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ABSTRACT

In this paper, we argue that in many “Big Data” applica-
tions, getting data into the system correctly and at scale via
traditional ETL (Extract, Transform, and Load) processes is
a fundamental roadblock to being able to perform timely an-
alytics or make real-time decisions. The best way to address
this problem is to build a new architecture for ETL which
takes advantage of the push-based nature of a stream pro-
cessing system. We discuss the requirements for a streaming
ETL engine and describe a generic architecture which sat-
isfies those requirements. We also describe our implemen-
tation of streaming ETL using a scalable messaging system
(Apache Kafka), a transactional stream processing system
(S-Store), and a distributed polystore (Intel’s BigDAWG),
as well as propose a new time-series database optimized to
handle ingestion internally.

1. INTRODUCTION

Data ingestion is the process of getting data from its
source to its home system as efficiently and correctly as pos-
sible. This has always been an important problem and has
been targeted by many previous research initiatives, such as
data integration, deduplication, integrity constraint mainte-
nance, and bulk data loading. Data ingestion is frequently
discussed under the name of Extract, Transform, and Load
(ETL).

Modern applications put new requirements on ETL. Tra-
ditionally, ETL is constructed as a pipeline of batch pro-
cesses, each of which takes its input from a file and writes
its output to another file for consumption by the next pro-
cess in the pipeline, etc. The reading and writing of files
is cumbersome and very slow. Older applications, such as
data warehouses, were not particularly sensitive to the la-
tency introduced by this process. They did not need the
most absolutely current data. Newer applications like IoT
(Internet of Things), on the other hand, seek to provide an
accurate model of the real world in order to accommodate
real-time decision making.
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We argue that for modern applications in which latency
matters, ETL should be conceived as a streaming problem.
New data arrives and is immediately handed to processing
elements that prepare data and load it into a DBMS. We
believe that this requires a new architecture and that this
architecture places some fundamental requirements on the
underlying stream processing system. An analytics system
for demanding applications like IoT are based on the exis-
tence of a time-sensitive data store that captures a picture
of the world that is as accurate as possible. If correctness
criteria are not met, the contents of the analytics system can
drift arbitrarily far from the true state of the world.

While this paper is primarily about data ingestion at scale,
we note that for many modern applications, the data in ques-
tion are time-series. We point out that paying special atten-
tion to this important data type can have strong benefits,
and we are currently pursuing this line of work.

2. MOTIVATING EXAMPLES
2.1 Internet of Things

There is a strong need to support real-time data inges-
tion, particularly for demanding new applications such as
IoT. Many of the standard problems of data ingestion (like
data cleaning and data integration) remain in these new ap-
plications, but the scale at which these tasks must operate
changes the way we must conceive of the solution.

For instance, take self-driving vehicles as an example of an
IoT deployment. Today’s cars have many on-board sensors
such as accelerometers, position sensors (e.g., GPS, phone),
fuel consumption sensors and at least one on-board com-
puter. In the future, cars will also be equipped with com-
munication ability to send messages to other vehicles or to
the cloud via sophisticated middleware (streaming system).
In cities, it is easy to imagine that this may scale to mil-
lions of cars. Such a system will need to offer many services,
including, for example, a warning and a list of nearby gas
stations when the fuel tank level is below some threshold.

In this situation, it is easy to see why the traditional data
integration process is not sufficient. The value of sensor
data decreases drastically over time, and the ability to make
decisions based on that data is only useful if the analysis is
done in near real-time. There is a necessity to maintain the
order of the time-series data, but to do so in a way that
does not require waiting hours for a large batch to become
available. Additionally, time-series data can become very
large very quickly, particularly if sensor sample rates are
high. Storing this data can become extremely expensive,
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Figure 1: TPC-DI

and it is likely that the entirety of the time-series data does
not need to be stored to extract the relevant analytics.

We postulate that with a completely fresh look at the data
integration process, the analytics, cleaning, and transforma-
tion of time-series data can all be performed by one system
in near real-time.

