The VLDB Journal 11: 68-91 (2002) / Digital Object Identifier (DOI) 10.1007/s007780200062

Query processing techniques for arrays

Arunprasad P. Marathe*, Kenneth Salem

Department of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
e-mail: {apmarathe ,kmsalem }@uwaterloo.ca

Edited by M. Carey. Received: 10 August 2001 / Accepted: 11 December 2001
Published online: 24 May 2002® Springer-Verlag 2002

Abstract. Arrays are a common and important class of data. seven-band Thematic Mapper = image
At present, database systems do not provide adequate array \ dim. 2 (spectrdl) A

support: arrays can neither be easily defined nor convenientlyim. o
manipulated. Further, array manipulations are not optimized.
This paper describes alanguage calledttray Manipulation
Language(AML), for expressing array manipulations, and a — T
collection of optimization techniques for AML expressions. noise-reduced [HH noise-reduced
In the AML framework for array manipulation, arbitrary band 3image 1-j Ef” H }CW band 4 image
externally-defined functions can be applied to arrays in a struc-
tured manner. AML can be adapted to different application do- Y
mains by choosing appropriate external function definitions. !
This paper concentrates on arrays occurring in databases of FHDHH
digital images such as satellite or medical images. 1
AML queries can be treated declaratively and subjected TVI image
to rewrite optimizations. Rewriting minimizes the number of
applications of potentially costly external functions required
to compute a query result. AML queries can also be optimized
for space. Query results are generated a piece at a time by
pipelined execution plans, and the amount of memory requireg¢omputational models. Array data are common in many ap-
by a plan depends on the order in which pieces are generateflication domains, such as remote sensing and medical imag-
An optimizer can consider generating the pieces of the queryng [3,21,22]. Most database management systems (DBMS),
result in a variety of orders, and can efficiently choose or-however, provide very limited support for arrays.
ders that require less space. An AML-based prototype array This paper presents the Array Manipulation Language
database system callédrayDB has been built, and it is used (AML), which can be used to describe array queries. AML
to show the effectiveness of these optimization techniques. expressions describe how arbitrary, externally defined func-
tions are used to generate a desired query result. Thus, by
Key words: Array manipulation language — Array query op- appropriate choice of functions, AML can be customized for
timization — Declarative query language — User-defined func- particular application. Because arrays may be large, and ar-
tions — Pipelined evaluation — Memory-usage optimization ray manipulations complex, array queries may be expensive.
This paper presents an array query processing algorithm that
generates optimized, pipelined query evaluation plans from
AML queries. The query processor isimplemented in an array
_ database system callédrayDB.
1 Introduction Figure 1 shows a remote sensing example that illustrates
the kind of array queries for which AML is well suited. The
three-dimensional array in Fig. 1 represents a multi-spectral
image captured by the Landsat Thematic Mapper. Two of the
This research was partially supported by NSERC (Natural Sciencearray dimensions are spatial, and the third is spectral. This
and Engineering Research Council of Canada). We are grateful to tharray can be thought of as a stack of seven two-dimensional

4

[

[
AR

[

[

dim. 1

Fig. 1. A Thematic Mapper image and several derived images

Arrays are an appropriate model for many types of data, in
cluding digitalimages, digital video, and gridded outputs from

anonymous reviewers for their comments and suggestions. images of the same scene, each captured using a sensor sen-
*Present addres©pen Text Corporation, 185 Columbia StreetWest, Sitive to a different band of the electromagnetic spectrum.
Waterloo, Ontario N2L 5Z5, Canada Often, multi-spectral images such dsare not used di-

e-mail:amarathe @opentext.com rectly. Instead, useful parameters are derived from them. An

A.P. Marathe, K. Salem: Query processing techniques for arrays 69

far(vo, v1, 02,03, 4, 5, V6, U7, V8) { C'. Finally, specific array transformations may have properties
T 4 (v1+vs+vs + 117)/4} that can be exploited by an optimizer that understands them.
Y l(”2 + T’4 +ve +vs) /4 For example, the noise reduction algorithm that produces ar-
z+ |z —yl

rays B andC' is a discrete two-dimensional convolution. An
optimizer with some knowledge of linear systems might be
able to infer, for example, that adding two noise-reduced im-
} ages is equivalent to applying noise reduction to their sum.
) _ o _ o This paper makes the following contributions. First, it
Fig. 2.Anoise reductlpn f||_tem0 |s'_[he original cell valuey, throygh presents AML, a language for defining array queries. Each
vs are the values of its eight neighbors, numbered clockwise fromus the arrays3, C' and D from Fig. 1 can be described as an
the upper left AML query against the original Landsat Thematic Mapper im-
ageA. Since the result of an AML query is an array, AML can
be used to defingiews such as the TVIimage, on stored base
arrays, such as the multi-spectral Thematic Mapper image.
Second, it describes the array query processing techniques
t are implemented in ArrayDB. ArrayDB has a rewrite op-
'timizer that transforms AML expressions into equivalent ex-
pressions that may be much cheaper to evaluate. From these
by — bs 0.5 optimizgd expressions, ArrayDB generates pipelingad query
b b + 0.5} , 1) evaluation plans. Arrays flow through the pipelines in small
458 chunks, and materialization of potentially large intermediate
whereb; denotes the radiance in tith band. The TVl ateach results can often be avoided. ArrayDB’s optimizer does not
point in the scene is indicative of the amount of green biomasxploit all of the optimization opportunities that are described
present there [20]. above, primarily because AML itself does not capture every-
A Thematic Mapper image may include noise from a va- thing needed to exploit them. For example, the optimizer does
riety of sources. Since noise can degrade the true radiometrieot “understand” convolution. However, AML is quite good at
information content of the image, it may be desirable to at-capturing regular structure in array queries. ArrayDB exploits
tempt to reduce the noise before performing further calculathis to reorder query operators, eliminate unnecessary work,
tions, such as extraction of the TVI [20]. Thus, a TVI image and reduce space requirements.
may be generated in two steps, as illustrated in Fig. 1. First, Third, it presents an empirical evaluation of ArrayDB’s
noise reduction is applied to the third and fourth bands ofquery processor. The evaluation is based on a small suite of
the Thematic Mapper image, resulting in arrdyandC re- array queries, including the TVI query illustrated in Fig. 1.
spectively. The TVI image (arra®) is then derived from the The evaluation demonstrates the effectiveness of the query
noise-reduced bands. processor. It also illustrates some of the limitations of AML,
There are many kinds of noise reduction techniques. Tand of ArrayDB’s query evaluation strategies.
make the example concrete, we will assume that noise re- Therestofthe paperisorganized as follows. The array data
duction is accomplished using a convolution filter. The filter model and the AML query language are desribed in Sect. 2
computes the noise-reduced radiance at a particular point froand Sect. 3 respectively. Section 4 describes ArrayDB, and
original radiance at that point and the radiances of its eight imthe techniques that it uses for optimizing and evaluating AML
mediate neighbors. (Noise reduction is applied independentlgueries. Section 5 describes the array query suite that serves
to each of the bands of interest.) The exact calculation, whiclas ArrayDB’s workload for the performance evaluation. The
is adapted from [20], is shown in Fig. 2. evaluation itself is presented in Sect. 6. Section 7 consists of
This example illustrates several points. First, there is aa survey of related work. The scenario illustrated in Fig. 1 is
wide variety of complex, domain-specific array transforma-used as a running example throughout this paper.
tions that may be used to define the desired result, such as the
TVI array, of an array query. An array query language should
be flexible enough to express them.

~Second, there is considerable room for query optimizamany of the definitions in this paper involve infinite vectors

tion. Array queries may have a regular structure that can bgf non-negative integers. The notatiaffi] refers to theith

exploited. In the case of Fig. 1, itis not difficult to determine gjement of the vectar. Indexing starts at zero. The vectors

which points in the original Thematic Mapper imag €on- consisting entirely of zeros or entirely of ones are denoted by

tribute to the TVl ata particular pointin arrdy. Thus, ifonly g and1, respectively.

part of arrayD is required, it may be possible to generate that operations on vectors are applied element by element, un-

calculated in any order. N i >0, z[i] = |=[i]/yli]]. Similarly, predicates such as< y
There are other opportunities as well. Redundant calculagre trye iffz[i] < yli] for all i > 0.

tions can be eliminated using techniques such as caching ar]:()j _ N o

view materialization. For example, several different parame- ef|n|_t|on_ 1 (Shape).A shapeis an infinite vector of non-

ters may be derived from the noise-reduced ar@yandC, ~ Negative integers.

although only one isillustrated in Fig. 1. It that case, it might Shapes are written by listing the vector elements between an-

be a good idea to materialize (compute and store) afdaysd ~ gled brackets. All elements not listed explicitly are assumed

if ((Jlvo — 2| > 22) V (Jvo — y| > 2z)) returny;
elsereturnvo;

example of such a parameter is ttiansformed vegetation
index(TVI). The TVI at any point is computed from the radi-
ance in the third and fourth spectral bands at the correspondin&a
point in the Thematic Mapper image, using the function [20
Chap. 7]:

Foun(bg, ba) = {

2 Data model and terminology

70 A.P. Marathe, K. Salem: Query processing techniques for arrays

asubarray of aslab along As Fig. 3 shows, a subarray is simply an array that is wholly
Ad X dimension 1 contained within another. The position of the subarray within
aray A the containing array is identified by the position of the subar-
[0] &y ray’s smallest point (indicated by a dot in Fig. 3).

_ Definition 7 (Array slab). Aslabof an array A in dimension

dm. OT_, g-gab alon% i (i-slabfor short) is a subarray oft with the shapé. . ., A[i—
dim. 1 mension 1,1, Ali +1],...).

) i Asillustrated in Fig. 3, an-slab is simply a slice of unit width

Fig. 3. Subarrays and slabs through an array in théth dimension. There ard] i-slabs

in an arrayA.

to be ones. Thus, the shapfs1,2) and (4,4)
infinite vectors(1,1,2,1,1,1,...) and(4,4,1,1,
spectively.

denote the
1,...),re- 3 The array manipulation language

AML is an algebra consisting of three operators that manip-
ulate arrays [26]. Each operator takes one or more arrays as
arguments, and produces an array as reSulksamMPLE (SUB
for short) is a unary operator that can delete dstarcGe is
a binary operator that combines two arrays defined over the
same domainAppLy applies a user-defined function to an ar-
ray to produce a new array. The manner in which the function
is applied is described in Sect. 3.3.

All of the AML operators take bit patterns as parameters.

AML arrays have an infinite number of dimensions, num- pefinition 8 (Bit pattern). A bit patternP is an infinite bi-
bered from zero. Vectors that are inA are sometimes called nary vector of the form*, wherer is a finite binary vector.

the cells or element®r pointsof A. A[x] denotes the value . i o
of elementz of A. Thatis,A[z] = M (z). (In contrast, as The finite vectorr is used to represent the infinite pat-
mentioned in Definition 3A[i] represents the length of in € P. For example, we write® = 1011 to meanP =
dimensioni.) When the position of an array element in some 101110111011 ... Notice that “01" and "0101" represent
dimension is not specified, it is assumed to be zero. Thus, boti1€ Same patter01010101.... When appropriate, we use
A[0,1] andAJ0, 1,0,0,. .] denote value of the same element "un-length encoding to further compress the pattern nota-
of array A. tion. For example,P = 0°1°0* means thatP consists
The mapping functionM 4 of an arrayA only defines of_ an infinite number of repetitions of two ones sand-
domain values for points: that are withinA. Sometimes, Wiched between three zeros and two zeros. Thafis=
however, it will be convenient to think of arrays as having 000110000011000001100.... P denotes the bit-wise com-
infinite lengths in all dimensions. For this purposz] is ~ Plement of a patterdP. To simplify our notation, we define
defined to bel for all pointsz ¢ A, where_l is a special thatP[i] = 0foralli <0. _
value distinct from any other value in any domain. The operator definitions make use of two pattern functions,

In programming languages, the “type” of an array is fre- indexandcount

quently a composite made up of the array's shape and theefinition 9 (Index). If P is a bit pattern andk a positive
array’s value domain. However, for our purposes it is moreinteger,index(P, k) is the index of théth *1'in P. If P = 0

convenient to keep these two aspects of type distinct fromdenoting the patterf*), index (P, k) is defined to be-1 for
each other. Therefore, Definition 3 distinguishes between thg)| i ~ 0.

shape A) and the domainZ 4) of array A.

Definition 2 (Vector containment). A vectorz is contained
in ashaped iff 0 < x < A. We writex € Aor“«xin A"

Definition 3 (Array). An array A consists of a shapd, a
value domairD 4, and a mapping\U 4. Theith element of the
shapeA, A[i], represents the length of the array in dimension
i. The domairD 4 is a non-empty set of values. The mapping
M 4 maps each vectat € A to an element 0D 4.

Definition 10 (Count). If P is a bit pattern andk a non-
Definition 4 (Size). Thesizeof an array A, written |A|, is negative integercount(P, k) is the number of ones in the
[1:2, Al first k 4 1 positions ofP, i.e., fromP[0] to P[k], inclusive.

Definition 5 (Dimensionality). The dimensionalityof array
A is writtendim(A). If |A| is 0 thendim(A) is undefined; if 3.1 ThesuBsaMPLE operation
|A]is oo thendim(A) is co; otherwisedim(A) is the smallest
i such thatA[j] = 1 forall j > 4. If dim(A) is d, thenA is The su operator takes an array, a dimension number, and a
called ad-dimensionahrray. pattern as parameters, and produces an array. The dimension
number is written as a subscript, as in
An array having alength of zero in one or more dimensionsB — suB,(P, A),

is called enull array, denoted byWULL. Such arrays have zero }) _) _
size and undefined dimensionality. where A is an array,P is a pattern, and is the dimension

number. The operator divide$ into slabs along dimension
Definition 6 (Subarray). Array B is asubarrayat pointax of i, and then retains or discards slabs based on the pd#ern
array A iff Dgp = D4, x € A, and for every poiny in B, If P[k] = 1, then slabk is retained, otherwise it is not. The
Bly] = Az + y]. retained slabs are concatenated to produce the mBsult

A.P. Marathe, K. Salem: Query processing techniques for arrays

B=SUB,(10, A)
20(22|24
10[12)14
000204
aray A B =SUB (10, A)
0(21|22|28| 4|5 20(21|22|23| 24| 25
10[11|12]13| 14|15 00|0L|02|03| 0405
00|01|02|03|04|05
B = SUB, (0000111, A)
2|25
dim.0 1415
dim. 1 0405

Fig. 4. Examples of theuBsaMPLE operation

Definition 11 (suBsaMpLE). Let A be an array andP be a
pattern. The result ofus, (P, A) is an array. The resulting
array, which will be calledB, is defined in terms oft and P
as follows:

[] DB = DA
e if A[i] > 0,thenB][i] = count(P, Afi] —1), elseB[i] =
0

Alj]
i — 1], xli], i+ 1],..]
,x[i — 1), index(P, xfi] + 1), z[i + 1],..]

e forall j > 0 exceptj =i, B[j] =
e forall pointsz in B, BJ...,x[i—
Al ..

