section, theworkload
consists of the query suite described in Sect. 5. Figure 21
summarizes the default properties of the workload, which are
applicable unless otherwise indicated. For each of the first four
queries, the input array is a seven-band,1024 × 1024 multi-
spectral imageof theWashington,DCarea.For theWAVELET
query, the input array consists of four concatenated512 ×
512 images produced by thewavelet decomposition procedure
described in Sect. 5.5. (ForWAVELET,n in Eq. (21) is1024.)
Unless specified otherwise, all input arrays were laid out in
4KB tiles of shape〈64, 64, 1〉. The output chunk shapes of
the ArrayDBleaf p operators match the tile shape, so that
any stored tile can be retrieved with a single I/O operation.

All experimentswere run on aSunUltra-10 computer with
128MB of main memory, running the Solaris 2.6 operating
system. The “direct I/O” feature of Solaris 2.6 was used to
bypass the file system’s buffer cache, so all runs were effec-
tively cold runs. The machine was run in single-user mode to
minimize the pollution of measured wall-clock running times
by operating system multi-tasking.

Unless otherwise indicated, each reported running time is
an average over approximately twenty runs. Confidence inter-
vals were calculated at a 99% confidence level. Confidence
intervals are not shown in the results unless they are at least
5% of the mean running time. This was done to reduce clutter
in the graphs.

In the descriptions of empirical results, the phrase “opti-
mization on” means that all of the AML query optimizations
discussed in this paper were enabled; the phrase “optimization
off” means that the logical rewriting step and the step in the
plan refinement phase that deletes no-op physical operators
from an AML plan were disabled.

6.2 Effectiveness of optimization

This paper describes two important array query optimization
techniques. The first one saves disk I/O and CPU time by
avoiding the reading and processing of array data that are not
needed to compute the query result. The experiments reported
in Sect. 6.2.1 demonstrate the effectiveness of this technique.
The second technique reduces the buffer space requirement
of an array query plan by controlling iteration orders. The
experiments reported in Sect. 6.2.2 show the effectiveness of
this technique.

A.P. Marathe, K. Salem: Query processing techniques for arrays 85

Input array Input array Input tile Input tile AML query
Query shape size (MB) shape size (KB) expression

TVI 〈1024, 1024, 7〉 7 〈64, 64, 1〉 4 Equation 12
NDVI 〈1024, 1024, 7〉 7 〈64, 64, 1〉 4 Equation 15

DESTRIPE 〈1024, 1024, 7〉 7 〈64, 64, 1〉 4 Equation 11
MASK 〈1024, 1024, 7〉 7 〈64, 64, 1〉 4 Equation 16

WAVELET 〈2048, 512〉 1 〈64, 64〉 4 Equation 24

Fig. 21.Query workload characteristics

xy

clipping window

output array

Fig. 22.Clipping window

6.2.1 Rewrite optimization

To measure the effect of rewrite optimization, we applied a
clipping window to the results of each of the queries in the
suite, as illustrated in Fig. 22. Theclipping fractionis defined
as the size of the clipping window divided by the size of the
full output array. Clipping is implemented using twoAMLsub
operations. If the original workload query expression isQ, and
the clipping fraction isf2, the expression for the clipped query
is:

sub1(0(1−f)Q[1]/21fQ[1]0(1−f)Q[1]/2,
sub0(0(1−f)Q[0]/21fQ[0]0(1−f)Q[0]/2, Q)),

(25)

whereQ is the shape of the result of queryQ. We expect the
query evaluation time to vary with the clipping fraction.

Figure 23 shows the wall-clock query running times as a
function of the clipping fraction, with optimization on. Fig-
ure 24 shows the corresponding speedup curves. Query eval-
uation times decrease with the clipping fraction, as expected,
because the optimizer is able to “push” the clipping window
down into the query expression, reducing the number of func-
tion applications and the number of stored tiles to be retrieved
from the disk.

Ideally, query evaluation times should be proportional to
the clipping fraction. However, as Fig. 24 shows, the speedup
falls off as the clipping fraction gets smaller. There are several
reasons for this. First, there is some query evaluation overhead
— for example, optimization time and plan initiation time
— that is independent of result size. Second, I/O costs do
not decrease smoothly with the clipping fraction because tile
sizes are fixed. Any tile that is at least partially covered by the
clipping window is retrieved by the query evaluation plan.

When rewrite optimization is disabled, evaluation times
for the clipped queries are essentially independent of the clip-
ping fraction. (This is not shown in Fig. 23.) When optimiza-
tion is disabled, the query plan generates the full query result
and then clips it. Not surprisingly, the cost of generating the
full query result dominated the query evaluation times.

In all of the experiments that we performed, query opti-
mization times were insignificant compared to the query eval-
uation times, unless the query evaluation time was very small.