2.2 Streaming TPC-DI

While sensor data and other streaming data sources are
a natural use-case, we believe that streaming ETL can have
benefits for traditional data ingestion as well. Take for in-
stance a retail brokerage firm application, emulated by TPC-
DI. TPC-DI is a data integration benchmark created by the
TPC team to measure the performance of various enterprise-
level ingestion solutions [18]. It focuses on the extraction
and transformation of data from a variety of sources and
source formats (e.g., CSV, XML, etc.). These various flat
files are processed in large batches, and the results are inte-
grated as one unified data model in a data warehouse.

While TPC-DI was originally designed as a benchmark
for traditional data ingestion, it can be re-imagined as a
streaming ETL use case. The obvious benefit of the con-
version to streaming is quicker access to incremental re-
sults. Traditional ETL systems process large batches of data
overnight, while a streaming version could process smaller

micro-batches throughout the day.

Assuming the ETL system outputs the same final results,
there is no downside to taking a streaming approach. How-
ever, the act of breaking large batches into smaller ones in-
troduces new data dependencies. Take for instance the Dim-
Security, DimAccount, and DimTrade tables, each of which
are described in Figure 1(a). Note that the DimTrade table
contains foreign keys on both the DimSecurity and DimAc-
count tables (other foreign keys also exist in these tables, but
for simplicity, we will focus on this subset) [21]. When new
rows are defined within the DimTrade table, reference must
be made to the other two tables to assign the SK_SecurityID
and SK_AccountID keys, which means that the correspond-
ing rows must already exist in their respective tables.

Stream processing is an ideal way to handle these data
dependencies. The operations for managing additions to
the DimSecurity, DimAccount, and DimTrade tables can be
arranged in a specific order by using a streaming dataflow
graph. For example, assume a batching mechanism groups
the creation of security S, account A, and a trade request
T from account A for purchasing shares of security S. The
dataflow graph illustrated in Figure 1(b) maintains the data
dependencies of this batch while allowing processing flexi-
bility. The batch is first processed by a CreateSecurities
dataflow graph, then Create Account, and finally, CreateTra-
des.

Dividing ETL processing into small, ordered transactions
has the added benefit of making the process more granu-
lar for the purposes of distributed processing. Ordinarily,
the operations creating the trade, company, and security
relations may take place in a single, large transaction. How-
ever, these transactions can require look-ups on data that
are sharded on different keys, and thus likely require a large
cross-node transaction in a distributed system. Streaming
ETL could allow these large distributed transactions to be
broken into several small single-sited transactions without
damaging correctness due to its push-based, ordered pro-
cessing. Thus, the transactions creating the trade, company,
and security relations can each run separately on different
nodes, independent of one another save for their order of
execution.

3. STREAMING ETL REQUIREMENTS

As with any data integration system, streaming ETL must
first and foremost be concerned with the correctness and pre-
dictability of its results. Simultaneously, a streaming ETL
system must be able to scale with the number of incoming
data sources and process data in as timely a fashion as pos-
sible. With these goals in mind, we can divide the require-
ments for a streaming ETL system into three categories:
ETL requirements, streaming requirements, and infrastruc-
ture requirements.

3.1 ETL Requirements

3.1.1 Data Collection

A typical example of an ETL workload generally includes
a large number of heterogeneous data sources that may have
different schemas and originate from a variety of sources.
While heterogeneity in data collection is a well-known prob-
lem and has been addressed by traditional ETL and data
integration solutions, it is more challenging to apply these
solutions at the scale required for a large number of stream-



ing data sources, as in IoT. In the case of streaming data
sources, data must be collected, queued, and routed to the
appropriate processing channel. A data collection mecha-
nism should have the ability to transform traditional ETL
data sources (e.g., flat files) into streaming ETL sources. In
this case, the traditional data sources need to be collected by
streaming clients that can batch and create input streams.
Data collection should scale with the number of data sources
to avoid losing information or becoming a bottleneck for pro-
cessing.