Several applications of the/BsaMPLE operator are illus-

trated in Fig. 4. With thaus pattern “10”, the arrayB in the
top expression in Fig. 4 is formed by choosing every othe
1-slab of the arrayd. In the middle expression, thwsB pat-
tern “10” selects every othdr-slab (row) from the arrayl.
In the bottom expression, thes selects the last twi-slabs
(columns) ofA. Note that in the expressiows; (P, A), only
the firstA[i] (the length ofd in dimension) bits of the pattern
P are relevant.

In the example shown in Fig. 1, the expression

B’ = suB,(0010000, A) ()

r

71

The next two theorems describe how two successiwe
operations can be combined or reordered.

Theorem 4 (Combining twosuUBS).
If P#£0andQ # 0, then

sUB; (@, suB; (P, A)) = sus,;(R, A),
whereR is defined by
R[j] = P[j] A Q[count(P, j) — 1]

forall j > 0.

Note that in Theorem 4, it suffices to generatg] bits of
R, and treat it as the in Definition 8 because subsequent bits
of R are not relevant. A similar observation applies to all of
the new patterns that the subsequent AML rewrite rules define,
although we will not explicitly state it.

Theorem 5 (Reordering twosuss).
If i £ j then

suB;(Q, sus, (P, A)) = suB;(P,sus,;(Q, A)).

3.2 TheMERGE operation

TheMERGE operator takes two arrays, a dimension number, a
pattern, and a default value as parameters. It merges the two
arrays to produce its result. The dimension number is written
as a subscript, as in

C = MERGE; (P, A, B,§),

whereA andB are arraysP is the pattern, andlis the default
value. The explicit reference towill often be dropped if the
default is not importantMEerce is defined only ifD4 = Dp
andd € Dy.

Conceptually,MerGE divides bothA and B into slabs
along dimensiorni. C' is obtained by merging these slabs ac-
cording to the patter#; ones inP correspond to slabs fros
(the first array), and zeros to slabs frdn(the second array).
For example, ifP = 101 (which stands for the infinite pattern
101101101 - - -), then a slab fromB is sandwiched between

can be used to extract the third spectral band from Themati&V0 Slabs fromA. The merging process repeats until all the

Mapper arrayd. Thesus operation is applied tal in dimen-
sion two, which is the spectral dimension. The ‘1’in the third

slabs from both4 and B are exhausted.
It is convenient to defineterGe formally in two steps.

position of thesus pattern indicates that the third band is to The firststep generates an art@yby interleaving slabs from
be kept. A similar expression can be used to extract the fourti* @nd B, as described above. Because of shape mismaiches

spectral band in Fig. 1.
The following theorems follow easily from the definition
of suBsampLE, and are stated without prodf.

Theorem 1 Sus with NULL array).
suB;(P, NULL) = NULL.

Theorem 2 (Sus with ‘0’ pattern).
suB; (0, A) = NULL.

Theorem 3 Sus with ‘1’ pattern).
suB; (1, A) = A.

! Proofs of all of the nontrivial theorems involving AML operators

can be found in [23]. To illustrate the general proof technique, a proof
of one such nontrivial theorem, Theorem 10, is given in Appendix A.

betweemd andB, however, or because of the particular pattern
P, some values i€’ may bel. The second step eliminates
this problem by transforming any sudhvalues to the default
valueo.

Definition 12 (MERGE). Let A and B be arrays such that
D4 = Dg. Let P be a pattern, and be a value fronD 4. The
result of MERGE; (P, A, B, J) is an array. This array, which
will be calledC, is defined in two steps. First, an intermediate
array C' is defined as follows:

e Dov =Dy U{L}

e if A[i] = 0andB]Ji] = 0, thenC’[i] = 0; otherwise
C'[i] = max(index (P, A[i]), index(P, BJ[i])) + 1

e forall j > 0 exceptj =i, C'[j] = max(A[j], B[j])

72 A.P. Marathe, K. Salem: Query processing techniques for arrays

A al0 |al1 |b10|a12|a13| b1l Theorem 6 (MERrGE with ‘0’ pattern).
MERGE, (110, A, B) 0ABS —B
a10|all|al2|a13 00 |201|b00|a02 | 203 | b01 MERGE; (0, A, B,J) = B.
a00 |a01 202 |03

amo| _ Theorem 7 (MeraE with ‘1 patter).

bl0jbil) 3 | 8 dm1 MERGE;(1, A, B,§) = A.
B 5|3|a]|3
b10|b11 a10|al1|a12|a13| MERGE, (101, A, B3) TheMERGE operator is commutative and associative, pro-
boolbo boolbotl 5 | vided that the merge patterns are properly adjusted.
200|201 | 202|203 Theorem 8 (Commutativity of MERGE).
Fig. 5. Examples of the1erGE operation MERGE; (P, A, B,) = MERGE; (P, B, A, 0).
Theorem 9 (Associativity OfMERGE).
e for all pointsz in C’: If P#0,P #1,Q #0,Q # 1, and the expression on the
— if P[z[i]] = 1,thenC’|.. ., z[i—1],z[i],x[i+1],...] leftis merge-balanced, then
= Al...,z[i — 1],count(P, z[i]) — 1,z[i + 1],..],
— otherwiseC'|. .., @[i — 1), z[i], z[i + 1],...] = MERGE; (Q,MERGE;(P, A, B,6),C,6) =
Bl...,z[i — 1], count(P, z[i]) — 1,z[i + 1],..] MERGE; (R, A, MERGE, (S, B, C,0),0),

Next, arrayC is defined a<”” with L values replaced by.
That is: De = Dg; forall ¢ > 0, C[i] = C’[i]; and for
all pointsx in C, if C'[z] = L, thenC[z] = ¢, otherwise R[j] = Q[j] A P[count(Q, j) — 1],
Clx] = C'[x].

where

and
Figure 5 illustrates theerGE operation. The first example . . — .
illustrates averae in dimension 1. That is, columns efare S| = Qlindex(R. j + 1)],
merged with columns aB. The second example shows a row fqr 41 j > (. Furthermore, the AML expression on the right-
(dimension zeroyerGe. The second example also shows how p5n4 side is merge-balanced.
the default valued) is used by aMErGE; operation. It serves

two purposes. First, in a dimensign# 4, the lengths of the The following two theorems show that/s and MERGE
two arrays may not match. If so, the shorter ar8yr{ Fig. 5) gperators can be reordered. In particular, they describe how a
is expanded, using values, until it matches the length of gyg can be pushed through a subsequentce operator. A

the longer array. Second, as the two arrays are interleaved ifroof of Theorem 10 appears in Appendix A.
dimensioni, the operation may exhaust the slabs of one array

before it exhausts the slabs of the other. In this case also, slafieorem 10 (Pushingsus through MERGE, version 1).
filled with § values are used in place of the array slabs from |f P £ 0, P # 1, Q # 0 and the expression on the left is

the exhausted array. merge-balanced, then
For someMERGE operators with particular patterns, the

arraysC andC” from Definition 12 are identical. If so, the sus; (Q, MERGE;(P, A, B,§)) =

MERGE operator is said to blealanced MERGE; (T, sUB; (R, A), sus,(S, B), 6)
Definition 13 (Balanced MERGE). The merge operation
MERGE,; (P, A, B, §) is balancedf both of the following con-
ditions hold: R[j] = Q[index(P, j +1)],
1. For all dimensiong # i, A[j] = BJj].
2. C[i] = (A[i] + BJi)).

whereC is the array defined by th@erGe.

where

and
S[j] = Qlindex(P, j + 1],
. . and
In Fig. 5, the topmERGE is balanced, whereas the bottom
MERGE is not. An AML expression in which aliErGE Op- T'[j] = P[index(Q,j + 1)],

erations are balanced is said to benierge-balancedorm. _ .)
Theorems 10 and 11 that follow hold only for AML expres- for all j > 0. Furthermore, thexerGEe operation on the right

sions that are in merge-balanced form. is balanced.
In the running example of Fig. 1, arrdy can be put on) _
top of arrayC' using the expression Theorem 11 (Pushingsus through MERGE, Version 2).
If i # j and theMERGE on the left is balanced, then
D' = MERGE2 (10, B, C). (3)
(D' is not explicitly shown in Fig. 1.) When the TVI functionis SUBi (@ MERGE;(P, A, B,8)) =
applied toD’, the TVI imageD results. As Eq. (3) illustrates, MERGE; (P, sUB;(Q, A), suB;(Q, B),d).

MERGE can be used to increase the dimensionalities of arrays.) o
Theorems 6-8 follow easily from the definitionmérce. ~ Furthermore, theverGe operation on the right is balanced.

A.P. Marathe, K. Salem: Query processing techniques for arrays

73

3 dim.OL\
2/ ,,,,,,,,,,,,,, dim. 1
Ay A /1 C : f(A, [2,2])
of [F.I
i | =]
f(A, [2,1
o &0 B=APPLY(f, A, 10, 0110)
arayn LA JL |) 102 >
°l I | PR
0 1 2 3

Fig. 6. An illustration of theappLy operation. The notatiofi(A, x) refe
Thus, f(A, x) is an array of shap®;. In this exampleDy is (2, 2), an

3.3 TheappLY Operation

The appLY Operator applies an externally-defined function to

rs to the result of applying to the subarray ofd of shapeD; atx.
de is <17 2>

only if falls in selected slabs in alldimensions of the array;
that is, only if P;[z[i]] = 1 forall 0 <14 < dim(A).
In Fig. 6, the patteriP, = 10 (which meand01010...)

an array to produce a new array. In its most general form, it iselects the first and third row slabs, whereas the pafters:

written as

B = aprLY(f, A, Py, P1,...,Pg_1),

wheref is the function to be applied is the array to apply
it to, P;'s are patterns, and = dim(A). Patterns that con-

sist entirely of ones are often dropped from the notation. In

particular, in the expression
B = aprry(f, A),

all of the patterns are assumed to be ones.

A simple way to define an operation, likepLy, that ap-
plies an externally defined functighwould be to insist that
f map from arrays ofd’s shape and domain to arrays Bfs

0110 selects the second and third column slabs. This leads
to a total of four applications of the functigh The dashed
squares inA in Fig. 6 show the four subarrays to whigh

is applied. Each application gf produces a result of shape
R; = (1,2). These four arrays are concatenated, as shown in
Fig. 6, to produce the final result.

Definition 14 (appLY). Let A be an array,f be a function
that maps arrays of shapP ; over domairD 4 to arrays of
shapeR; over domainD, and Py, Py, ..., Pgim(a)—1 be
patterns. Letf(A, x), wherex € A, represent the result of
applying f to the subarray oA of shapeD at x. The result
of the expressioapprLy(f, A, Py, Py, ..., Paim(a)—1) is an
array. This array, which will be called, is defined as follows:

shape and domain. The operator would then simply compute

B = f(A). However, many common array functions have
some structural locality: the value found at a particular point
in B depends only on the values at certain pointd jmot on
the values at all points idl. For example, iff is a smooth-
ing function that maps each point ihto the average of that
point and its neighbors, then to determine the value at som
pointin B, we need only look at the corresponding point and
its neighbors ind. Such information can be very valuable for
optimizing the execution of an expression involving the array
operators.

The appLY Operation is defined so that this kind of struc-
tural relationship can be made explicit when it exigtspLy
requires thaf be defined to map subarrays4bf some fixed
shapeD ¢ to subarrays oB of some fixed shapR ;. The shape
Dy is called thedomain boxof f, andR; is called therange
box TheappLy operator applieg to some or all of the sub-
arrays (of shapé) ;) of A. The results of these applications
are concatenated to generdeThis process is illustrated in
Fig. 6.

The pattern arguments abprLy specify to which of the
possible subarrays of the input arrdythe functionf should
be applied. Patter#; can be thought of as selecting slabs in

dimension, with the selected slabs corresponding to the ones

in the pattern. The functioif is applied to the subarray at

L] DB =D
e foralli >0,
— if Afi] < Dy[i] or P; =0, thenB[i] =0
— otherwiseB[i] = count(P;, A[i] — Dyli]) - R¢l[d]
e forallzin B, Blxz] = f(A,y)[x mod R;], wherey[i] =
e index(P;, [x[i]/Ry[i]] + 1) forall 0 < i < dim(A)
Several important properties of this definition are illus-
trated in Fig. 6. First, although the subarrays to whjcls
applied may overlap i, the resulting subarrays do not over-
lap in the arrayB. Second, the arrangement of resulting sub-
arrays inB preserves the spatial arrangement of the selected
subarrays inA. Finally, the subarrays to whicfi is applied
must be entirely contained withid. In the example in Fig. 6,
this means that even if the subarray&t3] was selected by
the patternsf (A4, [3,3]) would not be evaluated, since that
subarray lies partially outside of.