0

2

4

6

8

10

12

14

16

1/1 1/4 1/16 1/64 1/256
ru

nn
in

g
tim

e
(w

al
l-c

lo
ck

)
in

 s
ec

.

clipping fraction

TVI
NDVI

DESTRIPE
MASK

WAVELET

Fig. 23.Running times of clipped queries with optimization on

1

4

16

64

256

1/1 1/4 1/16 1/64 1/256

sp
ee

du
p

clipping fraction

TVI
NDVI

DESTRIPE
MASK

WAVELET
Ideal

Fig. 24.Speedup curves for clipped queries with optimization on

In absolute terms, the query optimization time did not exceed
0.3s in any of our experiments.

6.2.2 Optimization of iteration order

ArrayDB’s optimizer uses a dynamic programming algorithm
to select the iteration orders of each of the operators in a query
plan.Todetermine theeffectiveness of this technique,wemea-
sured the total memory requirement of the query evaluation
plan, with and without optimization.We varied the tile shapes
of the stored input arrays, since the tile shape affects memory
requirement of a plan.

The results of this experiment are summarized in Fig. 25.
For the sake of brevity, only the results for the TVI query
are shown. The plans for the other queries exhibited similar

86 A.P. Marathe, K. Salem: Query processing techniques for arrays

Tile shape Memory costs of TVI plans(in KB)
(tile size Optimization on Optimization off
= 4KB) Iteration Order-0 Order-1 Order-2

Cost order cost cost cost

〈512, 8, 1〉 33 1 2222 133 2222
〈256, 16, 1〉 49 1 2337 248 2337
〈128, 32, 1〉 82 1 1853 477 2566
〈64, 64, 1〉 147 0 936 936 3025
〈32, 128, 1〉 82 0 477 1853 2566
〈16, 256, 1〉 49 0 248 2337 2337
〈8, 512, 1〉 33 0 133 2222 2222

Fig. 25.Memory costs of TVI plans with and without optimization

properties. The figure’s first column shows the shape of the
input array’s tile. The second column shows the total memory
requirement of the plan generated by ArrayDB, with the op-
timizer enabled. (These total memory requirements includes
the data buffer space required by all of the plan’s operators,
but not the buffer used to hold the query result, since this was
the same size in all the cases.) The third column shows the
iteration order selected by the optimizer for the plan opera-
tors. In this experiment, the optimizer always chose to assign
the same iteration order to all of the operators in a given plan,
though this is not always the case. The final three columns
show the total memory cost when the optimizer is disabled
(no rewrite optimization or iteration order selection). Three
values are shown, one assuming that all operators execute in
0-order, one assuming that all operators execute in1-order,
and one assuming that all operators execute in2-order. (Since
the input array is three dimensional, these are the only orders
that are considered.)

Several conclusions can be drawn from the data in Fig. 25.
First, iteration order matters. The last three columns show that
a bad iteration order can be an order of magnitude costlier
than a good one. Second, the best choice of iteration order
varies with the shape of the input array’s tiles. Unless the
physical layout is fixed for all data (which is not a good idea
because different workloads might benefit from different lay-
outs), evaluation order should be chosendynamically to reflect
layout of data used by a particular query. In Fig. 25, notice that
any fixed choice of iteration orderwill result in costly plans for
at least some of the input tile shapes. The ArrayDB optimizer
has the flexibility to adapt to the physical design, choosing the
right iteration order for each input tile shape.

Finally, thememory cost withArrayDB optimization on is
less than the cost with optimization off, even when both plans
use the same iteration order. For example, when the tile shape
is 〈64, 64, 1〉, the optimized plan requires147KB and runs in
0-order, while the unoptimized0-order plan requires936KB.
This difference is due to rewrite optimization. Although both
plans iterate in0-order, the optimized plan generates smaller
intermediate results (because of rewrites), and so requires less
buffer space. Thus, rewrite optimization helps to reducemem-
ory cost as well as query evaluation time.

6.3 Quality of ArrayDB’s query evaluation plans

To gauge the quality of ArrayDB’s query evaluation plans, we
compared them to custom,manually generated, query-specific

Query ArrayDB C++ ArrayDB slower
CPU time (s) CPU time (s) by a factor of

TVI 12.53 2.22 5.64
NDVI 8.05 1.47 5.48

DESTRIPE 5.44 0.03 181.33
MASK 3.67 0.34 10.79

WAVELET 9.36 0.18 52.00

Fig. 26.Comparison of ArrayDB versus C++ programs

C++ programs. For each of the five queries in the query suite,
we wrote a C++ program to evaluate the query. The C++ pro-
grams were given as much memory as they required; they
were not limited to the amounts of memory consumed by the
corresponding ArrayDB plans.

