
Integrating Real-Time and Batch Processing
in a Polystore

John Meehan, Stan Zdonik
Shaobo Tian, Yulong Tian

Brown University
{john,sbz}@cs.brown.edu

Nesime Tatbul
Intel Labs & MIT

tatbul@csail.mit.edu

Adam Dziedzic, Aaron Elmore
University of Chicago

{ady,aelmore}@cs.uchicago.edu

Abstract—This paper describes a stream processing engine
called S-Store and its role in the BigDAWG polystore. Funda-
mentally, S-Store acts as a frontend processor that accepts input
from multiple sources, and massages it into a form that has
eliminated errors (data cleaning) and translates that input into
a form that can be efficiently ingested into BigDAWG. S-Store
also acts as an intelligent router that sends input tuples to the
appropriate components of BigDAWG. All updates to S-Store’s
shared memory are done in a transactionally consistent (ACID)
way, thereby eliminating new errors caused by non-synchronized
reads and writes. The ability to migrate data from component to
component of BigDAWG is crucial. We have described a migrator
from S-Store to Postgres that we have implemented as a first
proof of concept. We report some interesting results using this
migrator that impact the evaluation of query plans.

I. INTRODUCTION

Big data problems are commonly characterized along multi-
ple dimensions of complexity including volume, velocity, and
variety. Earlier system solutions focused on each individual di-
mension separately, targeting different classes of computations
or data types (e.g., batch/OLAP [1] vs. real-time/streaming
[2], graphs [3] vs. arrays [4]). This led to a heterogeneous
ecosystem, which has become difficult to manage for its users
in terms of programming effort and performance optimization.
Furthermore, large-scale big data applications rarely involve
a single type of data or computation (e.g., [5]). As a result,
integrated architectures (e.g., [6], [7]) and new hybrid systems
(e.g., [8], [9], [10], [11]) have started emerging.

The polystore architecture and its first reference imple-
mentation BigDAWG represent a comprehensive solution for
federated querying over multiple storage engines, each possi-
bly with a different data and query model or storage format,
optimized for a different type of workload [12]. One of the
main design principles of BigDAWG is that it tightly integrates
real-time and batch processing, enabling seamless and high-
performance querying over both fresh and historical data. In
this paper, we describe how we realize this principle using
a novel transactional stream processing system called S-Store
[13]. We illustrate several important roles a streaming system
such as S-Store can generally play in the heterogeneous setting
of a polystore architecture such as BigDAWG, and provide an
overview of our ongoing research and preliminary results in
this area.

We envision an architecture where all new data enters
the polystore as a stream. Streams can arrive from multiple
sources, at high rates, and must be reliably and scalably
ingested into the system on a continuous basis. During this
ingestion phase, various transformations that prepare the data
for more sophisticated querying and storage can be applied.
For example, raw input streams may be merged, ordered,
cleaned, normalized, formatted, or enriched with existing
metadata. The resulting streams can then be used as inputs for
immediate, real-time analytics (e.g., detecting real-time alerts)
and can be loaded to one or more backend storage systems
for longer-term, batch analytics. Meanwhile, the polystore
continues to process interactive queries that may involve both
newly ingested and older data. Therefore, it is highly important
that these queries can see a complete and consistent view of
the data in a timely manner.

We believe that a stateful stream processing system with
transactional guarantees and multi-node scalability support is
a good fit for addressing the real-time processing requirements
of a polystore system discussed above. S-Store, the first
such system that we have been building at the ISTC for
Big Data [13], [14], [15], has been designed for streaming
applications with shared mutable state, such as real-time ETL.
Each ETL workflow can be represented as a dataflow graph
consisting of ACID transactions as nodes and streams flowing
between them as edges. Input streams chunked into well-
defined atomic batches are processed through these dataflows
in an orderly and fault-tolerant manner. The resulting output
batches can then be incrementally loaded to backend stores
with transactional guarantees. Furthermore, S-Store has its
own in-memory storage engine that can handle adhoc queries
and traditional OLTP transactions over shared tables, thereby
providing consistent and fast access to most recent data and
materialized views derived from it. S-Store’s fast transactional
store feature also enables unique optimizations in the Big-
DAWG polystore such as caching and anti-caching. Similarly,
BigDAWG’s extensible, island-based architecture enables the
use of S-Store together with other messaging or streaming
systems in a federated manner if needed.