In the running example in Fig. 1, array results from
applying the noise reduction functigh, to the third spectral
band-arrayB’ defined by Eqg. (2)f,, maps arrays of shape
(3, 3) to arrays of unit size. That id),,, is (3, 3), andR,,, is
(1,1). The AML expression that computes ard@yrom array
B’ is simply

B = appLY(fur, B'). 4)

74 A.P. Marathe, K. Salem: Query processing techniques for arrays

Recall that an intermediate arrdy that putsB on top ofC When Theorem 13 is applied, the nawerLy pattern,.P’;
is defined by Eqg. (3). The TVI arral can be defined using will contain fewer ones than the original pattd? As aresult,
D = appLy(fii, D), (5) the ApPLY operator W_iII apply its functiory fewer times. _
]))] Theorem 14 is similar to Theorem 13, except that it ap-
assuming that the functiof.; is defined to haveDiwi = pjies to the input of amppLy operator. Theorem 14 says that

(1,1,2)andRy.; = (1, 1). TheappLy operation applieg.it0 it there are slabs of akppLy’s input array that are not used by
the corresponding pairs of cells Ii¥. By combining Eqs. (4) any of the function applications that theeLy performs, then
and (5) with Egs. (2) and (3), we arrive at the full AML ex- those slabs can be eliminated from the input array. Slab elim-
pression that defines the TVI array in terms of the seven-bangh5tion is accomplished by introducingsas operator prior

Thematic Mapper array: to theappLy. This does not reduce the number of function ap-
D = appLy(fivi, plications that therppLY operation must perform. The benefit
MERGE3 (10, 6 of Theorem 14’s rewrite is that it may be possible to push the
APPLY (fur, SUB2(0010000, A)), (6) newly introducedus operation down to and into earlieppLy
APPLY (fyr, SUB2(0001000, A)))). operations using the other rewrite rules. That is, the siesv
operation may be used to make earlierLy operations less

Often, it is necessary to apply an externally-defined f“nc'expensive
tion to all non-overlapping subarrays of a particular shape. For '
example, aninexpensive way to compute a low-resolution verTheorem 14 (Pullingsus out of APPLY).
sion of an array is to tile the array, and to replace each tile withIf P; # 0 and A[i] > D[] > 0, then
a single cell having the average value of the cells under the
tile. Since this type of function application is quite common, APPLY (f,A,Po,Py,....P;,...) =
the TILED_APPLY operator is defined to support it. Assuming APPLY(f,sUB;(Q, A), Py, Py,..., P';,...),
thatdim(A) = d, itis defined as follows:

TILED_APPLY(f, A) = @ ,
appLY(f, A, 10Ps01=1 10Ps=1 1oPsld=1-1) Qljl = \/i:j_Df[iHlPi[t];
The following theorem follows immediately from the def- 54 for(Afi] — Dg[i] + 1) < j < AJi]

inition of ApPPLY.
H . Q[= 0;
eorem 12 (AppLy with a ‘0’ pattern).
APPLY(f, A, Py, Py, ..., P;,...) = NULLif any P; = 0. and for allj > 0,
The next two theorems show how the structural locality P’;[j] = P;[index(Q, j + 1)].
captured by amppLy operator can be used to reduce the num-
ber of applications of an externally-defined function, or to
identify and eliminate unnecessary portions of the input array3-4 More on patterns and shapes
Theorem 13 shows that if akppLy operation produces
datathat a subsequents operation deletes, then under certain
conditions, thexppLy Operation’s patterns can be adjusted so
that it can avoid producing such data in the first place. Specifi
cally, if thesus operation deleteall of the data produced by a SUBO(loA[O], A)
particular function application, then that function application
can be eliminated. However, if any portion of the function’s
range box is not eliminated by tkes, then the function ap-

where for0 < j < (A[i] — Dy[i]),

Patterns appearing in AML operations can be defined in terms
of the shapes of array(s), domain boxes, or range boxes. For
example, the expression

selects only the firsh-slab (row) of arrayA. Aliases can be
used to define names for intermediate arrays. In the AML ex-

plication cannot be eliminated since some of the values that jpresston

produces are required. suBo(10B1% appLy(f, A) as B),

Theorem 13 (Pushingsus into APPLY). the aliasB refers to the array that results from tkerLy oper-

If P; #0,Q # 0, andR¢[i] > 0, then ation. The definition of therLEp_appLY operator (Equation 7)
illustrates the use of a domain box shape to define a pattern.

suB; (Q,apPLY(f, A, Po, Py,...,P;,...)) = Pattern definitions are not allowed to refer to array element

suB; (S, APPLY(f, A, Py, Py, ..., P’;,...)), values. A consequence of this restriction is that the shape of the

result of an AML operation can always be determined (without

where actually evaluating the operator) if the shapes of the operator’s

array arguments are known. By induction, we can show that the

v (SRl) — 1) . ;
Phljl = (t—o Ql((count(P;,) — 1) - Ryli]) + t]) shape of the result of an arbitrary AML expression can be de-

A P4l termined once the shapes of the expression’s terminal, or leaf,
arrays are knowA.This property is useful when evaluating
and AML expressions because it implies that the space required to
S[j] = Q[(count(P;, index(P’s, |j/Ry[i]] +1) — 1) implement an AML operation can be determined in advance.
- Ryli]) + (5 mod Ry[i])], 2 TheFISH programming language — an experimental functional

programming language for array programming — also puts a lot of
forall j > 0. emphasis on static shape analysis [17].

A.P. Marathe, K. Salem: Query processing techniques for arrays 75

3.5 On AML'’s expressiveness AMLL Query

. R Preprocessing
A query language is expressive if it can perform many usefu

operations in its application domain. AML'S expressiveness l Merge-balanced AML Query
in image processing can be judged by an answer to the ques- Logica
tion: What image processing operations can AML express®"emting |
Notice that AML can expresany operation that produces an | Optimized AML Query
array from an array by usingsingletonaprpLy operation — Gen@,é;;ion
an AppLY operation that directly maps from the input array l Query Evaluation Plan
to the output array. Of course, this characterization is neithe

. P
interesting nor useful. AML is designed to exploit structural Refinearnnmt

locality often found in array manipulations: an output array l Refined Query Evaluation Plan
element can often be computed from a small set of adjacent pan @
elements of the input arrays. An AML evaluator is expected|_Evauation

to optimize and efficiently evaluate array queries that con-

tain structural locality. Since user-defined functions are not Ara Result

interpreted by AML, expressions that contain singleterLy Fig. 7. Overview of Query Processing in ArrayDB

operators will probably not be optimized effectively. There-

fore, the expressiveness question should be rephrased as: What

image processing operations can AML expreghoutusing extensibility with an emphasis on the former goal. It is ac-

singletonappLYS? curate to say that we included only those operators in AML
There is no single, widely-accepted image processing lanthat we knew we could optimize. Other operations must be

guage; no universal set of image processing operations existénplemented using singletowpLys.

To gauge AML’s ability to express image processing opera-

tions, we compared it to Image Algebra [33] 34 a language

believed to be very expressive in the image processing do4 AML query processing

main. Ritter and Wilson [34] have gathered ogércomputer

vision algorithms and their formulations in Image Algebra. To process an AML query, ArrayDB first generates an efficient

At least one array database system, RasDaMan, has chose®aluation plan for the query, and then executes the plan to pro-

query language based on Image Algebra. RasDaMan’s quer§uce the array that the query defines [27]. As shown in Fig. 7,

language RasQL [3,43] is based on a subset of the Image Alfour steps are used to convertan AML query into an evaluation

gebra operators. plan prior to execution: preprocessing, logical rewriting, plan
The detailed comparison is reported in [23]. For the sake ofgeneration, and plan refinement. The remainder of this section

brevity, we only summarize the conclusions of that study heredescribes these steps in more detail.

Despite containing only three operators, AML does a reason-

able job of expressing many Image Algebra operators. Without)

resorting to singletomppLys, AML can express the follow- 4.1 Query preprocessing

ing image-manipulating operators of Image Algebra: induced .))

operators, global reduce operators, some spatial transformde preprocessor begins by parsing the AML query, generating

tions, image catenation, range restrictions, some domain re2 parse tree with one internal node for each, MerGE, and

strictions, and image extension. AMIs®pLY can also express APPLY operator in the query, and a leaf node for each input

the non-recursive version of image-template product — Im-array.))

age Algebra’s most useful operator. On the other hand, AML ArrayDB treats a leaf array as a special type of tieeLy

cannot express the following image-manipulating operator®pPerator which has no input array. Conceptually, the leaf

of Image Algebra without resorting to singletampLys: ar- ~ APPLY operator generates the corresponding leaf array. Like

bitrary spatial transformations, arbitrary domain restrictions,0therappLy operations, each leabrLy is associated with an

and recursive image-template product. Using recursive imageexternally-defined function. In the case of a leafLy, this

template product, one can enforce the order in which the pixeléunction is called araccessor functiomA leaf appLy opera-

of an image are processed — for example, row-major order ofor generates a portion of its output array with each caII. to its

serpentine scan order. It will be seen in Sect. 4 that an AML&ccessor function. In a non-leafeLy, each external function

query processor that we have built considers several altern&2all uses a portion of the input array to produce a portion of

tive orders when processing input array elements, but there i€ output array. In the case of a leafeLy, each call to the

no way tospecifysuch an order in an AML query. We view accessor function generates a portion of the output by reading

this feature as one of AML's strengths: the query processofhe stored representation of the leaf array. LeafLy oper-

has the flexibility to choose an appropriate order. ations also have pattern parameters. These patterns have the
Image Algebra’s primary design goals seem to have bee§@Me meaning that they do for non-leabLys: they specify

expressiveness and generality. Optimizability is not of primaryWhich portions of the result array need to be generated. The

concern. For AML, the design goals were optimizability and ArrayDB preprocessor assigns to each leafLy node pat-
terns that indicate that the entire leaf array is to be generated.

3 It should be noted that some of these algorithms use assignmefowever, these patterns may get modified during the logical
statements and loops in addition to Image Algebra statements. rewriting phase.

76 A.P. Marathe, K. Salem: Query processing techniques for arrays

bio|bll| & | & treated likeappLyS). EachappLy operator applies its asso-
515|585 ciated function some number of times. ketrepresent the
210 latt | a2 |13 dim. 0 number of function applications performed by tlie AppLY
boolooil 3 1 5 dim. 1 operator. The function cost 6f, writtencost(Q),is %, ¢;;
i.e., it is the total number of function applications performed
800 |a01 |a02 |a03
MERGE, (101) by @.
5|5|38|3 0) -)
10| ot oz a3 b10jb1l) 3 | 3 The logical rewriting procedure rewrites an AML query so
oot boo|bo1| 3 | 3 f[hat its funcuon cost is m|n|m|zed,.|n a restnqtgd sense that
is explained below. Since no step in the rewriting procedure
MERGE, (110) MERGE, (1100) increases the number of applications of any function, function
cost minimization means that aerLy operation will perform
al0|all|al2|a13 b10|b11 55 more function applications in the rewritten query than it did
200|201 | 202|203 ‘ 5 ‘ 5 ‘ 5 ‘ 5‘ 500 bo1 515 in the original. We expect that a reduction in the number of
aray A DEFAULT aray aray B DEFAULTaray fuUnction applications should lead to a reduction in the time re-

)) _ quired to evaluate the query. Furthermore, since data retrieval
Fig. 8. lllustration of merge balancing is modeled as function applications, reductions in the number
of function applications in the query’s leaves translate directly
Once the query tree has been created, the preprocessor ég_reducnor_\s in the amount of disk I/.O‘ . -
' The logical rewriting procedure finds a query with mini-

sociates type mformatlo_n with eaafeLy (leaf and non-leaf) mum function cost from among the queries that are both equiv-
in the query by consulting the ArrayDB catalogs. ArrayDB . 4 .
maintains three catalogs: alent to an_dL\PPL_Y-conS|ster_1tN|th the orlgl_nal quen. (A
proof of this claim appers in [23].) Queries that anerLy-
Function Catalog: The function catalog records the name, doeonsistent withf) apply the same functions, in the same order,
main and range box shapes, and domain and range elemeag those that are applied iy although the number of appli-
type names of each external function known to ArrayDB. cations of each function may vary.
Array Catalog: The array catalog records the name, shape,
element type name, location, and accessor function namPefinition 16 (AppLy-consistent). An AML query Q" is
of each stored array known to ArrayDB. APPLY-cONsistentwith another AML queny if there exists
Type Catalog: The type catalog records the name and repré total mappingm from the appLy operations inQ’ to the

sentation size of each element type known to ArrayDB. APPLY operations in@) such that both of the following condi-

tions hold:
After the catalogs have been consulted, the preprocessor per-

forms bottom-up type inference to determine the shape ande For everyappLy operationz in @', x and m(x) use the
element type of the array produced by each AML operator in same external function.
the query. As was noted in Sect. 3.4, AML is designed so that ¢ For all pairs =1, x> of ApPLY Operations in@’, if z; pre-
this is always possible. cedesrs, thenm(x;) precedesn(zq) in Q.
Finally, the preprocessor converts the AML query into the
merge-balanced form that was defined in Sect. 3.2. Merge- Even though ArrayDB’s rewriting procedure finds a
balancing involves replacing unbalancedrce operations — Mminimum-cost,appLY-coNnsistent equivalent query, it is pos-
with expressions involving balancegkrGe operations and sible that there are lower-cost equivalent queries that are not
new leaf array constanfs$=or example, the bottom unbalanced APpLY-consistent with the original. For example, it may be
MERGE in Fig. 5is balanced as illustrated in Fig. 8. In the worst possible to transformppLy (f,, APPLY (fo, A)) into an equiv-
case, merge-balancing may add uRde nodes to the query alent expressioappLy(f., A), wheref. is a composition of
tree, wherer is the number of nodes before merge-balancing,f» andf,. ArrayDB does not attempt to find such rewrites. In-
and d is the maximum dimensionality of the arrays in the deed, it cannot find them since it knows nothing about external
query [23]. functions except their domains and ranges.
The equivalence theorems from Sect. 3 are the basis for
ArrayDB'’s rewrite transformations. Figure 9 summarizes the
4.2 Logical rewriting transformations that are used during rewriting. ArrayDB ap-
plies these transformations by makinagtop-down passes
During logical rewriting, ArrayDB systematically transforms through the query tree, whetgis the maximum dimension-
the AML query into an equivalent form that is expected to beality of any array appearing in the quéryVhen the rewrite
more efficient to evaluate. Specifically, the logical rewriting Process visits a nodeon itsith top-down pass, it attempts to
phase aims to reduce thenction cosof an AML query.

5 Even with such limited knowledge, adjacent functions could be
composed, albeit in some very special cases. For example, if the two
adjacent functiong, and f, map scalar elements to scalar elements,
a composite functioryf. that callsf, and f, in sequence could be

4 All elements of these new arrays have the same value, and Ar‘created.” ArrayDB does not attempt such rewrites.
rayDB represents them using constant space, irrespective of the size® This includes leaf arrays, the result array, and intermediate arrays
of the array. produced by the query’s operators.

Definition 15 (Function cost).Suppose that an AML query
@ containsk AppLY Operators, including its leaves (which are

A.P. Marathe, K. Salem: Query processing techniques for arrays 77

Rewrites forsus; on theith rewrite pass | in the modified treé. The time complexity of the rewriting
Number] Transformation | Theorem | procedure isD(d%n), wheren is the number of nodes in the
SUB; query tree prior to the first rewriting pass [23].