We do not expect the generated plans to match the running
times of the custom programs.12 The purpose of this experi-
ment was to measure the cost (in terms of query evaluation
time) of the declarative interface and physical data indepen-
dence offered by an array database system, and to identify and
determine the causes of any performance problems.

In these experiments, an input array tile shape of
〈1024, 1024, 1〉 was used. That is, the input arrays were laid
out in band-major order. This simplifies I/O for the C++ pro-
grams. No clipping was applied in these experiments. Each
query generates its full output array.

Figure 26 shows the query evaluation times for ArrayDB
and the custom C++ programs for each of the queries in the
suite. The figure shows CPU times, rather than wall-clock
times. For eachof thequeries exceptDESTRIPE, theArrayDB
plan does the same amount of disk I/O as the corresponding
C++ program does.We have focused on the CPU times, since
it is principally in CPU time that the ArrayDB and C++ plans
differ. The last column of Fig. 26 shows the factor by which
ArrayDB was slower than the corresponding C++ program.

For TVI, NDVI, and MASK, ArrayDB comes relatively
close to the custom programs. ArrayDB’s operator imple-
mentations are not heavily optimized, and we believe that
much of the performance difference in those three cases could
have been eliminated by better implementations. For the DE-
STRIPE andWAVELET queries, however, ArrayDB is much
slower, and we can identify specific reasons for the difference
in speed. One is that ArrayDB’s plans do more copying and
reorganization of data than the custom programs do. Other
problems include ArrayDB’s inability detect and exploit re-
peated subexpressions in AML queries, and the lack of an
in-place update operation.

The data copying overhead occurs in WAVELET and
DESTRIPE for the following reasons. The AML query for
WAVELET contains threemerge operators becauseapply is
a unary operator and the inverse Haar basis functions are bi-
nary operations. To apply the inverse Haar transformations,
AML must first combine the two input arrays (usingmerge)
into a single array. In the resulting plan, eachmerge is im-
plemented by acombine p operator. ArrayDB’s implementa-
tion of thecombine p operator requires explicit data move-

12 A similar observation was made by Musick and Critchlow [29]
when they compared performance of relational DBMSs and OR-
DBMSs executing point, multi-point, and range queries with that of
native Unixfwrite andfreadsystem calls.

A.P. Marathe, K. Salem: Query processing techniques for arrays 87

ment. The C++ WAVELET program avoids data movement
by stepping through the elements of the two arrays in lock
step, performing calculations on-the-fly (and thus also avoid-
ing function-call overhead). ForDESTRIPE, theC++program
reads the desired band and simply corrects every sixth row in
it, making updates in place. ArrayDB first computes the cor-
rected rows, then computes the uncorrected rows, and then
merges the arrays formed in the previous two steps. Each of
these steps involves copying data.

ArrayDB’s failure to detect common subexpressions fur-
ther affects DESTRIPE. In the plan for DESTRIPE,ArrayDB
reads the base array twice from disk, once to compute the
corrected rows and once to extract the uncorrected rows.13

With common subexpression detection, one reading would
have been avoided.

In summary, these experiments have identified some of the
limitations of ArrayDB’s query evaluation plans: the need to
copy data as it flows through plan operators, lack of support
for in-place update, and the lack of a binary apply operator.
It is not clear whether these issues are best addressed at the
language level, or in the optimizer and evaluator, or both. For
example, a more sophisticated optimizer, with a larger palette
of plan operators, might be able to identify what is, in effect, a
binaryapply operation or an in-place update and implement
it using an appropriate physical operator. On the other hand,
if AML had a binaryapply operator or anupdate operator,
the optimizer would have a much easier time identifying such
operations.We leave the exploration of these issues for future
work.

7 Related work

Languages which support array manipulation can be classi-
fied into two broad categories:collection-orientedlanguages
and scalar-oriented languages. A language is considered
collection-oriented if collection types (for example, sets, se-
quences, arrays, vectors, and lists) and operations for manip-
ulating them “as a whole” are primitive in the language [37].
APL, the ImageAlgebra [34], FORTRAN90, andAMLareex-
amples of collection-oriented languages with array types. In
scalar-oriented languages, such as C and Pascal, collections
are manipulated element by element.

Some implementations of collection-oriented languages
perform early filtering of array data, much as ArrayDB does.
The data to be filtered are identified by lineage tracing, a kind
of data-flow analysis. The complexity of such an analysis de-
pends on the kinds of array manipulations that the language
supports. Often lineage is traced only through array operators
that operate independently on each individual element of an
array [3,5,12,42,43]. ArrayDB and AML are notable in that
they support lineage tracing (and pushdown of filtering op-
erations) through array operators that operate on rectangular
array chunks of arbitrary size [24,25].