In the rest of this paper, we first provide a more detailed
background on BigDAWG, S-Store, and the basic querying
and migration primitives that we implemented to integrate
them together. We then discuss our ongoing research topics

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Fig. 1. BigDAWG 1.0 Architecture

and long-term motivations. Finally, we present preliminary
experimental results evaluating the initial performance of the
querying and migration primitives.

II. BACKGROUND

A. BigDAWG Architecture

The BigDAWG polystore system unifies multiple systems
with varying use cases and storage requirements under a single
architecture [12]. It is founded on the idea that “one size does
not fit all,” and thus unifying many different storage engines
is the best method of handling a variety of specific tasks. The
architecture of BigDAWG is illustrated in Figure 1.

Because these systems use very different query languages,
BigDAWG uses a construct called islands of information,
which are front-facing abstractions including a query language,
data model, and shims, a set of connections to the underlying
storage engines. Each island represents a category of database
systems; for example, a relational island may contain tradi-
tional database systems such as Postgres or MySQL, while an
array island may contain multi-dimensional array databases
such as SciDB [4]. Individual systems may be included in
multiple islands, if they fall under multiple categories.

Individual systems under BigDAWG may migrate data
between one another using a cast operator. These operators
transform the data from the host system into a serialized
binary format which can then be interpreted by the destination
system. The cast operator allows for an efficient method of
moving data to a specific storage engine that may be more
efficient at carrying out the operation. For instance, if the user
is looking to join a table from Postgres to a SciDB array,
it may be most efficient to migrate the array into Postgres
(transforming it in the process) and perform the join there.

Streaming systems play a very unique role in BigDAWG, as
they manage any stream data that is pushed to the polystore.
They perform continuous queries on all new data, and push
information and notifications to a variety of output sources.
All streaming systems fall under a streaming island, which is
further described in Section III-A. We believe that streaming
systems also have an important role in data ingestion in the
general case, which we describe in Section III-B.

B. S-Store

Traditional stream processing systems were first created
over a decade ago with the purpose of handling ever-changing

Fig. 2. A Simple S-Store Dataflow Graph

ordered data in near-real-time [16], [17], [18]. These systems
chained variants of standard relational operators that had been
altered to handle unbounded streams. Due to the real-time
nature of these systems, latency was of the highest priority,
since the value of the results often degraded with time. As a
result, disk access was minimized wherever possible, and in
our view early streaming systems did not properly address
storage-related issues. Streaming applications often require
support for storage and historical queries, in which case an
additional data storage engine needs to be used for strong data
consistency guarantees.

S-Store satisfies both requirements, providing low-latency,
push-based processing seamlessly integrated with ACID data
management. To accomplish this, S-Store ensures that all state,
be it stream state, windows, or relational tables, may only
be accessed within the context of a transaction. Streaming
workloads are divided into dataflow graphs, directed acyclic
graphs of disparate stored procedures (or SPs), atomic units
of processing attached to both an input and output stream.
A transaction execution (or TE) is defined as the execution
of a stored procedure on an incoming atomic batch of input
tuples. Each batch contains its own unique batch-id, which
determines the order in which they can be processed. As a
transaction execution commits, its output tuples are given the
same batch-id and are placed onto its output stream. These
can then serve as an input batch of the downstream stored
procedure of the dataflow graph.

A very simple dataflow graph is shown in Figure 2. Here
we have two stored procedures, SP1 and SP2, linked by a
stream. SP1 takes as input batch b1, labeled A(b1), and starts
a transaction. This transaction produces B(b1) as an output.
SP2 then takes B(b1) as input, and produces a transaction that
has C(b1) as an output. While A(b1), B(b1), and C(b1) all
have the same batch-id (b1), they will contain different tuples
(transformations on the original batch).

S-Store’s contributions are best summarized through the
combination of its three data processing guarantees:
1. ACID guarantees for individual transactions (both OLTP

and streaming). Like conventional OLTP systems, each
transaction (OLTP or streaming) takes the database from
one consistent state to another.