— (WL

1 Theorem 2| An example of the logical rewriting

Consider the AML query in Expression 8, which returns the
lower-left quadrant of the TVI array (array) from Fig. 1 in
Theorem 3| Sect. 1. We have assumed that the Thematic Mapper drsay
shape i51024, 2024, 7). That is, each of the seven bands are
of the shapg1024, 1024). The TVI array’s shape will then
be (1022,1022). The two outermostus operations clip the
Theorem 4| |ower-left quadrantsus, (1°110°!!) keeps only the firs§11
columns of the TVI array, anstys, (1°110511) keeps only the
first 511 rows. The remainder of the expression is simply the
definition of the TVI array in terms of the Thematic Mapper
TheoremS | array (arrayA), as given in Eq. (6). (The functiofis is the
accessor function associated with the arfay

SUB1(15110511,
Theorem 1(SUBg (17110711,
APPLY (fivi,
MERGE3 (10,
APPLY (fur, ®)
Theorem 11 SuB2 (0010000,
APPLY(fa, A)))
APPLY (fur,
SuUB2 (0001000,
Theorem 13 APPLY(f4, A)))))))

ArrayDB'’s logical rewriting procedure produces Expres-
sion 9 from Expression 8. In the unoptimized expression (Ex-
(MERGE;) pression 8), thappLy(f4, A) operations read in the entire TVI

array one band at a time, and the subseqsemt operations
3 [X] [v] Theorem & filter all but the desired bands. In the optimized formula, the
SUBy operations have been pushed into AreLy operations
(MERGE ” below them. Instead of reading the entire TVI array, each of
these leafappLy Operations now reads only the band that is
required for the computation, as specified by the pattétns
in the AppPLYS.

10

Rewrites formERGE; on theith rewrite pass
Number| Transformation [Theorem

4 [X] [Y] Theorem 7

Rewrites forappLy on thez‘th rewrite pass APPLY (fivi,
Number| Transformation [Theorem MERGE» (10,
APPLY APPLY (for,
51305
— > [NULL SUBo(1 (1%130’511
X | SUB1 ,
5 - Theorem 12 APPLY(f4, A, P, = 0010000)))), 9)
|APPLY |—> APPLY’ APPLY (for,
sUBg (17130511,
- 5130511
11 Theorem 14 suB: (17707,

APPLY(f4a, A, P; = 0001000))))))

Fig. 9.ArrayDB logical rewrite. The tables show the rewrites consid- Similarly, the two outesus operations that performed the
ered by ArrayDB during itsth top-down rewriting pass through the clipping in Expression 8 have been pushed through the ap-
query tree. The “current” node before and after the transformation igplications of fi,; and f,,. (In this example, they cannot be
indicated using bold lines pushed all the way into the leabpLy operations, since the
accessor functiorfis reads the stored Thematic Mapper array
a full band at a time.) As a result, many fewer applications of
fur @and fi,; are needed to evaluate Expression 9 than Expres-

apply a rewrite at if « is one ofsus;, MERGE;, OF APPLY; Oth- sion 8. Notice that as the clippirgsss are pushed through

erwise,r is ignored. If a rewrite can be appliedatthe query " Another alternative is to try to apply every possible rewrite in all
tree is modified as illustrated in Fig. 9, and the pass continuesf thed dimensions at a node before proceeding to its children.

78 A.P. Marathe, K. Salem: Query processing techniques for arrays

Operator Arity Parameters Memory cost (buffer space Restrictions
required ini-order)
APPLY_P 1 external functionf |R¢| elements input chunk shape Dy,
output chunk shape iR ¢
REPLICATE_P 1 output chunk shapeout), | Cous[i] i-slabs of the input| input chunks must be of unit
chunk order, patterns array, plusCoy:| elements | size
REGROUP_P 1 chunk order, input chunk Ci,[]i-slabsoftheinputar{ outputchunksare ofunitsize
shape Cin) ray, plusl element
coMBINE P | k(k > 1) | chunk order, filter patterns, 1 element input and output chunks arg
write patterns of unit size
LEAF_P 0 accessor functionf(), chunk | |Ry| elements
order, patterns
REORDER _P 1 input chunk order, output entire input array, plu€ el- | input and output chunk
chunk order, chunk shape ements shapes are identical
(©)

Fig. 10.Properties of ArrayDB'’s physical operators

the AprLY operations, the clipping window expands slightly. “_p” emphasizes that these are physical operators.) The phys-

The larger window is required so thAt. can be applied prop- ical operators are summarized in Fig. 10.

erly to elements on the window’s boundary. By exploiting its

knowledge of the shapes of the domain and range boxes ofPPLY_P. TheappLy_p operator applies an externally-defined

the applied functions, ArrayDB'’s rewrite procedure is able to function to each input chunk. Each function application

determine when such adjustments are necessary. produces one output chunk. The input chunk shape of an
APPLY_P operator matches the domain box shape of the
function itis applying, and its output chunk shape matches

4.3 Plan generation the function’s range box shape.

ArrayDB'’s plan generator generates a query evaluation plar{“ EAF-P: The LEAF_P Operator is similar to -th&PPLYJ) op-

from an AML expression. A query evaluation plan consists erator, except thatear p does not take input from other

of a tree of physical opera.tors Each (non-leaf) operator in the operators. Insteadgrp operators feed stored array data

| dat d d.b its children. The root operator into a plgn. ArrayDB assumes thgt arrays are stored using

plan consumes data produced by | ! : top regular tiling [35,9]. A regularly tiled array is (conceptu-

produces the query result. Conceptually, each physical oper- ally) made up of non-overlapping subarrays (tiles). All of

ator produces an array, and consumes the arrays produce_d by the tiles are of the same shape, and they completely span

its children. However, operators do not normally fully materi- the array. The individual array elements within a tile are

alize the arrays that they prod_uce. Instead, arrays are produ_ced stored contiguously on a physical storage device such as
and consumed a chunk at a time. Chunks are non-overlapping a disk

rectangular subarrays.

ArrayDB’s physical operators aiterators[11]. Specifi-
cally, they are array chunk iterators. A chunk iterator produces
its output chunks one at a time, in respons&léxtChunke-
guests from its parent in the query plan. To obtain the data it
needs to produce a chunk, a chunk iterator may, in turn, make
one or moreNextChunkequests to its children.

A chunkiterator produces the chunks of its output array in a
particular order, e.g., column-major order or row-major order.
Similarly, it expects to be able to consume its input chunks in
a particular order. In a plan, successive operators must have
compatible chunk shapes and chunk generation orders. For
example, if an operator produces chunks of shéh8) in
row-major order, then its parent must consufBe3) chunks theith pattern parameter is set.

in row-major order. REGROUP_P. The REGROUP_P operator obtains chunks of a

hapoe bf SUccesens operatore are compatile. It leaves the 9Ven Shape@y). and produces chunks of unt size. Fig-
p u Ive op pauble. V ure 11 illustrates the effect of a regrouping operation on

operators’ chunk generation orders unspecified. Chunk gen- a (6,6) array with the input chunk shape ¢2,2). A
eration orders are chosen during the plan refinement phase, REGROUP_P Operator neither generates nor destroys array

which is described in Sect. 4.4. elements. Its output array is identical to its input array,
except that it is chunked differently.

On eachNextChunkcall, LEAF_P invokes an externally-
defined accessor function to retrieve one array tile. Thus,
theLEAF_P operator’s output chunks have the same shape
as the tile shape.

A LEAF_P operator can be configured so that it will pro-
duce some, but not all, of the chunks of the stored array.
The chunks to be produced are determined by a set of bit
patterns which are supplied toraar_p operator as pa-
rameters. ALEAF_P operator takes one pattern parameter
for each dimension of its stored array. The patterns act as
masks on the slabs of array tiles (chunks) in each dimen-
sion. Specifically, the tiles in thgh slab in dimensiori

are produced by theear_p operator only if thejth bit of

4.3.1 ArrayDB physical operators In general, ®rouPr_p operator will have to buffer the
chunks that it consumes so that it can produce its output
ArrayDB has six physical operatorsppLY_P, REPLICATE_P, chunks in the proper order. For example, in the scenario

REGROUP_P, COMBINE_P, LEAF_P, @andREORDER_P. (The suffix illustrated in Fig. 11, thekeGroupr_p operator will have

major order(-order). Input chunks are consumed in row-major order,

A.P. Marathe, K. Salem: Query processing techniques for arrays 79
T T T—] Input Array A
I B . =
S Nl = 1[a7]a8]ad
| | | -—
o1 | —> (REGROUP_P) —> 711 2:41132\ [ad 1 0
e oS HH ST commen s !
filter patterns 10
Fig. 11.Regrouping &6, 6) array with(2, 2) input chunks, in row- 1 (o409 08 11 '
1 1 1% write patterns for A
101

as illustrated by the arrow. Output chunks (which have unit size) are
produced in row-major order

write patterns for B
Input Array B

Fig. 13.coMBINE_P With two input arrays. Array element labels indi-

cate which input array elements appear in the output, and where they

1314]14(15]15 16 appear
13141516 910110111112
911011 12% REPLICATE P)—> 910110111112
5 6/ 7 8 5 6] 6/ 7] 7| 8
1 2 3 4 5 6| 6/ 7 7/ 8 N A\
122 3 3 4 S N
Fig. 12.REPLICATE_P in row-major order with output chunks of shape - REORDER P N \ _
(2, 2) applied to &4, 4) array. Elements of the input array are num- [T 1

bered to indicate the order in which they will be consumed by the

operator. The output chunks, indicated by the bold lines, are prof9: 14-A REORDER P operator with(2, 2) chunks, row-major input,

duced in row-major order. The numbers in the cells of the output?"d column-major output
array indicate the input cells to which they correspond

to buffer each row of three input chunksThe amount

of buffering required depends on the shape of the array
and on the shapes of the input chunks. In general, it may
also depend on the order in which tkiesroup_p operator
produces and consumes the chunks. Thisissue is discussed
in more detail in Sect. 4.4.

REPLICATE_P: A REPLICATE_P operator consumes chunks of

unitsize and produces output chunks with a specified shape
C,.:- The operator produces all possible (overlapping)
subarrays of shap@,,,; of its input array. Figure 12 shows

an example of its behavior. LikeEGROUP_P, REPLICATE _P
must, in general, buffer more input chunks because it has
to produce output chunks in the proper order, and because
each element of the input array may appear in more than
one output chunk.

Like LEAF_P, REPLICATE_P can be configured so that it will
produce some, but not all, of the possible output chunks.
The chunks to be produced are specified by a set of pattern
parameters, one for each dimension of the input array. As
was the case forear_p, the patterns act as masks. The
REPLICATE_P produces the chunk at positianonly if, for

all dimensiond) < i < d, thez[é]th bit of theith pattern
parameter is set.

COoMBINE_P: ArrayDB’s coMBINE_P Operator was designed to

replace a logical subtree made up entirelysoB and
MERGE operations. If the subtree hasnput arrays £ >
1), then thecomBINE_P operator will bex-ary. Replacing
such a subtree by a singleMBINE_pP operator avoids the
generation of intermediate arrays.

ArrayDB'’s implementation ofoMBINE_P requires that the
inputand output chunks be of unit size. Thatis, it consumes

8

Alternatively, it would be possible fateGroup_pr to reopen its

input operator and reread chunks from its input array. However, re-
generation of the input array may be substantially more expensive
than reusing buffered chunks, and this operation is not supported in
ArrayDB.

its input arrays one element at a time, and produces its
output array one element at a time.

The behavior of acomBINE_P Operator is controlled by

a set of pattern parameters. For each of its input arrays,
a COMBINE_P operator accepts orfédter patternand one
write patternfor each dimension of the input array. (Filter
patterns and write patterns are computed from the patterns
of the suB andMERGE operations that theoMBINE_P Op-
erator replaces. The details of the computations are given
in[23].) The filter patterns act as masks to determine which
of the input array’s elements will appear in the output of
COMBINE_P. An array element in thgth slab in dimension

1 of the input array will appear in the output array only if
thejth bit of theith filter pattern is set. The write patterns
determine where the unfiltered input elements will appear
in the output. If thejth set bit of the dimensionwrite
pattern occurs in thgth position, then elements from the
jthunfilteredi-slab in the input are placed in théh i-slab

in the output. The net effect of the filter and write patterns
is to map, in each dimensiani-slabs of the input array

to i-slabs of the output array. The mapping is one-to-one
and onto, and is, in general, partial. Figure 13 shows an
example of the operation of@MBINE_P operator.