In addition to simply collecting data, some of the data
cleaning computation can be pushed to the data collection
network. For example, in an IoT application that collects
data over a large network of sources, the gateway routers
and switches can help with some of the computation via
filtering and smoothing of signal data [19]. Another op-
tion when router programming is not readily available is to
use field-programmable gate arrays (FPGAs) for the same
functionality. Some network interface cards also support
embedded FPGAs. Even though the computational capa-
bilities and memory sizes of these edge programming nodes
are very limited, for large-scale applications such as IoT,
the benefit of using this method is quick scalability with the
network size.

3.1.2 Bulk Loading

It has long been recognized that loading large amounts of
data into a DBMS should not be done in a tuple-at-a-time
manner. The overhead cost of inserting data using SQL is
significantly higher than inserting data in bulk. Further-
more, indexing the new data presents a significant issue for
the warehouse. Therefore, a streaming ETL engine must
have the ability to bulk load freshly transformed data into
the data warehouse.

Another tactic to increase the overall input bandwidth
of the system is to suppress the indexing and materialized
view generation of the warehouse until some future time.
The warehouse would have to be prepared to answer queries
in a two-space model in which older data is indexed and
newer data is not. This would require two separate query
plans. The two spaces would be merged periodically and
asynchronously.

3.1.3 Heterogeneous Data Types

Modern data ingestion architectures should provide built-
in support for dealing with diverse target storage systems.
The heterogeneity of the storage systems in today’s big data
ecosystem has led to the need for using multiple disparate
backends or federated storage engines (e.g., the BigDAWG
polystore [7]). The presence of multiple heterogeneous desti-
nations calls for a data routing capability within the stream-
ing ETL engine. Furthermore, if semantically related batch-
es are being loaded to multiple targets, it may be critical to
coordinate their loading to help the data warehouse main-
tain a consistent global view.

3.2 Streaming Requirements

3.2.1 Out-of-Order and Missing Tuples

This topic relates to data cleaning, but has particular im-
portance to IoT. When receiving data from many millions
of devices talking simultaneously, it becomes very difficult
to guarantee that the data’s arrival order corresponds to the

actual order of data generation. With so many sources and
incoming tuples, tuples can be out of time-stamp order or
they can be missing altogether. Waiting for things to be
sorted out before proceeding can introduce an unacceptable
level of latency.

One problem that arises in a network setting with disor-
der in tuple arrival is determining when a logical batch of
tuples has completely arrived. In such a setting, some ear-
lier solutions required that the system administrator specify
a timeout value [5]. Timeout is defined as a maximum value
for how long the system should wait to fill a batch. If the
timeout value is exceeded, the batch closes and if any subse-
quent tuples for this batch arrive later, they are discarded.
We can imagine that for streams that represent time-series
(the vast majority of streaming sources in IoT), if a batch
times out, the system could predict what the missing values
in that batch would look like based on historical data. In
other words, we can use predictive techniques (e.g., regres-
sion) to make a good guess on the missing values.

3.2.2 Dataflow Ordering

As previously stated, data ingestion is traditionally ac-
complished in large batches. In the interest of improving
performance, streaming data ingestion seeks to break large
batches into much smaller ones. The same goes for oper-
ations; rather than accomplishing data transformation in
large transactions, streaming data ingestion breaks opera-
tions into several smaller operations that are connected as a
user-defined DAG known as a dataflow graph.

In order to ensure that these smaller operations on smaller
batches still produce the same result as their larger counter-
parts, ordering constraints need to be enforced on how the
dataflow graph executes. Streaming data management sys-
tems are no stranger to ordering constraints. Intuitively,
batches must be processed in the order in which they ar-
rive. Additionally, the dataflow graph must execute in the
expected order for each batch. These constraints should
be strict enough to ensure correctness while also providing
enough flexibility to achieve parallelism.