2. Ordered Execution guarantees for dataflow graphs of
streaming transactions. Streaming data contains an inherent
order, and processing on streaming data requires multiple
consecutive steps. Streaming transactions must be sched-
uled in a way that preserves those orderings.

3. Exactly-Once Processing guarantees for streams (i.e., no

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

loss or duplication). This is particularly relevant in the
case of failure to ensure that the same stored procedure
does not execute on the same batch multiple times, and no
transactions are lost in the failure.
Because lightweight transactions are a must for a streaming

system with ACID guarantees, S-Store is built on top of H-
Store, a high-throughput main-memory OLTP engine [19]. S-
Store inherits the distributed, shared-nothing architecture of
H-Store, as well as its command log recovery mechanism.
All state (including streams and windows) are implemented
as relational tables. Dataflow graphs of stored procedures are
implemented via partition engine triggers, or PE triggers.
When a new batch of tuples is inserted onto a stream with a PE
trigger, a new transaction execution of the downstream stored
procedure is invoked on that batch. A streaming scheduler
ensures that S-Store’s ordering guarantees are maintained
while coordinating parallel processing on as many transactions
as possible.

S-Store fills two roles within the BigDAWG polystore. As a
streaming system that ingests data and runs continuous queries,
S-Store clearly fits under the streaming island. However,
because S-Store is SQL-based at its core, it is also able to
serve as a main-memory OLTP engine for BigDAWG under
the relational island. Thus, S-Store uses shims to connect to
both islands, as illustrated in Figure 1.

C. Example Use-Cases

1) MIMIC: MIMIC II is an ICU data set containing clinical
data obtained from hospitals and physiological vital sign data
for ICU patients [5]. Due to the diverse nature of the data set,
MIMIC II is one initial use case for the BigDAWG Polystore
System.

One particularly interesting aspect of this data set is the time
series signal data representing patient vital signs. If this signal
data is captured and analyzed in real-time, it is possible to
perform interactive queries that simulate emergency situations.
Using S-Store, it is trivial to construct a dataflow graph capable
of detecting unusual shifts or patterns in the signal data. For
instance, if the weighted average of a patient’s Pulmonary
Arterial Pressure (PAP) is detected to be under a specific
threshold, S-Store can create an alert for medical professionals.
More complicated queries, such as detecting irregular patterns
in ECG signal data, are also possible.

In addition to these real-time alerts, S-Store is capable of
cleaning and formatting incoming tuples for future ingestion
into a long-term storage engine. Oftentimes time-series data is
best stored in an array database such as SciDB, as it is easy to
consider the patient, type of waveform, and time information
each as its own dimension. S-Store can transform incoming
tuples to suit the needs of SciDB, and use BigDAWG’s
migration functionality to bulk load those tuples into disk-
based array storage.

2) TPC-DI: Data integration is a requirement for any
database system when ingesting new information, often re-
ferred to as Extraction-Transformation-Loading (ETL) pro-
cesses. ETL processes are primarily responsible for 1) the ex-

(a) Pseudo-SQL of DimTrade Ingestion [21]

(b) Dataflow Graph of DimTrade Ingestion

Fig. 3. Ingestion of DimTrade Table in TPC-DI Benchmark

traction of data from a variety of sources, 2) the transformation
of raw source data to match the structure of the data in the
target system, and 3) the loading of the altered data into the
target system [20].

Traditionally, data integration involves loading flat files into
a database system, allowing large quantities of data to be
collected before bulk loading into the system. However, there
are obvious latency benefits to instead ingesting the data as it
arrives.

TPC-DI is a data integration benchmark created to measure
the performance of various enterprise-level integration solu-
tions [22]. The benchmark mimics a retail brokerage firm,
and focuses on extracting and combining data from a variety
of sources and source formats (e.g. CSV, XML), transforming
them into one unified data model and loading the results into
a data store.