REORDER_P: The REORDER_P operator reorders the chunks of

its input array. It does not change the chunk shape, and
it does not affect the values of the chunk elements. For
example, ®EORDER_P operator can consume array chunks
in row-major order and produce them in column-major
order, as illustrated in Fig. 1REorDER_P buffers its entire
input array so that it can produce its output chunks in the
correct order. Note that in the sense of relational query
optimization, chunk order isghysicalproperty — that s,

a property of the implementation plans that is not visible
at the logical levelREorDER_P then plays the role of a
physical propertgnforcer

80 A.P. Marathe, K. Salem: Query processing techniques for arrays
APPLY 5 APPLY_P Definition 17 (Memory cost). Thememory cosbf an AML
REPLICATE P iterator plan is the sum of the buffer space requirements of the
- individual operators in the plan. The memory costs of individ-
REGROUP_P ual plan operators are defined in Fig. 10.
Reducing memory cost of a planis importantbecauseit can
] make the difference between a plan that can execute entirely in
Fig. 15.Plan for amprLy node memory and one that cannot. In the latter case, it is necessary
MERGE COMBINE P to split the plan by materializing partial results on secondary
T > e N storage, with a corresponding increase in execution cost.
MERGE sUB REGROUP_P REGROUP_P REGROUP_P The plan refinement phase achieves memory cost reduc-
suB SuB tion in two ways. First, it eliminates unnecessary operations
/\ A A A from the plan. Second, it determines the order in which each
Ty T2 T3 plan operator will produce and consume array chunks. The

Fig. 16.Plan for a subtree made up «fs8 andMERGE hodes

orders are intelligently chosen such that the plan’s memory
cost is minimized.
The first task is relatively straightforward. ¥eGrouP_p

4.3.2 Plan generation algorithm operator is unnecessary if its input and output chunk shapes

are the same. AoMBINE_P operator is unnecessary if: (1) it

A query evaluation plan is generated by a recursive, top-dowmgas only one child, and (2) its filter patterns consist only of
translation of an AML expression tree. The AML operators gpes. Eliminating unnecessayGrOUP_P aNdCOMBINE_P Op-
are translated into physical operators as follows. erations not only reduces memory cost, but also avoids unnec-

Non-leafappLy: If the root operator of the AML expression €ssary data copying. The plan shown in Fig. 17a contains five

tree is a non-leakppLy with domain boxD and range ~ unnecessameGrouP_pnodes (indicated by arrows). They are
box R, anappLY_P Operator, ®EPLICATE P operator, and ~ deleted during the plan refinement phase, resulting in the plan
aREGROUP_P Operator are added to the plan as shown inshowninFig. 17b. _ _
Fig. 15. TheappLy_p operator’s input chunk shape I3 The second task is more involved. As was noted in
and its output chunk shape B;. The REPLICATE P Op- Sect. 4.3, each physical operator produces and consumes ar-
erator generates only those chunks required by the subsé&y chunks in a particular order. Many chunk orders are pos-
quentappLY_P operator. Thus, the pattern arguments for Sible. The chunk order is important because it can affect the
the REPLICATE_P are the pattern arguments of the AML number of chunks that must be buffered iysroup_p and
APPLY Operator. The purpose of tiReGroup_p operatoris ~ REPLICATE.P, thus affecting the memory costs of these two
to change the chunks produced by the inputexpre§ston ~ operators.

the unit chunks required by the subsequerLICATE P Figure 18 illustrates how chunk order affects memory cost
operator. Note that theecroup_p andrepLicaTE P op- for the case of aeGroup_p operator with g2, 4) input chunk
erators change, in two steps, the (arbitrary) chunk shapghape operating on &,8) array. The left-hand side of the
produced by input expressidnto match the domain box ~ figure illustrates how the operation is performed in row-major
shape of theppLY’s external function. order. The solid arrow indicates the order in which the output

Leaf appLy: If the root node of the expression tree is a leaf chunks (unit size) must be produced. Clearly, therour_p

APPLY, a LEAF_P Operator is generated. Thear_p oper- operator must buffer atleast two input chunksiifitis to produce

ator’s patterns are those of the leaLy operator in the the output chunks in the proper row-major order. The right-
AML query. hand side of the figure shows the same operation performed in

Sus or MERGE: |f the root operator of the AML expression column-major order. In this case, thecroup_p must buffer

sion given in Eq. (9) for the optimized TVI query to the iterator
plan shown in Fig. 17a.

tree is asuB or a MERGE, the plan generator finds the four input chunks. Modifying the shape of the array would
maximal tree okus andMERGE operations rooted there. change this comparison. For example, if the array was wider,
The tree is translated into l-ary comBINE_P operator ~ the memory requirement for row-major order would increase,
and k REGROUP_P operators, wheré: is the number of but the requirement for column-major order would remain
leaves of the tree. This translation is shown in Fig. 16.unchanged.

ThecoMBINE_P operator’s write and filter patterns are de- ~ Because operators consume the chunks of their input ar-
rived from thesus andmERGE patterns. The purpose of the rays in the order in which they are produced, the chunk orders
REGROUP_P Operations is to produce chunks of unit size, for the operators in a plan are not independent of one another.
as required by theomBINE_P Operator. Nevertheless, a producer and a consumer can use different
chunk orders if ®EorRDER _P Operator is inserted between them

in the plan. AREORDER_P operator itself has a memory cost,
since it must buffer chunks to reorder them. To determine the
best chunk order for each operator, the optimizer must balance
the additional cost of reordering with the potential downstream

The plan generation algorithm converts the AML expres-

4.4 Plan refinement benefits it may bring.

ArrayDB uses a dynamic programming algorithm to select

The plan refinement phase minimizes themory cosbf an the chunk orders of a plan’s operators. If an operator’s input
AML iterator plan. array consists of: chunks, there aré! ways those chunks

A.P. Marathe, K. Salem: Query processing techniques for arrays 81

1<1,1>

APPLY_P —tvi
‘ <1,1,2>
REPLICATE_P
‘ <11> 1<1,1> .
REGROUP_P APPLY_P —ti
‘<1,1> \<1,1,2>
COMBINE_P REPLICATE_P
\ /1,1> \1,1> / ‘<l,l>
REGROUP_P REGROUP_P COMBINE_P
‘<1,1> ‘<1,1> A> \l,l>
APPLY_p—nr APPLY_p—nr APPLY_p—nr APPLY_p—nr
|<331> |<331> |<331> |<331>
REPLICATE_P REPLICATE_P REPLICATE_P REPLICATE_P
‘<1,1> \ ‘<1,1> ‘<1,1> ‘<l,l>
REGROUP P REGROUP_P COMBINE_P COMBINE_P
|<12> |<12> |<12> |<11>
COMBINE_P COMBINE_P REGROUP_P REGROUP_P
\ <1,1> \ <1,1> \ <1024,1024,1> \ <1024,1024,1>
REGROUP P REGROUP_P LEAF P LEAF P
‘ <1024,1024,1> \ <1024,1024,1>
LEAF P LEAF P
€) (b)

Fig. 17.Initial (a) and refined (b) plans for the optimized TVI query (Eg. 9). Each edge is labeled with the shape of the chunks that flow along
that edge. Arrows are used in indicate operators in the initial plan that are unnecessary. These are eliminated in the refined plan

dim.0

dim. 1 \ \

N A

<2,4> chunks consumed

row-major order (0-order) column-major order (1-order)
chunk production/consumption chunk production/consumption

Fig. 18.Regrouping ir-order and inL-order

could be ordered. The optimizer does not consider all such For ann-operator plan, there ar& possible assignments
orderings. Instead, it consideigossible iteration orders for of chunk orders to plan operators. The dynamic program-
each operator, whetkis the maximum dimensionality of any ming algorithm finds a minimum memory cost assignment
array appearing in the AML plan. Specifically, it considers in O(nd?) time. The algorithm proceeds bottom up through a
i-order, for0 < ¢ < d, as described in Definition 18. For plan tree. At each node, it determines for each < i < d
example2-order means the chunks are sorted in dimension 2the minimum total memory cost of the plan subtree rooted at
then dimension 0, then dimension 1, then dimension 3, then:, assuming that’s output is ini-order. This cost, denoted by
dimension 4, and so on. In two-dimensional arraysrder C;(x), is determined for each non-leaf node by the formula:
is row-major order, and-order is column-major order. Other

orders, such as the Z-curve or the Hilbert curve [1], are alsoC;(z) = ¢;(z) + 3, c » min(Ci(y),
possible, and possibly even useful, especially if chunks in the sy N

base arrays have been laid out in such an order on secondary minzi(C5(y) + ¢ji(reord(y)))),
;sr:(é:;ige. For simplicity’s sake, the optimizer does not conside(, hare v is the set of children of, ¢;

(10)

(z) is the memory cost
of operatorz itself in i-order, andcj; (reord(y)) is the cost
of a j-order toi-orderrREORDER_P operator inserted between
Definition 18 (Chunk i-order). Chunki-order (i-orderfor y andzx in the plan. In other words, to produass result in
short) for an arrayA is determined by sorting the chunks of i-order, each child of either produces its result irorder, or
A using their positions in dimensiaras the primary sort key, it produces its result in some other order angk@rpeR_P is
and their positions in the remaining dimensions, in order of inserted after that child to convert its outputitorder before
increasing dimension number, as secondary sort keys. it reachese. If x is aLEAF_P operator, thei; (x) = ¢;(z).

82 A.P. Marathe, K. Salem: Query processing techniques for arrays

With each plan tree node the dynamic programming al- detectors in each band. The multiple detectors — for example,
gorithm associates a costtable witbntries. Théthentryisof six — are carefully calibrated and matched prior to the satel-
the form (C;(x), choicey, choices, . .., choice|x|). choice; lite launch. However, their radiometric response tends to drift
records the iteration order for thgh child (1 < j < |X) over time, resulting in relatively higher or lower values along
that was used to achieve the minimum subtree ¢yét). every sixth line in the image data (for example). Valid data is
When the dynamic programming algorithm finishégqlans present in the defective lines but it must be normalized with
are available to evaluate the AML expression, each one gerrespect to its neighboring observations. The normalization is
erating the result array in a certain order. Out of théplans, performed by subtracting a valdefrom every sixth line in
the cheapest plan is chosen for evaluation. The chunk orders diie original image. The valugis determined by computing a
the operators in the cheapest plan are determined using a finalstogram for scan lines 1, 7, 13 and so on; a second one for
top-down traversal of the plan tree to select the appropriatéines 2, 8, 14, and so on; and so forth. These histograms are
“choice” entries from the cost tables. When the chunk orderscompared in terms of their mean and median values to arrive
of two successive operators differraorpER_P Operator is at the value ob. Lillesand and Kiefer show an illustration of
inserted between them in the plan. the destriping procedure [20, p. 484].

The costc;(x) of a particular operatar depends on de- For concreteness, Iét= 25. Suppose that theepLy func-
tails of its implementation, such as the granularity of memorytion deduct25with unit-sized domain and range boxes per-
allocation. Each ArrayDB operator has an associated costinfprms the noise removal for one pixel value. ThweLy pat-
method which can be invoked by the optimizer to obtain atern in dimensior®) can be used to appbjeduct25selectively
cost estimate for evaluation of that operator. The cost estimatto the scan lines 1, 7, 13, and so on. The corrected lines can
used for each of ArrayDB'’s physical operators — the bufferthen be merged with a subsampled version of the original im-
space required to implement the physical operation in a cerage where the problem lines have been eliminated. In the AML
tain i-order — is given in Fig. 10. These estimates assumeexpression below, itis assumed that destriping is performed on
that the unit of memory allocation is a slab of input chunks.band five. The AML expression fots is suB2 (0000100, A);

In addition, each operator is charged for a buffer to be used tthe other bands can also be extracted frdsimilarly.
pass output chunks to its parent in the query plan. This buffer

5
is just large enough to hold one output chunk. MERGE((10°,

APPLY (deduct25, As, Py = 10°),sUBo(01°, A5)) (11)

5 The query suite 52 TVI

One way to evaluate performance of a DBMS istorunitona , L . :
benchmark. Since there are no benchmarks for array databa$&@MPUting vegetationindices using between-band differences

systems, we created a suite of array queries to be used @nd ratios is a commo.nly used image enhancement method.
measure ArrayDB's performance. The queries in the suite ardN@ge enhancement aims to create enhanced images from the
described in this section. The empirical results obtained byP'iginalimage data to increase the amount of information that

measuring ArrayDB’s performance on the queries in the suité@" be visually interpreted from the data.
are presented in Sect. 6. The TVI computation and its expression in AML have

The suite contains five queries from the digital imagealready been described in detail in Sect. 1 and Sect. 3, re-

processing domain. For easy reference, the queries in theP€ctively. The following AML expression for TVI is just an

suite are given the following names: TVI, NDVI, DESTRIPE, abbreviated form of Eq. (6).

MASK, and WAVELET. TVI, NDVI, and DESTRIPE are appry(tuvi,

based on common image processing operations described MERGE; (10, APPLY (17, A3), APPLY (17, Ay))) (12)

in [20]. MASK was inspired by a query described in [21].

WAVELET uses wavelet reconstruction as a method of con-In the above expressiod).i = (1,1,2), Rivi = (1,1),

structing a high-resolution image from four low-resolutionim- Dnr = (3,3), and Ry, = (1, 1).

ages [38]. For simplicity and uniformity, all the queries except

WAVELET are constructed such that they manipulate one or

more bands of a multi-band satellite image such as the imaggé.3 NDVI

A showninFig. 1. For brevity, bandghrough? of thatimage

will be denoted by the names,; throughA-. Like TVI, NDVI (normalized difference vegetation index) is
also a vegetation index. NDVI is computed from data in the
AVHRR (advanced very high-resolution radiometer) sensor’s

5.1 DESTRIPE bands one and two using the formula

Thedestripingprocedure [20, p. 4§3— a noise removal oper- NDVI = b2 = by ,
ation—is an example of animage rectification and restoration bz + b1
operation. Such operations correct distorted or degraded imwhereb; andb, represent data from bands one and two, re-
age data to create a more faithful representation of the originapectively [20, p. 448]. Vegetated areas have positive NDVI
scene. values; areas with clouds, water, and snow have negative NDVI
Some multi-spectral scanners aboard satellites sweep muwalues; rock and bare soil give NDVI values near 0. Itis prefer-
tiple scan lines simultaneously. To do that, they have multipleable that the data valués andb, be in terms of radiance or

(13)

A.P. Marathe, K. Salem: Query processing techniques for arrays 83

reflectance [20, p. 448]rather than in units of pixel intensi- hi D low-frequency
ties. — components of A

Suppose that the pixel intensities in bantisand A, are h1
in the rangé) to 255. Pixel intensity and absolute radiance are / F E .
related to each other by the following formula [20, p. 481]: B 2 dim. OT idlm- 2

_ h -
bous = LMAX — LMIN 1 - padiv, (14) \ 2L F dim. 1
255 A ho

Here, b,y IS the absolute spectral radiance valig,is the ~__ high-frequency
pixel intensity, LMIN is the spectral radiance corresponding C ho G components of A

to the pixel intensity of 0, and M A X is the spectral radiance N
required to generate the maximum pixel intensity of 255. TheFig. 19.Wavelet decomposition
constantd.MIN and LMAX are sensor-specific.