A common optimization in collection-oriented languages
is to (effectively) combine several consecutive array opera-
tions into a composite array operation. Evaluation of the com-
posite operation avoids generating intermediate arrays, re-
duces redundant data movement, and reduces parallel loop
13 This is the reason why ArrayDB and the C++ program for DE-

STRIPE do not perform the same number of I/O operations.

synchronization overhead. Guibas and Wyatt’s influential
work on this topic [12]— performed in the context of a subset
of APL operators — has subsequently been extended [4,15,
41]. The study reported in [15] shows how to compose FOR-
TRAN 90 operators such as RESHAPE, EOSHIFT, MERGE,
WHERE constructs, and array reduction operations. The re-
placement of the contiguoussub andmerge operations by a
singlecombine p operation inArrayDB is also an example of
such an array function composition. Common subexpressions
and one-to-many array operations are problematic to handle
in this optimization framework [15].

In scalar-oriented programming languages, array traver-
salsmust becodedexplicitly, oftenusingsome formof looping
control structure. Because of the big difference in the perfor-
manceofCPUandmemory (be itmainmemoryor cache), loop
optimizations try to improve the temporal and spatial locality
of array accesses so that elements accessed together (tempo-
rally or spatially) can be found in fastermemories.Many loop-
related optimizations are known [28]. Some, such astiling [28,
p. 694], improve cache locality by manipulating the order in
which array elements are visited. Other optimizations, such
as loop interchange, skewing, reversal, and the order in which
they can be applied to loop nests have been studied [44]. Ar-
ray restructuring is a loop-related optimization that changes
the array layout inmemory so that spatial data locality of array
element accesses in a loop improves [18]. Array layouts cho-
sen for one loop may affect performance of subsequent loops,
and therefore, it may be necessary to find globally advanta-
geous array layouts.

Such loop-related optimizations are similar in spirit to the
iteration order optimization implemented for AML by Ar-
rayDB. Although the optimizations are different, both seek
to exploit iteration order to reduce costs associated with the
memory hierarchy. In case of ArrayDB, iteration order selec-
tion producesmemory-efficient plans. In such plans, pieces of
several arrays can be fit into smaller and faster memories, and
therefore, memory hierarchy is well utilized.

7.1 Arrays in relational database management systems

Two approaches can be taken to support arrays in relational
databasemanagement systems or extended relational systems.
The first approach is to store each array element as a relational
tuple in which the element’s indices (as well as its value)
are represented explicitly. Array manipulations can then be
defined using SQL or some other relational query language.
However, SQL is not particularly well-suited to the kinds of
array queries described in this paper [23].

The second approach uses array-valued relational at-
tributes. Such attribute values can be represented using bi-
nary large objects (BLOBs).Alternatively, in object-relational
DBMSs such as Illustra [16], Postgres [40], Paradise [8], and
Informix Universal Server [31], an array type with associated
methods can be defined. Standardization initiatives are un-
derway for an image data type: Part 5 of the upcoming SQL
standard for multi-media (SQL/MM) is devoted to still im-
ages [39].

If BLOBs are used, the DBMS stores arrays but provides
little support for array manipulations. It may be possible to
select a portion of an array by retrieving only the correspond-

88 A.P. Marathe, K. Salem: Query processing techniques for arrays

ing portion of the array BLOB, but other array manipulations
would have to be implemented by the application itself. If an
array type is available, array operations can be included in
queries by making calls to the array methods defined for the
array type. That is, each query will have a relational part and
a non-relational part, where the non-relational part consists of
expressions involving array methods. Unfortunately, in most
object-relational systems, optimization of the non-relational
parts of a query is very limited. Method invocations appear-
ing in the non-relational parts of a query are treated as black
boxes. Since the optimizer does not understand thesemethods,
little or no optimization of the arraymanipulations is possible.
At best, the DBMS might optimize the placement of the non-
relational parts of the query within the relational evaluation
plan [14].

Efforts to address this problem are still at the research
stage. PREDATOR is a research prototype DBMS in which
relational and non-relational optimizers can be combined to
support queries with relational and non-relational parts [36].
In particular, an array query optimizer could be applied to an
array expression composed of the methods of an array ADT.
AML and theArrayDB optimizer would bewell-suited for use
in such an environment.

7.2 Array database systems

Several database management systems have been designed,
like ArrayDB, specifically for array-structured data. Array
database systems are often designed for specific application
domains such as scientific computing and online analytical
processing (OLAP).

T2 [5], Titan [6], and RasDaMan [2] are database man-
agement systems designed formulti-spectral images and other
raster data. These systems are similar to ArrayDB in that they
allow externally-defined functions to be applied to array data.
However,AML ismore general than the query languages used
in these systems in that it allows such functions to be applied
to rectangular subarrays of any size. This allows ArrayDB to
directly implement and optimize a broader class of array op-
erations. In addition, ArrayDB performs some optimizations,
such as choosing the iteration order for function application,
that are not considered in the other array database systems.