While TPC-DI is designed with traditional ETL in mind,
it can be easily modified to represent a streaming ETL
workload instead. Take the queries associated with ingesting
the DimTrade table, for example (Figure 3(a)). If these tuples
arrive in batches on a regular basis rather than a full flat file,
then the queries can be modeled as a streaming workload.
Ordinarily, running the workload as a single transaction in a
shared-nothing database would require one large distributed
transaction. This is because the queries involved retrieve data
from multiple tables, each of which must be partitioned on
a different key. However, by dividing the process into five
operations (Figure 3(b)), S-Store can instead perform the
operations incrementally, processing each tuple in five smaller
single-sited transactions while still providing the correct result.
This results in quicker access to incremental portions of the
end result and provides opportunities for parallelism, while
keeping correctness intact.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

III. ONGOING RESEARCH

Both S-Store and BigDAWG are ongoing research projects,
with several areas of active development. Below we describe
some areas of future work.

A. The Role of Streaming Island in BigDAWG

As with other data types, BigDAWG must be able to
manage incoming streaming data, and should provide the user
with a unified method of querying those data streams. In
addition to S-Store, BigDAWG should be able to support other
contemporary streaming data management systems such as
Spark Streaming [23] or Apache Storm [24]. As is the case
with other categories of data types, BigDAWG has need of
a streaming island in order to manage the unique needs of
streaming data.

Due to the nature of streaming data, the streaming island
must be substantially different than the islands described pre-
viously. While most islands are pull-based in nature, streaming
island is inherently push-based. Multiple data sources can
be connected to this streaming island, as well as multiple
stream ingestion systems. One of the primary functions of
BigDAWG’s streaming island should be to direct streaming
data into the proper ingestion system(s). In this way, streaming
island serves as a publish-subscribe messaging module, and
should perhaps be partially implemented using an engine that
specializes in scalable messaging, such as Apache Kafka [25].

The second functionality required by streaming island is the
ability to view and pass results from continuous queries. To
propagate the push-based nature of streams, streaming island
must be able to trigger other operations, including pull-based
operations from non-streaming systems. One simple example
of such an operation is a user-facing alert. Take, for instance,
a MIMIC medical application that is monitoring heart rate in
real time. If conditions are met that indicate abnormalities in
the heart rate, the streaming application may need to send an
alert to a doctor.

In addition to the push-based functionality, other non-
streaming systems may need to be able to poll the results of
a continuous query at any time. The streaming island should
facilitate this as well, either by temporarily storing the results
of the query, or simply serving as a pass-through for the pull-
request to the appropriate streaming system.

B. Streaming ETL

A polystore such as BigDAWG provides an opportunity to
reconsider the entire data ingestion process. Historically, data
ingestion and ETL is an under-served portion of data storage
and analytics, and we believe that there are improvements to
be made by integrating a streaming system into the process.
Typically, ETL is performed in large batches. Data is collected
throughout the day, and stored in flat files to be loaded all
at once. A series of operations are then performed on this
incoming data in order to mold it into the data schema of the
target system. One obvious drawback to this approach is that
the data is not available on the target system until an entire
batch has been collected, which can take hours or even days

Fig. 4. Streaming ETL Example

[20]. By instead using a streaming system to model the ETL
process, it is possible to do the data cleaning and migration
as new data arrives rather than waiting to complete everything
in bulk.

Streaming ETL divides the data into a sequence of well-
defined chunks of configurable size. Each chunk should be
processed and loaded as an atomic unit, i.e., partial chunks
should not be visible to backend engines for querying. Further-
more, chunks should be durably maintained until at least their
backend loading is successfully completed and acknowledged
by the target system. Transformations on the chunks may
also require reading and writing shared tables in a concurrent
manner. Last but not least, for ensuring correct streaming
semantics, processing chunks exactly once, in the right order is
required. Therefore, transactional processing support is crucial
for streaming ETL.

Due to its transactional properties, S-Store in particular is
very well-suited to streaming ETL. Data ingestion naturally
involves shared, mutable state, since references to previously
ingested state is required for many operations. For instance,
one common operation in the relational data transformation
process is to look up and populate a foreign key reference to
a related table. For this operation to succeed, the foreign key
row must already be populated in the secondary table, and to
guarantee correctness, all state reads and writes must be done
through ACID transactions.

S-Store is scalable, and thus can serve as a streaming
ingestion engine for many diverse systems under the Big-
DAWG polystore. As data is transformed, it can then be
incrementally migrated in batches to the appropriate engine
using BigDAWG’s cast operators. From beginning to end, the
entire process can be done as push-based operations, meaning
that the destination systems will automatically be fed new data
as it becomes available.