3.2.3 Exactly-Once Processing

When a stream-processing system fails and is rebuilding
its state via replay, duplicate tuples may be created to those
generated before the failure. This is counter-productive and
endangers the integrity of the data. Data ingestion attempts
to remove duplicate records, but without exactly-once pro-
cessing, our system may insert the very thing that dedupli-
cation addresses. Similarly, it is expected that no tuples are
lost during either normal operation or failure.

Exactly-once guarantees apply to the activation of oper-
ations within a dataflow graph, as well as the messaging
between engines that comprise the streaming ETL ecosys-
tem. Any data migration to and from the streaming ETL
engine must also occur once and only once. In both inter-
and intrasystem messaging, the requirement of exactly-once
processing in a streaming ETL engine prevents the loss or
duplication of tuples or batches in case of recovery.

3.3 Infrastructure Requirements

3.3.1 Local Storage

Any ETL or data ingestion pipeline needs to maintain lo-
cal storage for temporary staging of new batches of data



while they are being prepared for loading into the back-
end data warehouse. For example, in an IoT use case,
a large number of streaming time-series inputs from dis-
tributed sources may need to be buffered to ensure their
correct temporal ordering and alignment. Furthermore, in
a distributed streaming ETL setting with multiple related
dataflow graphs, there will likely be a need to support shared
in-memory storage. While this raises the need for transac-
tional access to local storage, it can also potentially provide
a queryable, locally consistent view of the most recent data
for facilitating real-time analytics at the OLAP backend.

The streaming ETL engine should also have the ability
to take over some of the responsibility of the warehouse.
For instance, it can store (cache) some of the data that is
computed on the input streams. This data can be pulled
as needed into the warehouse or as a part of future stream
processing. For example, it is possible to store the head of
a stream in the ETL engine and the tail in the warehouse.
This is largely because recent data is more likely to be rele-
vant for data ingestion than older data.

In addition to temporary staging of new data, local stor-
age may also be required for caching older data that has al-
ready made its way into the data warehouse. For example,
in our TPC-DI scenario, each incoming batch of new tuples
requires look-ups in several warehouse tables for getting rel-
evant metadata, checking referential integrity constraints,
etc. Performing these look-ups on a local cache would be
more efficient than retrieving them from the backend ware-
house every time (provided that the data in the cache is
read-mostly to keep data consistency inexpensive).

3.3.2 ACID Transactions

ETL processes are fundamentally concerned with the cre-
ation of state, and transactions are crucial for maintaining
correctness of that state. Incoming tuples are cleaned and
transformed in a user-defined manner, and the output is
assumed to be consistent and correct. A streaming ETL en-
gine will be processing multiple streams at once, and each
dataflow instance may try to make modifications to the same
state simultaneously. Additionally, as discussed in Section
3.3.1, staged tuples may be queried by the outside world,
and cached tuples are maintained from a data warehouse.
In all of these cases, data isolation is necessary to ensure
that any changes do not conflict with one another.

Similarly, it is expected that the atomicity of operations is
maintained in an ETL system. ETL is executed in batches,
and it would be incorrect to install a fraction of the batch
into a data warehouse.

Perhaps most importantly, all state must be fully recov-
erable in the event of a failure. This is relevant to individ-
ual ETL operations; in the event of a failure, the system
should be able to recover to its most recent consistent sta-
tus. Recovery also pertains to migration between the vari-
ous components in an ETL stack. If the data ingestion and
warehousing are handled by different components, then the
migration between the two must also be fully recoverable.

ACID transactions provide all of these guarantees, and
are a crucial element to any ETL system.

3.3.3  Scalability

Most modern OLAP systems scale roughly linearly in or-
der to accommodate the increasing size of datasets. Ide-
ally, data ingestion should scale at the same rate as the

OLAP system in order to avoid becoming a bottleneck. It
is important that the data ingestion also be able to keep up
with increasing quantities of data sources and items. This
means providing the ability to scale up processing across
many nodes and accommodating a variable number of con-
nections. Disk and/or memory storage must also be able to
scale to suit expanding datasets.