AQL is a scalar-oriented query language with low-level
array manipulation primitives. A prototypeAQL database
system is described in [19]. UnlikeAML,AQL is not a frame-
work for applying externally-defined, application-specific ar-
ray manipulations. Instead, application-specific array oper-
ations can be defined withinAQL using four array-related
primitives plus such things as conditionals and arithmetic op-
erations. Two of the array primitives create arrays; one per-
forms subscripting (extracting a value from an array); and
one determines the shape of an array. Lineage tracing can be
performed at the array element level onAQL expressions.
AQL is even more flexible thanAML in terms of the types of
lineage tracing that it can support. One drawback of this flex-
ibility, however, is that it is not clear how to produce efficient,
pipelined query evaluation plans forAQL queries.

Like the systemsdescribed above, image database systems
allowarray-structureddata tobestoredand retrieved [7].How-
ever, image database systems typically focus on the problem

of selecting images, often on the basis of image content, from
a large collection of stored images. Manipulation of the se-
lected images is a secondary concern. Thus, such systems are
complementary to systems such as ArrayDB.

File-based storage packages such as NetCDF [32] are
widely used to store array data. Like ArrayDB, NetCDF and
similar packageshelp to isolate applications from thedetails of
the physical organization of array data. However, these pack-
ages are not database systems. Only simple retrieval and stor-
age operations are supported, so most array manipulation is
performed by the application.

Multi-dimensional OLAP (MOLAP) systems such as Ess-
base are decision-support systems that store and manipulate
multi-dimensional arrays [10]. MOLAP systems emphasize
efficient combination, grouping, and aggregation of array ele-
ments.A formalmodel for OLAP systems is described in [13].
Such systems exploit some of the same kinds of optimiza-
tions, such as early data filtering, used byArrayDB. However,
manyoperations inOLAPapplicationsareperformedon irreg-
ular, data-dependent groupings of array elements. In contrast,
AML’s operators are best suited for operations with a regular
structure based on array indices.

8 Conclusions and future work

This paper describes AML, a query algebra for arrays, and
techniques for optimizing and evaluating AML expressions.
AML expressions define structured applications of uninter-
preted, externally-defined functions toarrays.AMLquerypro-
cessing is implemented in ArrayDB — a database manage-
ment system for arrays.ArrayDB’s query optimizer is capable
of rewriting AML queries to eliminate unnecessary function
applications and I/O. The optimizer also performs other opti-
mizations, such as cost-based selection of the order in which
array elements are processed. Using a suite of image process-
ing queries, we have shown that ArrayDB’s query processing
techniques are effective at reducing query evaluation times
and memory requirements.

The research reported in this paper can be extended in sev-
eral directions. First, it would be interesting to extend AML
so that it incorporates other index-based operators (such as
a transpose or dimension reordering operator) and content-
based operators. A content-based operator would restructure
an array, or apply functions to an array, in amanner that would
depend on the value of an array element, rather than its posi-
tion. Second, query optimization techniques that exploit some
of thepropertiesof theuser-defined functions (suchascommu-
tativity or associativity) can be studied. An immediate ques-
tion is how to describe these properties to the query optimizer
so that it can reason about them and exploit them. It should
not be too difficult to recognize instances where two adjacent
user-defined functions can be composed by manufacturing a
composite function that calls the two original function in se-
quence. Such an optimization avoids generation of someof the
intermediatearraysduringqueryevaluation.Third, theplan re-
finement phase can be generalized to consider different chunk
shapes in addition to considering different chunk orders. At
present,ArrayDB’s physical operators assume fixed input and
output chunk shapes. Physical operators such asregroup p
andcombine p can potentially produce and consume subar-

A.P. Marathe, K. Salem: Query processing techniques for arrays 89

rays of various shapes. The dynamic programming-based al-
gorithm would need to be revisited to examine whether it can
be generalized in the presence of variable chunk shapes. A
fourth issue is the integration of array query processing into a
relational database system or image database system. Images
and other arrays are usually associated with non-array meta-
data. Ideally, it should be possible for an application to define
queries that involve the kinds of arraymanipulations described
in this paper, and that also use the meta-data for filtering or
for other purposes.

A final issue is parallel evaluation of AML queries. AML
is a data-parallel language. Data-parallel languages permit ef-
ficient parallel implementations because the operators in such
languages provide implicit parallelism [37]. The query com-
piler does not have to do complex loop analysis to find par-
allelism. Some of the issues involved in building a parallel
evaluator for AML are: data partitioning and layout schemes;
methods for coordinating data retrieval; methods for coor-
dinating computation; and methods for interprocessor com-
munication. Prior research has addressed issues such as the
data partitioning problem for user-defined functions that con-
sume and produce one-dimensional streams [30], and parallel
evaluation of specialized forms of queries on remote-sensing
data [6].