C. Cross-System Data Movement and Caching

Cross-system data storage and management is an obvious
challenge in polystores. If the same data items are needed
in separate queries, each of which can be best handled by
different systems, then where should those data items be
located for the best possible performance?

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Streaming ETL is a strong example of such a problem. Let’s
consider a situation in which S-Store is performing streaming
ETL for Postgres (illustrated in Figure 4). Ideally, S-Store is
able to perform transformations on incoming data indepen-
dently of Postgres. However, as mentioned in Section III-B,
the transformation process will frequently require referencing
existing data within the target system. An S-Store query that
requires Postgres data can be executed in one of a few possible
ways:

(i) Cross-System Query - The required data remains in
Postgres. The S-Store query must be executed as a cross-
system transaction that accesses the target data a single
time, and immediately forgets it once the transaction
commits. This is very expensive, especially if a similar
query will be run in the near future.

(ii) Replication - The required data is cached in S-Store
from Postgres. After the copy is made, the S-Store
query can be run locally and is inexpensive. However,
maintaining the correctness of the S-Store cached copy is
expensive in the event that the required data is modified
in a Postgres query.

(iii) Migration - The required data can be moved into S-
Store (and removed from Postgres). The S-Store query
can be run locally and is inexpensive, especially in the
event of repeated queries on the same data. However, if
a Postgres query requires access to the data, it will need
to be run as a cross-system query.

As this example illustrates, there are three primary solu-
tions to the data locality problem: replication, migration, and
cross-system querying. Each solution comes with benefits and
drawbacks, and the optimal approach will always depend on
the specific case. One future avenue of research is exploring
these trade-offs, and developing a cost-model which quantifies
the options and informs a query planner about which approach
is ideal for a given situation.

IV. INITIAL RESULTS

The introduction of streaming ETL and cross-system
caching brings up important questions: what is the cost of
moving data between systems? Is it more expensive to peri-
odically update a copy of the data in another system, or to
pull data across systems each time it is needed? Does pushing
some of the query-planning into the island level improve cross-
system query performance?

In order to compare potential query plans, we have con-
structed a simple experiment that compares two query plans
for a UNION query. Let’s assume that S-Store is being used
as an ingestion engine for the ORDERS table of the TPC-
C workload, eventually migrating tuples into Postgres 1 [26].
A user wishes to run a full table scan on the ORDERS
table, using the simple query ”SELECT * FROM ORDERS.”
Because S-Store is ingesting tuples into the ORDERS table
and incrementally sending them to Postgres, a percentage of

1While TPC-DI is a more realistic workload for streaming ETL than TPC-
C, results were unavailable as of this writing.

(a) Migration Query Plan vs. UNION in Island Query Plan

(b) Comparison for UNION Queries

Fig. 5. Migration Evaluation for UNION Queries

the ORDERS table lives in each system. To accomplish a
full table scan on ORDERS, the tuples in S-Store must be
combined with the tuples from Postgres, effectively making
the query ”(SELECT * FROM S-Store.ORDERS) UNION
(SELECT * FROM Postgres.ORDERS).” Two methods of
executing the UNION query (illustrated in Figure 5(a)) are:

i. migrate the data from S-Store to Postgres, and perform
the UNION in Postgres, or

ii. pull all resulting tuples into the Relational Island, and
perform the UNION there.

This experiment was run on an Intel R© XEON R© processor
with 40 cores running at 2.20 GHz. S-Store was deployed
in single-node mode. Migration from S-Store to Postgres is
implemented as a binary-to-binary migration. It is assumed
that the pipe connection between the two systems is already
open, and thus pipe set up time is ignored in the migration
results. Queries are submitted to both systems via JDBC. A
total of 200,000 tuples were contained within the ORDERS
table, a percentage of which were stored in S-Store and the
rest in Postgres.

As can be seen in Figure 5(b), the most efficient query
plan depends on the amount of data being held in the S-Store
and Postgres tables. The cost of migrating tuples from S-
Store to Postgres increases linearly with the number of tuples
being transferred. If 25% or fewer tuples are held in the S-
Store table, then it is more efficient to migrate the tuples into
Postgres and do the UNION there. However, by executing in
this way, the data from S-Store is effectively being moved
twice: once to Postgres, and then again to the client. Thus, if

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

more than 25% of the tuples are in S-Store, then it becomes
faster to instead transfer all results to the Relational Island and
do the UNION there. This has the added benefit of being able
to pull results from both systems in parallel. As a result, the
optimal query performance for this approach falls at a 50/50
data distribution between S-Store and Postgres.