Suppose that theppLy functiondn2ar performs the con- dim. 0 Z’im' 2

version described by Eq. (14), and thatilreLy functionndvi dim. 1
computes the NDVI as per Eq. (13). The AML query for the
NDVI computation can now be given as follows. low A
APPLY (nduvi, (15) resolution -
MERGE3 (10, APPLY(dn2ar, A1), APPLY (dn2ar, A3))) images % Emmm
In the above expressiomin2ar has unit-sized domain and N / high resolution

range boxesDya.i is (1, 1,2), and Ruay; is (1, 1). image

Fig. 20.Wavelet reconstruction
5.4 MASK

MASK is an example of an image classification operation.jn remote sensing, the spatial resolution required to study an
Image classification categorizes all the pixels ina digitalimagq,rban area is usually much different than that needed to study
into one of several classes. MASK’s computation is describegyn agricultural area or the open ocean [20, p. 599]. The wavelet
as follows [21]: In an image, retrieve all the pixels whose transform is one way to decompose an image into many com-
intensities, when averaged with all the neighboring pixels, argyonents so that the image can be reconstructed at multiple
between two constant values, say 10 and 100. resolutions as needed. To understand how wavelet reconstruc-
The result pixels of the MASK query might not form an tjon works, it is first necessary to describe the wavelet-based
AML array and therefore, MASK’s result is defined to be a image decomposition.
binary image containing a ‘1'in each position where the pixel Figure 19 shows an x n image A on the left. Wavelet
satisfies the criterion, and a ‘0’ in all the other positions — decomposition transforms each row.fs follows. A row is

these are the two classification classes. logically divided into% groups of two adjacent pixels each.
Suppose that band one contains the originaln image, (5, is even.) Suppose that the pixel values in a group arred
and that the functioavgOwith Dayge = (3,3) andRaveo = ¢ As per the wavelet transform with the Haar basis [38], two

(1,1) calculates the average of the nine pixels (a central pixefynctionsk, andh., defined by the following equations, are
and its eight neighbors), compares it to the two constants 1@pplied tob andc.

and 100, and returns either ‘0’ or ‘1’. The AML expression for
MASK is as follows. hi=(b+c)/2 (7)

APPLY (avg9, A;) (16) ha=(b—c¢)/2 18)

Due toarpLY’s semantics, the output array of MASK has Notice thath, + hy = band thath; — hy = ¢. That s, the

the shapgn — 2,7 — 2). If necessary, such a mask can be yansform is invertible without loss of information.

expanded — usin@IERGE operators — by adding two rows InFig. 19, imageB gathers the results of all tikg function
and two columns to it. The boundary pixels can be arb'trar'lyapplications, and imagé' gathers the results of all the,
assig_ned tothe cIass‘O'_. (Otherways of handling the boundary,;nction applications. ImageB andC have shapes x 2.
condition are also possible.) Next, the decomposition just described is applied to all the
columns in image® andC'. As a result, the column lengths
shrink by half, and a set of fouf x 3 imagesD, E, F’, and

G is generatedD contains the low-frequency components
of A, whereas> contains the high-frequency components of

WAVELET's co_mputation i_s an exa_lmp_le of muIti-reso_Iutio_n A. The decomposition may then proceed recursively on the
image processing. In multi-resolution image processing, im-

: . 4 image D. (n is conveniently chosen to be a power of two.)
ages need to be viewed at multiple resolutions. For examplerhe decomposition ends when a set of “small’ — for example,

® Radiance is a measure of the "brightness” of a point on the32 x 32 — images is generated. o
ground, whereas reflectance is a measure of the amount of light re- Wavelet reconstruction combines four low-resolution im-
flected by a surface. Radiance and reflectance are related [20, p. 2ges to form a high-resolution image. Figure 20 illustrates

5.5 WAVELET

84 A.P. Marathe, K. Salem: Query processing techniques for arrays

wavelet reconstruction. Image names have been retained froguery optimization techniques presented in Sect. 4 effective?
Fig. 19. Suppose thd®, E, I', andG areg x 5 images. That is, do they reduce the cost of evaluating an array query?
Wavelet reconstruction begins by combinifigand E by The results presented in Sects. 6.2.1 and 6.2.2 show that Ar-
putting one atop the other in dimensidto generate theimage rayDB’s optimizations can significantly reduce the time and
H. Likewise, F andG combine to form/.*° Suppose thatf space required for query evaluation with little optimization
e) is a pair of matching pixels i with d coming from D overhead. Second, how efficient are ArrayDB’s optimized,
ande from E. According to the Haar wavelet transform, two iterator-based evaluation plans? In absolute terms, can Ar-

functionsh; andh, are applied to the pairi(¢) as follows. ~ rayDB execute array queries quickly? The results presented
) in Sect. 6.3 show that ArrayDB'’s query evaluation times are
hi=d+e (19) close to those of custom, hand-coded programs in some cases,
hy =d—e (20) butnotin others. These results suggest several avenues of im-
provement for ArrayDB.

In Fig. 20, the functiorh performs the tasks df; and#.
by producing 2 x 1 array with valuesd + e, d — €) as output
fpr each pair of pixelsd, €). Therefore, the resujt of applying 6.1 Workload and evaluation environment
hto H (imageB) is twice as high a&/. Similarly, h applied to
I produces the imagé. The images3 andC of shapes: x Inall of the experiments described inthis section, the workload
are put one atop the other to form the imakyE The function ~ consists of the query suite described in Sect. 5. Figure 21
i is similar to/ except that one application éfproduces a Summarizes the default properties of the workload, which are
1 x 2 array. Therefore applyinl@to J produces an x n high- applicable unless otherwise indicated. For each of the first four
resolution imageA. Wavelet reconstruction can continue on querlesl, _the 'npl}'tﬁ”\‘/”‘vy "T’].a severBléamEéL |>:< 1054 VT/K\%LET
the imageA by combining it with three othet x n images. spectrar:mz_igeo the Was mgton,” area. Forthe 2l
Both wavelet decomposition and wavelet reconstructionglf;a i?rqatg(Sslgrpoudtue(‘:rerg)é);?hnes\l;;f/eolet322831%%&;%2?;0; dure
can be expressed using AML queries; the following descrip-
tion only shows how wavelet reconstruction is achieved us_de?cnbed n Sregt. 5h5' (EorW,Ai\llELEﬁ,ln Eq. (21) |51|0_2d4.) .
ing AML. Specifically, it is shown how AML can express one Unless specified otherwise, all input arrays were laid out in

step of wavelet reconstruction wherebythel‘ourIow—resolution4 KB tiles of shape(64,64,1). The output chunk shapes of

) N . ; the ArrayDB LEAF_P operators match the tile shape, so that
imagesD, E, F, andG in Fig. 20 combine to form the high- X . . . X
resolution imaged. The four low-resolution images are typ- any stored tile can be retrieved with a single 1/0O operation.

; ; All experiments were run on a Sun Ultra-10 computer with
ically stored together in one array. Suppose that the akray : . . _
storesD, E, F, andG concatenated in dimensieh D can 128 MB of main memory, running the Solaris 2.6 operating

be extracted fronk as follows; the other three images can be Eystem. The_ direct I/ O feature of Solaris 2.6 was used to
. ypass the file system’s buffer cache, so all runs were effec-
extracted fromX similarly.

tively cold runs. The machine was run in single-user mode to

D= SUBO(1H/203n/27 X) (21) minimize the pollution of measured wall-clock running times
by operating system multi-tasking.

The AML expressions for the imagés C, andA are as Unless otherwise indicated, each reported running time is
follows. (D;, = (1,1,2), R;, = (2,1,1), D; = (1,1,2),and an average over approximately twenty runs. Confidence inter-
R; =(1,2,1)) vals were calculated at a 99% confidence level. Confidence

R intervals are not shown in the results unless they are at least
B = appLY (h, MERGE,(10, D, E)) (22) 59 of the mean running time. This was done to reduce clutter
C = appLy(h, MERGE3(10, F,) (23) inthe graphs.

- In the descriptions of empirical results, the phrase “opti-
A = appLy(k, MERGE (10, B, C)) (24) mization on” meFe)ms that all opf the AML query ogtimizatioﬁs

It is an interesting fact that all of the wavelet decomposi- discussed in this paper were enabled; the phrase “optimization
tion and reconstruction transforms (and not just the ones wittpff” means that the logical rewriting step and the step in the
the Haar basis functions that we have chosen) have recursivélan refinement phase that deletes no-op physical operators
structures similar to the ones shown in Fig. 19 and Fig. 20from an AML plan were disabled.
Therefore, AML can express all such transforms.

6.2 Effectiveness of optimization
6 Experimental results
_) . _ This paper describes two important array query optimization

This section presents an empirical evaluation of ArrayDB. Thetechniques. The first one saves disk /O and CPU time by
evaluation is intended to answer two questions. First, are thavoiding the reading and processing of array data that are not

10 These two steps are unnecessary; they are included only becaus€eded to compute the query result. The experiments reported
later on in this section, AML will be used to express the waveletin Sect. 6.2.1 demonstrate the effectiveness of this technique.
reconstruction computation. Having these steps facilitates a simpld he second technique reduces the buffer space requirement
translation of wavelet reconstruction to AML. of an array query plan by controlling iteration orders. The

11 Once again, this step is performed only because it facilitates @&xperiments reported in Sect. 6.2.2 show the effectiveness of
simple translation of wavelet reconstruction to AML. this technique.

A.P. Marathe, K. Salem: Query processing techniques for arrays 85

Input array Inputarray | Inputtile | Inputtile | AML query
Query shape size (MB) shape size (KB) | expression
TVI (1024, 1024, 7) 7 (64,64, 1) 4 Equation 12
NDVI (1024,1024, 7) 7 (64,64, 1) 4 Equation 15
DESTRIPE | (1024,1024,7) 7 (64,64,1) 4 Equation 11
MASK (1024,1024, 7) 7 (64,64, 1) 4 Equation 16
WAVELET (2048, 512) 1 (64, 64) 4 Equation 24
Fig. 21.Query workload characteristics
— clipping window 16
/7 pp g TV ——
14 4 NDVI -+
DESTRIPE -&--
y X 121 MASK -x

WAVELET -4--

- output array

Fig. 22.Clipping window

6.2.1 Rewrite optimization

running time (wall-clock) in sec.

To measure the effect of rewrite optimization, we applied a
clipping window to the results of each of the queries in the 01/1 i e
suite, as illustrated in Fig. 22. Theipping fractionis defined clipping fraction
as the size of the clipping window divided by the size of the
full output array. Clipping isimplemented using two AMuB

1/64 1/256

Fig. 23.Running times of clipped queries with optimization on

operations. If the original workload query expressiof j&nd 256
the clipping fraction isf2, the expression for the clipped query NDV
is: DESTRIPE -a--
MASK ' -
5[_]]31(()(1_JC)Q[1]/2lfQ[l]O(l_f)Q[l]/Q7 64 WAVELET -»--
sUBo (01— NQI0I/211QWIG1-NQI/2_), (25) ideal ----

whereQ is the shape of the result of quey We expect the
query evaluation time to vary with the clipping fraction.
Figure 23 shows the wall-clock query running times as a
function of the clipping fraction, with optimization on. Fig-
ure 24 shows the corresponding speedup curves. Query eval- 41
uation times decrease with the clipping fraction, as expected,
because the optimizer is able to “push” the clipping window
down into the query expression, reducing the number of func- 1 , , ,
tion applications and the number of stored tiles to be retrieved 1 a c,ippiﬁéﬁ?acﬁon 1/ea 1/256
from the disk.
Ideally, query evaluation times should be proportional to
the clipping fraction. However, as Fig. 24 shows, the speedup
falls off as the clipping fraction gets smaller. There are severa|p, apsolute terms, the query optimization time did not exceed
reasons for this. First, there is some query evaluation overheagls s in any of our experiments.
— for example, optimization time and plan initiation time
— that is independent of result size. Second, 1/0 costs do
not decrease smoothly with the clipping fraction because tiles.2.2 Optimization of iteration order
sizes are fixed. Any tile that is at least partially covered by the
clipping window is retrieved by the query evaluation plan. ArrayDB'’s optimizer uses a dynamic programming algorithm
When rewrite optimization is disabled, evaluation timesto select the iteration orders of each of the operators in a query
for the clipped queries are essentially independent of the clipplan. To determine the effectiveness of this technique, we mea-
ping fraction. (This is not shown in Fig. 23.) When optimiza- sured the total memory requirement of the query evaluation
tion is disabled, the query plan generates the full query resulplan, with and without optimization. We varied the tile shapes
and then clips it. Not surprisingly, the cost of generating theof the stored input arrays, since the tile shape affects memory
full query result dominated the query evaluation times. requirement of a plan.
In all of the experiments that we performed, query opti- The results of this experiment are summarized in Fig. 25.
mization times were insignificant compared to the query evald+or the sake of brevity, only the results for the TVI query
uation times, unless the query evaluation time was very smallare shown. The plans for the other queries exhibited similar

16

speedup

Fig. 24.Speedup curves for clipped queries with optimization on

86 A.P. Marathe, K. Salem: Query processing techniques for arrays

Tile shape Memory costs of TVI plans(in KB) Query ArrayDB C++ ArrayDB slower
(tile size Optimization on Optimization off CPU time (s) CPU time (s) by a factor of
=4KB) Iteration | Order-0 | Order-1| Order-2 TVI 12.53 292 5.64

Cost order cost cost cost NDVI 8.05 1.47 5.48

(512,8,1) 33 1 2222 133 2222 DESTRIPE 5.44 0.03 181.33

(256,16, 1) 49 1 2337 248 2337 MASK 3.67 0.34 10.79

(128,32,1) 82 1 1853 477 2566 WAVELET 9.36 0.18 52.00

(64,64, 1) 147 0 936 936 3025))