A A proof of an AML logical rewrite rule

A proof of Theorem 10 appears in this appendix. The proof
technique contained therein is more generally useful in that
other rewrite rules canalso beprovedusinga similar approach.
Proofs of all of the non-trivialAML rewrite rules can be found
in [23]. Sub andmerge operators map slabs in their input
arrays to slabs in their output arrays. Therefore, the proof that
follows shows that the original expression and the rewritten
expressiongenerate thesamearrayslabs.Sincesubandmerge
do not change or permute array cell values in slabs, it then
follows that the result arrays from the original expression and
the rewritten expression are identical.

The following observations, which follow from the defi-
nitions ofsub andmerge, help in the proof. Each observation
establishes correspondences between thei-slabs of the output
array and thei-slabs of the input arrays of a particular AML
operator. Thei-slabs themselves are numbered from0; that is,
the slab number is the index of thei-slab in an array.

Observation A1. In the AML equationY = subi(P , A),
whereP �= 0, the i-slab numberj (j ≥ 0) of Y equals
thei-slab number(index(P , j + 1)) ofA.

Observation A2. In the merge-balanced AML expression
Y = mergei(P , A,B, δ), whereP �= 0 andP �= 1, the
i-slab numberj (j ≥ 0) of A equals thei-slab number
(index(P , j + 1)) of Y ; the i-slab numberj (j ≥ 0) of B
equals thei-slab number(index(P , j + 1)) of Y .

Theorem 10 (pushingsub through merge, version 1)
If P �= 0, P �= 1, Q �= 0 and the expression on the left is
merge-balanced, then

subi (Q,mergei(P , A,B, δ)) =
mergei(T , subi(R, A), subi(S, B), δ),

where
R[j] = Q[index(P , j + 1)],
and
S[j] = Q[index(P , j + 1)],
and
T [j] = P [index(Q, j + 1)],
for all j ≥ 0. Furthermore, themerge operation on the right
is balanced.

Proof. LetY P = mergei(P , A,B, δ); let Y Q = subi(Q,
Y P); let ZR = subi(R, A); let ZS = subi(S, B); and let
ZT = mergei(T , ZR, ZS , δ). The goal is to prove thatY Q

andZT have the samei-slabs. Moreover, it needs to be shown
that if themerge operator in the original expression is bal-
anced, then themerge operator in the rewritten expression is
also balanced.

Sincesub andmerge operators do not reorder or duplicate
the slabs coming from the same array, to prove thatY Q and
ZT have the samei-slabs, it suffices to show the following
three statements: (1)i-slabj (j ≥ 0) of A is in Y Q iff it is in
ZT ; (2) i-slabj (j ≥ 0) of B is in Y Q iff it is in ZT ; and (3)
i-slabj (j ≥ 0) of Y Q comes fromA iff the i-slabj (j ≥ 0)
of ZT comes fromA.

The first statement above can be proved as follows.As per
Observation A2 applied toY P = mergei(P , A,B, δ), the
i-slabj (j ≥ 0) of A is equal to thei-slabindex(P , j + 1)
of Y P . Now thei-slab index(P , j + 1) of Y P is in Y Q iff
Q[index(P , j + 1)] = 1.

Now the i-slab j (j ≥ 0) of A is in ZT iff R[j] = 1.
From the definition ofR, thei-slabj (j ≥ 0) of A is in ZT

iff Q[index(P , j + 1)] = 1. By comparing this conclusion to
the one reached in the previous paragraph, the first statement
is proved.

The proof of the second statement—which involves using
thedefinition ofS —issymmetric to that of the first statement.

The third statement can be proved as follows. As per Ob-
servation A1 applied toY Q = subi(Q, Y P), the i-slab j
(j ≥ 0) of Y Q is equal to thei-slabindex(Q, j + 1) of Y P .
Now the i-slab index(Q, j + 1) of Y P comes fromA iff
P [index(Q, j + 1)] = 1.

The i-slabj (j ≥ 0) of ZT comes fromA iff T [j] = 1.
From the definition ofT , the i-slabj (j ≥ 0) of ZT comes
fromA iff P [index(Q, j + 1)] = 1. By comparing this con-
clusion to the one reached in the previous paragraph, the third
statement is proved.

Finally, let us prove that themerge operator in the rewrit-
ten expression is balanced. Themerge operator in the origi-
nal expression is balanced and therefore, for all the dimen-
sions j �= i, A[j] = B[j]. In the rewritten expression,
ZR[j] = A[j] andZS [j] = B[j] for all j �= i because
the sub operators with the patternsR andS do not change
the array lengths of their argument arrays in dimensions other
than dimensioni. Therefore, themerge operator in the rewrit-
ten expression is balanced as far as all dimensionsj �= i are
concerned.