There are additional aspects to consider with these prelimi-
nary results. For instance, if the query is repeated on a regular
basis, then it becomes more efficient to migrate the tuples into
Postgres, even if the initial migration is more expensive. In
the case of streaming ETL, incremental loading is an effective
method of spreading the cost of the migration over time and
providing quicker access for Postgres queries.

Also note that the UNION operator is relatively inexpensive
to perform. In the case of UNIONing within the relational
island, result sets only need to be stored long enough to be
concatenated and sent to the client. More complicated query
plans, including joins and nesting, will increase the complexity
of processing required within the Relational Island. It is likely
that it is more efficient to perform complex queries within a
mature specialized system such as Postgres, even if it means
migrating large amounts of data. We will explore these kinds
of issues in more detail as part of our ongoing research.

V. RELATED WORK

BigDAWG has many parallels with federated database sys-
tems like Garlic [27]. For example, in both cases, schema
mapping and data movement between sites are important fea-
tures. The main difference is that in a federated database, each
site (component) was autonomous. Each site had a different
owner with her own set of policies. It would not be possible to
permanently copy data from one system to another. BigDAWG
is really a database built out of heterogeneous databases. There
is a single owner who determines things like data placement
across systems.

ETL systems have been around for many years. S-Store
should be responsible for this important function in Big-
DAWG. Traditional ETL is typically done as a series of batch
processing steps, each of which dumps its results to a file
that is accessed by the next element in the pipeline [20]. This
writing of files is very slow. S-Store processes tuples as they
arrive, and pushes these intermediate results downstream to
the next element without writing these results to a file. This
results in near-real-time ETL.

Integrating real-time and batch processing has become an
important need, and several alternative architectures have been
adopted by big data companies, such as lambda [6] or kappa
architecture [7]. In lambda, the same input data is fed to both
a throughput-optimized batch and a latency-optimized real-
time layer in parallel, whose results are then made available
to the applications via a serving layer. Kappa in contrast feeds
the input only to a streaming system, followed by a serving
layer, which supports both real-time and batch processing (by
replaying historical data from a logging system such as Kafka
[25]). Fernandez et al. also propose Liquid - an extended
architecture similar to kappa [11]. Our polystore architecture

is similar to kappa and Liquid in that all new input is handled
by a streaming system, but our serving layer consists of a more
heterogeneous storage system. Also, our streaming system, S-
Store, is a transactional streaming system with its own native
storage, which facilitates ETL.

There are a number of systems that have explicitly been
designed for handling hybrid workloads that include real-time
processing. Examples include Spark Streaming [23], Microsoft
Trill [9], and Google Dataflow [10]. These all support batch,
micro-batch, and streaming workloads in general, but in a
more homogeneous setting compared to S-Store. Also, being
analytical systems, they provide weaker transactional guaran-
tees than S-Store.

VI. CONCLUSIONS

In this paper, we described a polystore called BigDAWG
and the role of a streaming engine in BigDAWG. We also
describe S-Store as a particular streaming engine that has a
sophisticated model of shared memory. S-Store supports trans-
actional guarantees, making the system much more reliable for
managing shared state. This is important so that inconsistent
updates do not work their way into the other storage systems
that constitute BigDAWG.

We have briefly described how S-Store can also act as an
ETL system, providing services such as data cleaning, data in-
tegration, and efficient data loading. Data movement between
the component systems of a polystore is quite fundamental.
Thus, we have concentrated on the topic of data migration in
this paper. We have shown a simple experiment that supports
the idea that the cost of data migration depends strongly on
the amount of data that is moved.

VII. ACKNOWLEDGMENTS

This research was funded in part by the Intel Science and
Technology Center for Big Data, and by the NSF under grant
NSF IIS-1111423.