(32,128,1) 82 0 477 1853 5566 Fig. 26. Comparison of ArrayDB versus C++ programs

(16,256, 1) 49 0 248 2337 2337

(8,512,1) 33 0 133 2222 2222

C++ programs. For each of the five queries in the query suite,
Fig. 25.Memory costs of TVI plans with and without optimization ~we wrote a C++ program to evaluate the query. The C++ pro-
grams were given as much memory as they required; they
. i . were not limited to the amounts of memory consumed by the
properties. The figure’s first column shows the shape of thg,orresponding ArrayDB plans.
input array’s tile. The second column shows the total memory \we do not expect the generated plans to match the running
requirement of the plan generated by ArrayDB, with the 0p-times of the custom program&The purpose of this experi-
timizer enabled. (These total memory requirements includegnent was to measure the cost (in terms of query evaluation
the data buffer space required by all of the plan's operatorsgme) of the declarative interface and physical data indepen-
but not the buffer used to hold the query result, since this wagjence offered by an array database system, and to identify and
the same size in all the cases.) The third column shows thgetermine the causes of any performance problems.
iteration order selected by the optimizer for the plan opera- | these experiments, an input array tile shape of
tors. In this experiment, the optimizer always chose to assigrho%’ 1024, 1) was used. That is, the input arrays were laid
the same iteration order to all of the operators in a given plangt in hand-major order. This simplifies I/O for the C++ pro-
though this is not always the case. The final three columng;.ams. No clipping was applied in these experiments. Each
show the total memory cost when the optimizer is disablec%uery generates its full output array.
(no rewrite optimization or iteration order selection). Three Figure 26 shows the query evaluation times for ArrayDB
values are shown, one assuming that all operators execute ihq the custom C++ programs for each of the queries in the
O-order, one assuming that all operators executé-ander, gjte, The figure shows CPU times, rather than wall-clock
and one assuming that all operators execueonder. (Since times. For each of the queries except DESTRIPE, the ArrayDB
the input array is three dimensional, these are the only orderg|an does the same amount of disk I/0 as the corresponding
that are considered.) _____C++program does. We have focused on the CPU times, since
Several conclusions can be drawn from the data in Fig. 25; j5 principally in CPU time that the ArrayDB and C++ plans
First, iteration order matters. The last three columns show thagjifer. The last column of Fig. 26 shows the factor by which

a bad iteration order can be an order of magnitude costlieprrayDB was slower than the corresponding C++ program.
than a good one. Second, the best choice of iteration order gq, TVI, NDVI, and MASK, ArrayDB comes relatively
varies with the shape of the input array’s tiles. Unless theggse to the custom programs. ArrayDB'’s operator imple-
physical layout is fixed for all data (which is not a good idea mentations are not heavily optimized, and we believe that
because different workloads might benefit from different lay- mch of the performance difference in those three cases could
outs), evaluation order should be chosen dynamically to reflect3ye peen eliminated by better implementations. For the DE-
layout of data used by a particular query. In Fig. 25, notice thalsTR|PE and WAVELET queries, however, ArrayDB is much
any fixed choice of iteration order will result in costly plans for slower, and we can identify specific reasons for the difference
at least some of the input tile shapes. The ArrayDB optimizer,, speed. One is that ArrayDB's plans do more copying and
has the flexibility to adapt to the physical design, choosing thgegrganization of data than the custom programs do. Other
right iteration order for each input tile shape. problems include ArrayDB’s inability detect and exploit re-

Finally, the memory cost with ArrayDB optimization onis peated subexpressions in AML queries, and the lack of an
less than the cost with optimization off, even when both plans_p|ace update operation.

use the same iteration order. For example, when the tile shape The data copying overhead occurs in WAVELET and

is (64,64, 1), the optimized plan requirdst7KB and runsin - pEQTRIPE for the following reasons. The AML query for

0-order, while the unoptimize@-order plan requires36 KB. WAVELET contains thre@erGE operators becausepLy is

This difference is due to rewrite optimization. Although both 4 unary operator and the inverse Haar basis functions are bi-

plans iterate ird-order, the optimized plan generates smallernary operations. To apply the inverse Haar transformations,

intermediate results (because of rewrites), and so requires legg, must first combine the two input arrays (USINGRGE)

buffer space. Thus, rewrite optimization helps to reduce meminig a single array. In the resulting plan, eackrGe is im-

ory cost as well as query evaluation time. plemented by aoMBINE_P operator. ArrayDB’s implementa-
tion of thecoMBINE_P operator requires explicit data move-

6.3 Quality of ArrayDB’s query evaluation plans 12 A similar observation was made by Musick and Critchlow [29]

when they compared performance of relational DBMSs and OR-
To gauge the guality of ArrayDB’s query evaluation plans, we DBMSs executing point, multi-point, and range queries with that of
compared them to custom, manually generated, query-specifitative Unixfwrite andfread system calls.

A.P. Marathe, K. Salem: Query processing techniques for arrays 87

ment. The C++ WAVELET program avoids data movementsynchronization overhead. Guibas and Wyatt’s influential
by stepping through the elements of the two arrays in lockwork on this topic [12] — performed in the context of a subset
step, performing calculations on-the-fly (and thus also avoid-of APL operators — has subsequently been extended [4,15,
ing function-call overhead). For DESTRIPE, the C++ program41]. The study reported in [15] shows how to compose FOR-
reads the desired band and simply corrects every sixth row iTRAN 90 operators such as RESHAPE, EOSHIFT, MERGE,
it, making updates in place. ArrayDB first computes the cor-WHERE constructs, and array reduction operations. The re-
rected rows, then computes the uncorrected rows, and theplacement of the contiguoss’B andMERGE operations by a
merges the arrays formed in the previous two steps. Each afinglecoMBINE_P operation in ArrayDB is also an example of
these steps involves copying data. such an array function composition. Common subexpressions
ArrayDB'’s failure to detect common subexpressions fur-and one-to-many array operations are problematic to handle
ther affects DESTRIPE. In the plan for DESTRIPE, ArrayDB in this optimization framework [15].
reads the base array twice from disk, once to compute the In scalar-oriented programming languages, array traver-
corrected rows and once to extract the uncorrected tdws. sals mustbe coded explicitly, often using some form of looping
With common subexpression detection, one reading wouldtontrol structure. Because of the big difference in the perfor-
have been avoided. mance of CPU and memory (be it main memory or cache), loop
In summary, these experiments have identified some of theptimizations try to improve the temporal and spatial locality
limitations of ArrayDB’s query evaluation plans: the need to of array accesses so that elements accessed together (tempo-
copy data as it flows through plan operators, lack of supportally or spatially) can be found in faster memories. Many loop-
for in-place update, and the lack of a binary apply operatorrelated optimizations are known [28]. Some, suctiliag) [28,
It is not clear whether these issues are best addressed at the694], improve cache locality by manipulating the order in
language level, or in the optimizer and evaluator, or both. Fowhich array elements are visited. Other optimizations, such
example, a more sophisticated optimizer, with a larger palettas loop interchange, skewing, reversal, and the order in which
of plan operators, might be able to identify what is, in effect, athey can be applied to loop nests have been studied [44]. Ar-
binary AppLY Operation or an in-place update and implementray restructuring is a loop-related optimization that changes
it using an appropriate physical operator. On the other handthe array layout in memory so that spatial data locality of array
if AML had a binaryAppLY operator or arupDATE operator, element accesses in a loop improves [18]. Array layouts cho-
the optimizer would have a much easier time identifying suchsen for one loop may affect performance of subsequent loops,
operations. We leave the exploration of these issues for futurand therefore, it may be necessary to find globally advanta-
work. geous array layouts.
Such loop-related optimizations are similar in spirit to the
iteration order optimization implemented for AML by Ar-
7 Related work rayDB. Although the optimizations are different, both seek
,)) to exploit iteration order to reduce costs associated with the
Languages which support array manipulation can be classimemory hierarchy. In case of ArrayDB, iteration order selec-
fied into two proad categor|esollecnon—ormnte;ﬂanguages tion produces memory-efficient plans. In such plans, pieces of
and scalar-oriented languages. A language is considered geyerg) arrays can be fit into smaller and faster memories, and
collection-oriented if collection types (for exam_ple, Sets, se-therefore, memory hierarchy is well utilized.
guences, arrays, vectors, and lists) and operations for manip-
ulating them “as a whole” are primitive in the language [37].
APL, the Image Algebra [34], FORTRAN 90, andAML are ex- 7 1 arrays in relational database management systems
amples of collection-oriented languages with array types. In

scalar-oriented languages, such as C and Pascal, collectio%VO approaches can be taken to support arrays in relational

are manipulated element by element. database management systems or extended relational systems.

Some implementations of collection-oriented languagesrpe first approach is to store each array element as a relational
perform early filtering of array data, much as ArrayDB doesdil

The d be filtered dentified by i) K uple in which the element’s indices (as well as its value)
e data to be filtered are identitied by lineage tracing, a kind, o represented explicitly. Array manipulations can then be

of data-flow analysis. The complexity of such an analysis dejafined using SQL or some other relational query language.

pends on the kin_ds of array manipulations that the Ianguagﬁowever, SQL is not particularly well-suited to the kinds of
supports. Often lineage is traced only through array operatorarray queries described in this paper [23].

that operate independently on each individual eleme_nt of an The second approach uses array-valued relational at-
array [3,5,12,42,43]. ArrayDB and AML are notable in that i, o5, Sych attribute values can be represented using bi-
they support lineage tracing (and pushdown of filtering Op-p 4y arge objects (BLOBS). Alternatively, in object-relational
erations) through array operators that operate on rectangulgy\1ss such as lllustra [16], Postgres [40], Paradise [8], and
array chunks of ar.b|t.rary Sizé [24, 25].' . Informix Universal Server [31], an array type with associated
A common optimization in collection-oriented languages meiogs can be defined. Standardization initiatives are un-

i_s to _(effectively) cc_)mbine several_ consecutiv_e array Opera'derway for an image data type: Part 5 of the upcoming SQL
tions into a composite array operation. Evaluation of the comanqarq for multi-media (SQL/MM) is devoted to still im-
posite operation avoids generating intermediate arrays, res;qog [39].

duces redundant data movement, and reduces parallel Ioopg If BLOBs are used, the DBMS stores arrays but provides

13 This is the reason why ArrayDB and the C++ program for DE- little support for array manipulations. It may be possible to
STRIPE do not perform the same number of I/O operations. select a portion of an array by retrieving only the correspond-

88 A.P. Marathe, K. Salem: Query processing techniques for arrays

ing portion of the array BLOB, but other array manipulations of selecting images, often on the basis of image content, from
would have to be implemented by the application itself. If ana large collection of stored images. Manipulation of the se-
array type is available, array operations can be included idected images is a secondary concern. Thus, such systems are
gueries by making calls to the array methods defined for theeomplementary to systems such as ArrayDB.
array type. That is, each query will have a relational part and File-based storage packages such as NetCDF [32] are
a non-relational part, where the non-relational part consists ofvidely used to store array data. Like ArrayDB, NetCDF and
expressions involving array methods. Unfortunately, in mostsimilar packages help to isolate applications from the details of
object-relational systems, optimization of the non-relationalthe physical organization of array data. However, these pack-
parts of a query is very limited. Method invocations appear-ages are not database systems. Only simple retrieval and stor-
ing in the non-relational parts of a query are treated as blaclage operations are supported, so most array manipulation is
boxes. Since the optimizer does not understand these methogserformed by the application.
little or no optimization of the array manipulations is possible. Multi-dimensional OLAP (MOLAP) systems such as Ess-
At best, the DBMS might optimize the placement of the non-base are decision-support systems that store and manipulate
relational parts of the query within the relational evaluation multi-dimensional arrays [10]. MOLAP systems emphasize
plan [14]. efficient combination, grouping, and aggregation of array ele-
Efforts to address this problem are still at the researchments. A formal model for OLAP systems is described in [13].
stage. PREDATOR is a research prototype DBMS in whichSuch systems exploit some of the same kinds of optimiza-
relational and non-relational optimizers can be combined tdions, such as early data filtering, used by ArrayDB. However,
support queries with relational and non-relational parts [36].many operationsin OLAP applications are performed onirreg-
In particular, an array query optimizer could be applied to anular, data-dependent groupings of array elements. In contrast,
array expression composed of the methods of an array ADTAML's operators are best suited for operations with a regular
AML and the ArrayDB optimizer would be well-suited for use structure based on array indices.
in such an environment.

8 Conclusions and future work
7.2 Array database systems
This paper describes AML, a query algebra for arrays, and

Several database management systems have been designeghniques for optimizing and evaluating AML expressions.
like ArrayDB, specifically for array-structured data. Array AML expressions define structured applications of uninter-
database systems are often designed for specific applicatiqoreted, externally-defined functionsto arrays. AML query pro-
domains such as scientific computing and online analyticatessing is implemented in ArrayDB — a database manage-
processing (OLAP). ment system for arrays. ArrayDB’s query optimizer is capable

T2 [5], Titan [6], and RasDaMan [2] are database man-of rewriting AML queries to eliminate unnecessary function
agement systems designed for multi-spectralimages and othapplications and I/O. The optimizer also performs other opti-
raster data. These systems are similar to ArrayDB in that theynizations, such as cost-based selection of the order in which
allow externally-defined functions to be applied to array data.array elements are processed. Using a suite of image process-
However, AML is more general than the query languages useiéhg queries, we have shown that ArrayDB’s query processing
in these systems in that it allows such functions to be appliedechniques are effective at reducing query evaluation times
to rectangular subarrays of any size. This allows ArrayDB toand memory requirements.
directly implement and optimize a broader class of array op- The research reported in this paper can be extended in sev-
erations. In addition, ArrayDB performs some optimizations, eral directions. First, it would be interesting to extend AML
such as choosing the iteration order for function applicationso that it incorporates other index-based operators (such as
that are not considered in the other array database systems.a transpose or dimension reordering operator) and content-

AQL is a scalar-oriented query language with low-level based operators. A content-based operator would restructure
array manipulation primitives. A prototypd QL database anarray, or apply functions to an array, in a manner that would
systemis described in [19]. Unlike AMI4 QL isnotaframe- depend on the value of an array element, rather than its posi-
work for applying externally-defined, application-specific ar- tion. Second, query optimization techniques that exploit some
ray manipulations. Instead, application-specific array operofthe properties of the user-defined functions (such as commu-
ations can be defined withid QL using four array-related tativity or associativity) can be studied. An immediate ques-
primitives plus such things as conditionals and arithmetic op-ion is how to describe these properties to the query optimizer
erations. Two of the array primitives create arrays; one perso that it can reason about them and exploit them. It should
forms subscripting (extracting a value from an array); andnot be too difficult to recognize instances where two adjacent
one determines the shape of an array. Lineage tracing can heser-defined functions can be composed by manufacturing a
performed at the array element level gfQ L expressions. composite function that calls the two original function in se-
AQL is even more flexible than AML in terms of the types of quence. Such an optimization avoids generation of some of the
lineage tracing that it can support. One drawback of this flex-intermediate arrays during query evaluation. Third, the planre-
ibility, however, is that it is not clear how to produce efficient, finement phase can be generalized to consider different chunk
pipelined query evaluation plans fgfQ.L queries. shapes in addition to considering different chunk orders. At

Like the systems described above, image database systermpeesent, ArrayDB'’s physical operators assume fixed input and
allow array-structured data to be stored and retrieved [7]. Howoutput chunk shapes. Physical operators suckeagoup_p
ever, image database systems typically focus on the problerandcomBINE_P can potentially produce and consume subar-