3.3.4 Data Freshness and Latency

One of the key reasons to develop a streaming ETL system
is to improve the end-to-end latency from receiving a data
item to storing it in a data warehouse. When running ana-
lytical queries on the data warehouse, we take into account
the freshness of the data available in the warehouse. Data
freshness can be measured with respect to the most recent
data available to queries run in the data warehouse. The
more frequently new data arrives, the fresher the warehouse
data is. If the most recent data is only available in the data
ingestion cache, a query’s data freshness can be improved
by pulling that data as it begins.

The end-to-end latency to ingest new data items is also
related to data freshness. Refreshing the data frequently
in the data warehouse will not help unless new data items
can be ingested quickly. Often, achieving the best possible
latency is not as crucial as obtaining an optimal balance be-
tween high throughput within a reasonable latency bound.
Latency bounds can be variable degrees of strict. For ex-
ample, it may be important that time-sensitive sensor data
be processed immediately, as its value may quickly diminish
with time. Traditional ETL, on the other hand, frequently
has more relaxed latency bounds.

Together, these requirements provide a roadmap for what
is expected from streaming ETL. Next, we explore a generic
architecture to build a streaming ETL system for a variety
of uses.

4. THE NEW ARCHITECTURE

In developing the architecture of a streaming ETL engine,
we wished to create a generic design that can suit a vari-
ety of data ingestion situations. This generic architecture
is illustrated in Figure 2. We envision four primary compo-
nents: data collection, streaming ETL, OLAP backend, and
a data migrator that provides a reliable connection between
the ETL and OLAP components.

4.1 Data Collection

Data may be collected from one or many sources. In an
IoT workload, for example, data is ingested from thousands
of different data sources at once. Each source submits new
tuples onto a stream (likely sending them through a socket),
which are then received by a data collector mechanism. This
data collector primarily serves as a messaging queue. It
must route tuples to the proper destination while continu-
ously triggering the proper ETL process as new data arrives
(Section 3.1.1). Additionally, the data collector must be dis-
tributed, scaling to accommodate more clients as the number
of data sources increases. Fault tolerance is also required to
ensure that no tuples are lost during system failure.

The data collector is responsible for assigning logical batch-
es of tuples, which will be consumed together by the ETL
engine. While time-series order is naturally maintained with
respect to each data source, global ordering can be much
trickier in the presence of thousands of streams (Section



DATA STREAMING
COLLECTION ETL
|

ETL LIBRARY
Data Cleaning
Data Transformer
Data Integration
Data Router
Data Staging
Data Caching

OLAP
BACKEND

QUERIES

Ni

QUERY [ QUERY PROCESSOR]

\ 1

N

DATA
MIGRATOR

SUPPORT
Transaction Mgr
Local Storage
Scheduler
Recovery Mgr
Cache Mgr

DATA SOURCES

e e e e

Globally
Consistent Data

Figure 2: Streaming ETL Architecture

3.2.1). It is the data collector’s responsibility to ensure that
the global ordering of the tuples is maintained.

4.2 Streaming ETL

Once data has been batched in the data collector, it is
pushed to the streaming ETL engine. The streaming ETL
engine features a full library of traditional ETL tools, includ-
ing data cleaning and transformation operators. These ETL
operators are largely dependent on the use-case that the
system is designed to handle. For instance, traditional ETL
may require full SQL support in order to select and compare
against historic table data, while a time-series workload is
more likely to require tools for signal processing, such as fast
Fourier transformations.

Through a user-defined dataflow graph of operators, in-
coming batches are massaged into normalized data ready
for integration with a data warehouse. Frequently, reference
will need to be made to existing data in the warehouse (e.g.,
to look-up and assign foreign keys). For these instances, the
streaming ETL engine requires the ability to cache estab-
lished data from the warehouse, as constant look-ups from
the warehouse itself will quickly become very expensive.