REFERENCES

[1] “Apache Hadoop,” http://hadoop.apache.org.
[2] “Apache Storm,” http://storm.apache.org.
[3] G. Malewicz et al., “Pregel: A System for Large-scale Graph Process-

ing,” in SIGMOD, 2010.
[4] M. Stonebraker et al., “SciDB: A Database Management System for

Applications with Complex Analytics,” Computing in Science and
Engineering, vol. 15, no. 3, pp. 54–62, 2013.

[5] PhysioNet, “MIMIC II Data Set,” https://physionet.org/mimic2/.
[6] “Lambda Architecture,” http://lambda-architecture.net.
[7] “Kappa Architecture,” https://www.oreilly.com/ideas/questioning-the-

lambda-architecture.
[8] “Apache Spark,” http://spark.apache.org.
[9] B. Chandramouli et al., “Trill: A High-Performance Incremental Query

Processor for Diverse Analytics,” PVLDB, vol. 8, no. 4, pp. 401–412,
2014.

[10] T. Akidau et al., “The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing,” PVLDB, vol. 8, no. 12, pp. 1792–1803,
2015.

[11] R. C. Fernandez et al., “Liquid: Unifying Nearline and Offline Big Data
Integration,” in CIDR, 2015.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

[12] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden,
D. Maier, T. Mattson, S. Papadopoulos, J. Parkhurst, N. Tatbul, M. Var-
tak, and S. Zdonik, “A Demonstration of the BigDAWG Polystore
System,” The Proceedings of the VLDB Endowment (PVLDB), vol. 8,
no. 12, August 2015.

[13] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du,
T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and
H. Wang, “S-Store: Streaming Meets Transaction Processing,” PVLDB,
vol. 8, no. 13, pp. 2134–2145, 2015.

[14] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan,
A. Pavlo, M. Stonebraker, E. Sutherland, N. Tatbul, K. Tufte, H. Wang,
and S. Zdonik, “S-Store: A Streaming NewSQL System for Big Velocity
Applications (Demonstration),” in International Conference on Very
Large Data Bases (VLDB’14), Hangzhou, China, September 2014.

[15] N. Tatbul et al., “Handling Shared, Mutable State in Stream Processing
with Correctness Guarantees,” IEEE Data Engineering Bulletin, to
appear.

[16] D. Abadi et al., “Aurora: A New Model and Architecture for Data Stream
Management,” VLDB Journal, vol. 12, no. 2, 2003.

[17] A. Arasu et al., “STREAM: The Stanford Data Stream Management
System,” in Data Stream Management: Processing High-Speed Data
Streams, 2004.

[18] S. Chandrasekaran et al., “TelegraphCQ: Continuous Dataflow Process-
ing for an Uncertain World,” in CIDR, 2003.

[19] R. Kallman et al., “H-Store: A High-Performance, Distributed Main
Memory Transaction Processing System,” PVLDB, vol. 1, no. 2, 2008.

[20] P. Vassiliadis, “A Survey of Extract-Transform-Load Technology,”
IJDWM, vol. 5, no. 3, pp. 1–27, 2009.

[21] Transaction Processing Performance Council (TPC), “TPC Benchmark
DI (Version 1.1.0),” http://www.tpc.org/tpcdi/, Nov. 2014.

[22] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield, “TPC-DI: The First
Industry Benchmark for Data Integration,” Proc. VLDB Endow., vol. 7,
no. 13, pp. 1367–1378, Aug. 2014.

[23] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized Streams: Fault-tolerant Streaming Computation at Scale,”
in SOSP, 2013, pp. 423–438.

[24] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. V. Ryaboy, “Storm @Twitter,” in SIGMOD, 2014, pp. 147–156.

[25] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A Distributed Messaging
System for Log Processing,” in NetDB Workshop, 2011.

[26] The Transaction Processing Council, “TPC-C Benchmark (Revision
5.9.0),” http://www.tpc.org/tpcc/, 2007.

[27] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. Cody, R. Fagin,
M. Flickner, A. W. Luniewski, W. Niblack, D. Petkovic et al., “Towards
heterogeneous multimedia information systems: The garlic approach,”
in Research Issues in Data Engineering, 1995: Distributed Object Man-
agement, Proceedings. RIDE-DOM’95. Fifth International Workshop on.
IEEE, 1995, pp. 124–131.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