A.P. Marathe, K. Salem: Query processing techniques for arrays 89

rays of various shapes. The dynamic programming-based alwhere
gorithm would need to be revisited to examine whether it Cang[j] = Qlindex(P,j + 1)],
be generalized in the presence of variable chunk shapes. énd
fourth issue is the integration of array query processingintoa_) —
relational database system or image database system. Imaggi;?] = Q[index(P,j + 1)],
and other arrays are usually associated with non-array metaand
data. Ideally, it should be possible for an application to defineT[j] = Plindex(Q, j + 1)],
gueries that involve the kinds of array manipulations describeqOr all j > 0. Furthermore, theterGe operation on the right
in this paper, and that also use the meta-data for filtering of¢ balan&ad. '
for other purposes. '
A final issue is parallel evaluation of AML queries. AML Proof. LetY” = MERGE; (P, A, B, §); let Y = sus;(Q,
is a data-parallel language. Data-parallel languages permit ef ”); let Z% = sus,;(R, A); let Z° = sus,;(S, B); and let
ficient parallel implementations because the operators in suck” = mercE; (T, Z®, Z°,). The goal is to prove that @
languages provide implicit parallelism [37]. The query com- andZ” have the samgslabs. Moreover, it needs to be shown
piler does not have to do complex loop analysis to find par-that if the MerGe operator in the original expression is bal-
allelism. Some of the issues involved in building a parallel anced, then th&EerGe operator in the rewritten expression is
evaluator for AML are: data partitioning and layout schemes;also balanced.
methods for coordinating data retrieval, methods for coor- Sincesus andMERGE operators do not reorder or duplicate
dinating computation; and methods for interprocessor comihe slabs coming from the same array, to prove #@tand
munication. Prior research has addressed issues such as té have the samé-slabs, it suffices to show the following
data partitioning problem for user-defined functions that con-three statements: (1)slab;j (j > 0) of Aisin Y < iff itis in
sume and produce one-dimensional streams [30], and parallgd”’; (2) i-slabj (j > 0) of Bisin Y@ iffitisin Z”; and (3)
evaluation of specialized forms of queries on remote-sensing-slab; (j > 0) of Y comes fromA iff the i-slabj (j > 0)
data [6]. of ZT comes fromA.
The first statement above can be proved as follows. As per
Observation A2 applied t&” = MerGE;(P, A, B, §), the
A A proof of an AML logical rewrite rule i-slabj (j > 0) of A is equal to the-slabindex(P,j + 1)
of Y. Now thei-slabindex(P,j + 1) of YZ is in Y iff
A proof of Theorem 10 appears in this appendix. The proofQ[index (P, j +1)] = 1.
technique contained therein is more generally useful in that ~ Now thei-slabj (j > 0) of A4 is in Z7 iff R[j] = 1.
other rewrite rules can also be proved using a similar approach=rom the definition ofR, thei-slabj (j > 0) of A is in Z7
Proofs of all of the non-trivial AML rewrite rules can be found iff Qlindex(P, j + 1)] = 1. By comparing this conclusion to
in [23]. Sus and MERGE operators map slabs in their input the one reached in the previous paragraph, the first statement
arrays to slabs in their output arrays. Therefore, the proof thajs proved.
follows shows that the original expression and the rewritten The proof of the second statement — which involves using
expression generate the same array slabs. Si@NdMERGE the definition 0fS — is symmetric to that of the first statement.
do not change or permute array cell values in slabs, it then The third statement can be proved as follows. As per Ob-
follows that the result arrays from the original expression andservation Al applied t&’? = suB;(Q,YT), the i-slab j
the rewritten expression are identical. (j > 0) of Y€ is equal to the-slabindex(Q, j + 1) of Y7
The following observations, which follow from the defi- Now the i-slab index(Q,j + 1) of Y¥ comes fromA iff
nitions ofsus andMERGE, help in the proof. Each observation plindex(Q,j +1)] = 1.
establishes correspondences between-thabs of the output Thei-slabj (j > 0) of Z” comes fromA iff T'[j] = 1.
array and the-slabs of the input arrays of a particular AML From the definition off', thei-slabj (> 0) of Z7 comes
operator. Thé-slabs themselves are numbered fi@rthatis, from A iff Plindex(Q, j 4+ 1)] = 1. By comparing this con-
the slab number is the index of tislab in an array. clusion to the one reached in the previous paragraph, the third

Observation AL. In the AML equationy = sus;(P,A), Statementis proved. . .
where P # 0, the i-slab numberj (; > 0) of ¥ equals Finally, let us prove that theerGe operator in the rewrit-

. : . ten expression is balanced. TherGe operator in the origi-
thei-slab numbe(index(P 1)) of A. U d

! (index(P, j +1)) nal expression is balanced and therefore, for all the dimen-
Observation A2. In the merge-balanced AML expression sionsj # i, A[j] = BJj]. In the rewritten expression,

Y = MERGE;(P, A, B,J), whereP # 0 and P # 1,the Z®[j] = A[j] and Z%[j] = B[] for all j # i because
i-slab numberj (j > 0) of A equals thei-slab number thesus operators with the pattern® and S do not change
(index(P,j + 1)) of Y; the i-slab numberj (j > 0) of B the array lengths of their argument arrays in dimensions other

equals the-slab numbe(index(P, j + 1)) of Y. than dimension. Therefore, theterGe operator in the rewrit-
ten expression is balanced as far as all dimensjogs: are

Theorem 10 (pushingsus through MERGE, version 1) concerned.

If P+#0,P # 1, Q # 0 and the expression on the left is Next, let us prove that theerGe operator in the rewritten

merge-balanced, then expression is balanced in dimensiory P'[i] = A[i] + B]i
because th&erce operator in the original expression is bal-

suB; (Q,MERGE;(P, A, B,J)) = anced. Suppose that, in the original expressionstiseoper-

MERGE; (T, sUB; (R, A),suB;(S, B),), ator deletes i-slabs ofA andb i-slabs ofB (a > 0, b > 0).

90

ThereforeY Q[i] = A[i] + B[i] — a — b. Now in the rewrit- 17.

ten expression, theup operators must deletei-slabs from
A andb i-slabs fromB because otherwise the two expres-

sions will not be equivalent. Therefor82[i] = A[i] —aand 18.

ZS[i] = B[i]—b.Now ZT[i] must be equal t& ?[i] because
otherwise the two expressions will not be equivalent. There-
fore,ZT[i] = A[i]+ B[i]—a—b.Now ZE[i]+ Z5[i] is equal

to (A[i] — a) + (BJi] — b) which, in turn, is equal t&T[i]. 19

Therefore, themerGE operator in the rewritten expression is
balanced in dimension O

20.

References

21.

1. Arya M, Cody W, Faloutsos C, Richardson J, Toga A (1994)
QBISM: extending a DBMS to support 3D medical images. In:
Proceedings of the 10th International Conference on Data En-
gineering, Houston, Texas, February. IEEE Computer Society,
Press, pp 314-325 22

2. Baumann P, Dehmel A, Furtado P, Ritsch R, Widmann N (1998)
The multidimensional database system RasDaMan. In: Proceed-
ings of ACM SIGMOD International Conference on Manage-
ment of Data, Seattle, Washington, June, pp 575-577

3. Baumann P (1994) Management of multidimensional discrete
data. VLDB J 3(4):401-444 2

4. Budd T (1988) An APL compiler. Springer, Berlin Heidelberg
New York

5. Chang C, Acharya A, SussmanA, Saltz J (1998) T2: a customiz-
able parallel database for multi-dimensional data. SIGMOD Re
27(1):58-66

6. Chang C, Moon B, Acharya A, Shock C, Sussman A, Saltz JH26-

(1997) Titan: a high-performance remote sensing database. In:
Proceedings of the Thirteenth International Conference on Data
Engineering, Birmingham, UK, April, pp 375-384

7. Chang S, Hsu A (1992) Image information systems: where do?7-

we go from here? IEEE Trans Knowl Data Eng 4(5):431-442
8. DeWitt DJ, Kabra N, Luo J, Patel JM, Yu J (1994) Client-server

paradise. In: Proceedings of the 20th VLDB Conference, Santi-

ago, Chile, pp 558-569
9. Furtado P, Baumann P (1999) Storage of multidimensional ar-

rays based on arbitrary tiling. In: Proceedings of the 15th In-29.

ternational Conference on Data Enginering, Sydney, Australia,
March, pp 480-489
10. Garcia-Molina H, Ullman JD, Widom J (2000) Database system
implementation. Prentice Hall, Upper Saddle River, New Jersey
11. Graefe G (1993) Query evaluation techniques for large

databases. ACM Comput Surv 25(2):73-170 31

12. Guibas LJ, Wyatt DK (1978) Compilation and delayed evalua-
tion in APL. In: Conference Record of the Fifth Annual ACM

Symposium on Principles of Programming Languages, Tucson32.

Arizona, January, pp 1-8

13. Gyssens M, Lakshmanan LVS (1997) A foundation for multi- 33.

dimensional databases. In: Proceedings of the 23rd International

Conference on Very Large Data Bases, Athens, Greece, AugusB4.

Morgan Kaufmann, pp 106-115

14. Hellerstein JM, Stonebraker M (1993) Predicate migration: op-35.

timizing queries with expensive predicates. In: Proceedings of
the ACM-SIGMOD International Conference on Management
of Data, Washington, D.C., ACM, pp 267-276

15. Hwang GH, Lee JK, Ju RD (1998) A function-composition ap- 36.

proach to synthesize Fortran 90 array operations. J Parallel Dist
Comput 54(1):1-47

16. lllustra Information Technologies, Inc. (1994) lllustra user's 37.

guide. Oakland, Calif.

A.P. Marathe, K. Salem: Query processing techniques for arrays

Jay CB (1999) Shaping distributions. In: Hammond K, Michael-
son G (eds), Research directions in parallel functional program-
ming. Springer, London, pp 219-232

Leung S, Zahorjan J (1995) Optimizing data locality by array
restructuring. Technical Report 95-09-01, Department of Com-
puter Science and Engineering, University of Washington, Seat-
tle, Wash.

Libkin L, Machlin R, Wong L (1996) A query language for mul-
tidimensional arrays: design, implementation, and optimization
techniques. In: Proceedings of the ACM-SIGMOD International
Conference on Management of Data, Canada, ACM, pp 228—239
Lillesand TM, Kiefer RW (1999) Remote sensing and image
interpretation 4th edn. Wiley, New York

Lohman GM, Stoltzfus JC, Benson AN, Martin MD, Cardenas
AF (1983) Remotely-sensed geophysical databases: experience
and implications for generalized DBMS. In: Proceedings of the
ACM SIGMOD International Conference on Management of
Data, San Jose, Calif., May, pp 146-160

. Maier D, Vance B (1993) A call to order. In: Proceedings of the

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp 1-16

23. Marathe AP (2001) Query processing techniques for arrays. PhD

thesis, Department of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, January

4. Marathe AP (2001) Tracing lineage of array data. In: Proceed-

ings of the Thirteenth International Conference on Scientific and
Statistical Database Management, Fairfax, Virginia, July, pp 69—
78

¢25. Marathe AP (2001) Tracing lineage of array data. J Intell Inf Syst

17(2/3):193-214

Marathe AP, Salem K (1997) A language for manipulating arrays.
In: Proceedings of the 23rd International Conference on Very
Large Data Bases, Athens, Greece, August. Morgan Kaufmann,
pp 46-55

Marathe AP, Salem K (1999) Query processing techniques for
arrays. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Philadelphia, Pennsylvania,
June. ACM Press, pp 323-334

28. Muchnick SS (1997) Advanced compiler design and implemen-

tation. Morgan Kaufmann, San Francisco
Musick R, Critchlow T (1999) Practical lessons in supporting
large-scale computational science. SIGMOD Rec 28(4):49-57

30. Ng KW, Muntz RR (1999) Parallelizing user-defined functions

in distributed object-relational DBMS. In: Proceedings of the
1999 International Database Engineering and Applications Sym-
posium, Montreal, Canada, August, pp 442—445

Olson MA, Hong WM, Ubell M, Stonebraker M (1996) Query
processing in a parallel object-relational database system. Bull
IEEE Comput Soc Tec Comm Data Eng 19(4):3-10

Rew R, Davis G, Emmerson S, Davies H (1996) NetCDF user’s
guide, version 2.4. Unidata Program Center, Boulder, Colorado
Ritter GX, Wilson JN, Davidson JL (1990) Image algebra: an
overview. Comput Vision Graph Image Process 49:297-331
Ritter GX, Wilson JN (1996) Handbook of computer vision al-
gorithms in image algebra. CRC Press, Boca Raton, Florida
Sarawagi S, Stonebraker M (1994) Efficient organization of large
multidimensional arrays. In: Proceedings of the 10th Interna-
tional Conference on Data Engineering, Houston, Texas, Febru-
ary. IEEE Computer Society Press, pp 328-336

Seshadri P, Livny M, Ramakrishnan R (1997) The case for en-
hanced abstract data types. In: Proceedings of the 23rd VLDB
Conference, Athens, Greece, pp 66-75

Sipelstein J, Blelloch GE (1991) Collection-oriented languages.
Proc IEEE 79(4):504-523

A.P. Marathe, K. Salem: Query processing techniques for arrays

38.

39.

40.

41.

91

Stollnitz EJ, DeRose TD, Salesin DH (1996) Wavelets for com-42. Vandenberg SL, DeWitt DJ (1991) Algebraic support for com-

puter graphics: theory and applications. Morgan Kaufmann, San

Francisco
Stolze K (2000) SQL/MM part 5: still image — the standard and

implementation aspects. Jenaer Schriften zur Mathematik unet3.

Informatik Math/Inf/00/27, Institut di Informatik, Friedrich-
Schiller-Universiéit Jena, September
Stonebraker M, Rowe LA, Hirohama M (1990) The implementa-

tion of POSTGRES. IEEE Trans Knowl Data Eng 2(1):125-142 44.

Treat JM, Budd TA (1984) Extensions to grid selector composi-
tion and compilation in APL. Inf Process Lett 19(3):117-123

plex objects with arrays, identity, and inheritance. In: Proceed-
ings of the ACM-SIGMOD International Conference on Man-
agement of Data, ACM Inc, pp 158-167

Widmann N, Baumann P (1998) Efficient execution of opera-
tions in a DBMS for multidimensional arrays. In: Proceedings
of the 10th International Conference on Scientific and Statistical
Database Management, Capri, Italy, July

Wolf MW, Lam MS (1991) A data locality optimizing algo-
rithm. In: Proceedings of the ACM SIGPLAN '91 Conference
on Programming Language Design and Implementation (PLDI),
Toronto, Canada, June, pages 30-44