Next, let us prove that themerge operator in the rewritten
expression is balanced in dimensioni. Y P [i] = A[i] + B[i]
because themerge operator in the original expression is bal-
anced. Suppose that, in the original expression, thesub oper-
ator deletesa i-slabs ofA andb i-slabs ofB (a ≥ 0, b ≥ 0).

90 A.P. Marathe, K. Salem: Query processing techniques for arrays

Therefore,Y Q[i] = A[i] + B[i] − a − b. Now in the rewrit-
ten expression, thesub operators must deletea i-slabs from
A and b i-slabs fromB because otherwise the two expres-
sions will not be equivalent. Therefore,ZR[i] = A[i]−a and
ZS [i] = B[i]−b. NowZT [i]must be equal toY Q[i] because
otherwise the two expressions will not be equivalent. There-
fore,ZT [i] = A[i]+B[i]−a−b. NowZR[i]+ZS [i] is equal
to (A[i] − a) + (B[i] − b) which, in turn, is equal toZT [i].
Therefore, themerge operator in the rewritten expression is
balanced in dimensioni. ��

References

1. Arya M, Cody W, Faloutsos C, Richardson J, Toga A (1994)
QBISM: extending a DBMS to support 3D medical images. In:
Proceedings of the 10th International Conference on Data En-
gineering, Houston, Texas, February. IEEE Computer Society
Press, pp 314–325

2. Baumann P, DehmelA, Furtado P, Ritsch R,Widmann N (1998)
Themultidimensional database systemRasDaMan. In: Proceed-
ings of ACM SIGMOD International Conference on Manage-
ment of Data, Seattle, Washington, June, pp 575–577

3. Baumann P (1994) Management of multidimensional discrete
data. VLDB J 3(4):401–444

4. Budd T (1988) An APL compiler. Springer, Berlin Heidelberg
NewYork

5. Chang C,AcharyaA, SussmanA, Saltz J (1998) T2: a customiz-
able parallel database formulti-dimensional data. SIGMODRec
27(1):58–66

6. Chang C, Moon B, Acharya A, Shock C, Sussman A, Saltz JH
(1997) Titan: a high-performance remote sensing database. In:
Proceedings of the Thirteenth International Conference on Data
Engineering, Birmingham, UK, April, pp 375–384

7. Chang S, Hsu A (1992) Image information systems: where do
we go from here? IEEE Trans Knowl Data Eng 4(5):431–442

8. DeWitt DJ, Kabra N, Luo J, Patel JM,Yu J (1994) Client–server
paradise. In: Proceedings of the 20th VLDB Conference, Santi-
ago, Chile, pp 558–569

9. Furtado P, Baumann P (1999) Storage of multidimensional ar-
rays based on arbitrary tiling. In: Proceedings of the 15th In-
ternational Conference on Data Enginering, Sydney, Australia,
March, pp 480–489

10. Garcia-Molina H, Ullman JD,Widom J (2000) Database system
implementation. Prentice Hall, Upper Saddle River, New Jersey

11. Graefe G (1993) Query evaluation techniques for large
databases. ACM Comput Surv 25(2):73–170

12. Guibas LJ, Wyatt DK (1978) Compilation and delayed evalua-
tion in APL. In: Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson,
Arizona, January, pp 1–8

13. Gyssens M, Lakshmanan LVS (1997) A foundation for multi-
dimensional databases. In: Proceedings of the 23rd International
Conference on Very Large Data Bases, Athens, Greece, August.
Morgan Kaufmann, pp 106–115

14. Hellerstein JM, Stonebraker M (1993) Predicate migration: op-
timizing queries with expensive predicates. In: Proceedings of
the ACM-SIGMOD International Conference on Management
of Data, Washington, D.C., ACM, pp 267–276

15. Hwang GH, Lee JK, Ju RD (1998) A function-composition ap-
proach to synthesize Fortran 90 array operations. J Parallel Dist
Comput 54(1):1–47

16. Illustra Information Technologies, Inc. (1994) Illustra user’s
guide. Oakland, Calif.

17. Jay CB (1999) Shaping distributions. In: Hammond K,Michael-
son G (eds), Research directions in parallel functional program-
ming. Springer, London, pp 219–232

18. Leung S, Zahorjan J (1995) Optimizing data locality by array
restructuring. Technical Report 95-09-01, Department of Com-
puter Science and Engineering, University ofWashington, Seat-
tle, Wash.