Once the data has been fully cleaned and transformed, it
remains staged in the streaming ETL engine until it is ready
to be migrated. The migration may occur when the data
warehouse is ready to receive the data and pulls it, or when
the streaming engine is ready to push to the warehouse.
Because there may be multiple data warehouses storing a
variety of data types, the streaming ETL engine must be
able to route outgoing data to the appropriate warehouse,
much like the data collection mechanism routes its output.
Additionally, the streaming ETL engine must be scalable
to support expanding amounts of data, and fault-tolerant
to ensure that its results are recoverable in the event of a
failure (Sections 3.3.3 and 3.2.3).

In addition to the ETL library, the streaming ETL en-
gine also contains various support features found in most
databases. For instance, to ensure consistency of the outgo-
ing data, a transaction manager is included (Section 3.3.2).
Local storage is needed for both staging and caching, and
dataflow scheduling and recovery are managed within the
engine (Sections 3.3.1 and 3.2.2).

4.3 OLAP Backend

The OLAP backend consists of a query processor and
one or several OLAP engines. The need to support several
OLAP systems is rooted in variations in data type; some
data are best analyzed in a row-store, some a column-store,
some an array database, etc (Section 3.1.3). Each OLAP
engine contains its own data warehouse, as well as a delta
data warehouse which stores any changes to be made to
the dataset. The delta data warehouse contains the same
schema as the full warehouse, but may be missing indexes
or materialized views in order to allow for faster ingestion
(Section 3.1.2). The streaming ETL engine writes all up-
dates to this delta data warehouse, and the OLAP engine
periodically merges these changes into the full data ware-
house.

The OLAP backend also requires a query processor, prefer-
ably one that is able to access all of the underlying OLAP
engines. If this is not possible, multiple query processors
may be needed. When a data warehouse is queried, the cor-
responding delta table must also be queried (assuming that
some of the results are not yet merged). Potentially, if the
user is looking for the most recent data, the query processor
may query the staging tables in the streaming ETL engine
as well. The user should have the ability to choose whether
to include staged results, as they may affect query perfor-
mance. Replication between the streaming ETL and OLAP
engine is also an option, but it comes at the cost of needing
to maintain two consistent versions of the same data items.

4.4 Durable Migration

Batches are frequently moved between the Streaming ETL
and OLAP Backend components, and a mechanism is needed
to ensure that there is no data lost in transit. Failures that
occur as a batch is moved between components should re-
sult in the data being rolled back and restored to its original
location. Additionally, the migration mechanism should be
able to support the most strict isolation guarantees of its
components. We believe that ACID state management is
crucial for a Streaming ETL component, and therefore the
migration mechanism should fully support ACID transac-
tions as well (Section 3.3.2).

Migration is expensive, and it is important that it primar-



ily takes place at a time when the individual components are
not overloaded. For instance, the OLAP Backend may fre-
quently handle long-running queries that are both disk and
CPU intensive. Similarly, there may be scenarios in which
the Streaming ETL engine is overworked. In order to avoid
reduced performance of either the data ingestion or ware-
house analytics, flexibility in both the timing and quantity
of data in bulk loading is necessary. Assuming that the in-
gestion and analytics take place in different locations, there
are two options for choosing when to migrate between the
two:

Push. Data may be periodically pushed from the ingestion
storage to the data warehouse. This may either be done at
a regular frequency, or can occur when the workload on the
data ingestion is lighter than usual.

Pull. The data warehouse itself can periodically pull fresh
data from the data ingestion storage. This would occur
either directly before an analytical query (if optimal data
freshness is the priority) or at periods in which fewer ana-
lytical queries are running (if query performance is the pri-
ority).

Developers should have the option to implement either
a push- or pull-based migration model, depending on the
structure of their ETL workload. If the Streaming ETL
is the bottleneck, or if fresh data is a high priority, then
new data should periodically be pushed to the OLAP back-
end when it is ready (Section 3.3.4). If long-running OLAP
queries are the priority, then the backend should pull new
data when there is downtime.

S. RELATIONAL ETL IMPLEMENTATION

When implementing our streaming ETL architecture, we
wanted to consider the two primary use-cases listed in Sec-
tion 2: relational ETL (TPC-DI) and time-series ETL (IoT).
While the architecture in Figure 2 can be used for either, the
implementation may vary significantly.