19. Libkin L, Machlin R,Wong L (1996)A query language for mul-
tidimensional arrays: design, implementation, and optimization
techniques. In: Proceedings of theACM-SIGMOD International
Conference onManagement ofData,Canada,ACM, pp228–239

20. Lillesand TM, Kiefer RW (1999) Remote sensing and image
interpretation 4th edn. Wiley, NewYork

21. Lohman GM, Stoltzfus JC, Benson AN, Martin MD, Cardenas
AF (1983) Remotely-sensed geophysical databases: experience
and implications for generalized DBMS. In: Proceedings of the
ACM SIGMOD International Conference on Management of
Data, San Jose, Calif., May, pp 146–160

22. Maier D, Vance B (1993) A call to order. In: Proceedings of the
ACMSIGACT-SIGMOD-SIGARTSymposiumonPrinciples of
Database Systems, pp 1–16

23. MaratheAP (2001)Query processing techniques for arrays. PhD
thesis, Department of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, January

24. Marathe AP (2001) Tracing lineage of array data. In: Proceed-
ings of the Thirteenth International Conference on Scientific and
Statistical DatabaseManagement, Fairfax,Virginia, July, pp 69–
78

25. MaratheAP (2001)Tracing lineage of array data. J Intell Inf Syst
17(2/3):193–214

26. MaratheAP,SalemK(1997)A language formanipulatingarrays.
In: Proceedings of the 23rd International Conference on Very
Large Data Bases, Athens, Greece, August. Morgan Kaufmann,
pp 46–55

27. Marathe AP, Salem K (1999) Query processing techniques for
arrays. In: Proceedings of theACMSIGMOD InternationalCon-
ference on Management of Data, Philadelphia, Pennsylvania,
June. ACM Press, pp 323–334

28. Muchnick SS (1997)Advanced compiler design and implemen-
tation. Morgan Kaufmann, San Francisco

29. Musick R, Critchlow T (1999) Practical lessons in supporting
large-scale computational science. SIGMOD Rec 28(4):49–57

30. Ng KW, Muntz RR (1999) Parallelizing user-defined functions
in distributed object-relational DBMS. In: Proceedings of the
1999 InternationalDatabaseEngineering andApplicationsSym-
posium, Montreal, Canada, August, pp 442–445

31. Olson MA, Hong WM, Ubell M, Stonebraker M (1996) Query
processing in a parallel object-relational database system. Bull
IEEE Comput Soc Tec Comm Data Eng 19(4):3–10

32. Rew R, Davis G, Emmerson S, Davies H (1996) NetCDF user’s
guide, version 2.4. Unidata Program Center, Boulder, Colorado

33. Ritter GX, Wilson JN, Davidson JL (1990) Image algebra: an
overview. Comput Vision Graph Image Process 49:297–331

34. Ritter GX, Wilson JN (1996) Handbook of computer vision al-
gorithms in image algebra. CRC Press, Boca Raton, Florida

35. SarawagiS,StonebrakerM (1994)Efficient organizationof large
multidimensional arrays. In: Proceedings of the 10th Interna-
tional Conference on Data Engineering, Houston, Texas, Febru-
ary. IEEE Computer Society Press, pp 328–336

36. Seshadri P, Livny M, Ramakrishnan R (1997) The case for en-
hanced abstract data types. In: Proceedings of the 23rd VLDB
Conference, Athens, Greece, pp 66–75

37. Sipelstein J, Blelloch GE (1991) Collection-oriented languages.
Proc IEEE 79(4):504–523

A.P. Marathe, K. Salem: Query processing techniques for arrays 91

38. Stollnitz EJ, DeRose TD, Salesin DH (1996)Wavelets for com-
puter graphics: theory and applications. Morgan Kaufmann, San
Francisco

39. Stolze K (2000) SQL/MM part 5: still image – the standard and
implementation aspects. Jenaer Schriften zur Mathematik und
Informatik Math/Inf/00/27, Institut f¨ur Informatik, Friedrich-
Schiller-Universität Jena, September

40. StonebrakerM,RoweLA,HirohamaM (1990)The implementa-
tion of POSTGRES. IEEETrans Knowl Data Eng 2(1):125–142

41. Treat JM, Budd TA (1984) Extensions to grid selector composi-
tion and compilation in APL. Inf Process Lett 19(3):117–123

42. Vandenberg SL, DeWitt DJ (1991) Algebraic support for com-
plex objects with arrays, identity, and inheritance. In: Proceed-
ings of the ACM-SIGMOD International Conference on Man-
agement of Data, ACM Inc, pp 158–167

43. Widmann N, Baumann P (1998) Efficient execution of opera-
tions in a DBMS for multidimensional arrays. In: Proceedings
of the 10th International Conference on Scientific and Statistical
Database Management, Capri, Italy, July

44. Wolf MW, Lam MS (1991) A data locality optimizing algo-
rithm. In: Proceedings of the ACM SIGPLAN ’91 Conference
on Programming LanguageDesign and Implementation (PLDI),
Toronto, Canada, June, pages 30–44