Relational data ingestion requires the transformation of
incoming time-series data to suit the needs of one or sev-
eral OLAP backends that are highly specialized. Typically
these use-cases involve the mutation of relational data in
a way that maintains constraints on the data, such as for-
eign keys. In this section, we discuss the implementation
of our streaming ETL architecture for use in a relational
ETL context. We use three research technologies to imple-
ment our core streaming ETL components - Apache Kaftka
[13], S-Store [15], and Intel’s BigDAWG polystore [7]. The
implementation is illustrated in Figure 3.

5.1 Components

5.1.1 Data Collection - Kafka

A streaming system needs a messaging infrastructure at
its entrance to get data into the system. Kafka is a good
initial choice. Apache Kafka is a highly-scalable publish-
subscribe messaging system able to handle thousands of
clients and hundreds of megabytes of reads and writes per
second [13] . Kafka’s combination of availability and durabil-
ity makes it a good candidate for our data collection mecha-
nism, as it is able to queue new tuples to push to the stream-
ing ETL engine.

Presently, in our implementation, Kafka serves exclusively
as a messaging queue for individual tuples, each of which are
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Figure 3: Relational ETL Implementation

routed to the appropriate dataflow graph within the stream-
ing ETL engine. In contrast to our architecture description,
all batching currently takes place within the streaming ETL
component. In future iterations of the data ingestion stack,
the data collection component can be extended to handle
more complicated message handling, including the batch-
ing of near-simultaneous tuples and perhaps simple filtering
operations.

5.1.2 Streaming ETL - S-Store

Choosing a streaming data management system that best
fits streaming ETL is complicated, as there are advantages
and disadvantages to each. Few single systems meet all
requirements described in Section 3. For instance, Spark
Streaming [26] and Twitter Heron [14], two modern stream-
ing systems, offer highly scalable processing with low la-
tency. They provide data-driven processing and streaming
primitives, and either seems like a natural choice for the
streaming ETL component. However, when it comes to state
management, neither system has a strong story. Neither pro-
vide support for shared, mutable state, so both would need
some sort of external storage component. The addition of
another database system for state management would intro-
duce an extreme amount of overhead, since most operations
in traditional ETL involve reading or writing persistent data
on a regular basis.

S-Store, on the other hand, is a new streaming database
system built explicitly to handle shared, mutable state [15].
Unlike traditional streaming systems, S-Store models data-
flow graphs as a series of transactions, each of which ensure a
consistent view of the modified state upon commit. S-Store
is built on top of the main-memory OLTP system H-Store
[11], and integrates streaming functionality such as streams,
windows, triggers, and dataflows. It provides three funda-
mental guarantees which together are exclusively available in
S-Store: ACID transactions, dataflow ordering, and exactly-
once processing [20]. These guarantees in conjunction with
its streaming functionality make S-Store an ideal fit for a
streaming ETL engine.

As an OLTP system at its core, S-Store uses relational
tables as its primary method of storage. It provides many
of the standard elements to be expected in a DBMS, in-
cluding indexes and materialized views. S-Store uses user-
defined stored procedures as its transactional operations.
Each stored procedure is defined using a mixture of Java
and SQL. This allows for a good deal of flexibility, as data
cleaning operations can be quite complex.

While S-Store is well-suited for the task of managing stream-
ing ETL, it does require careful database design in order to
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achieve scalability. As with most shared-nothing architec-
tures, S-Store performs best when data items that are ac-
cessed together are co-located as often as possible, as dis-
tributed transactions are extremely expensive. Incoming
data is batched in order to improve performance; typically
the larger the batch, the better the performance in terms
of raw throughput. However, large batches come with a
trade-off of increased latency, as the system must wait for
more data to arrive before processing a full batch. S-Store
database design applies to the transactions within a dataflow
graph as well. Typically an S-Store dataflow graph is com-
posed of many transactions with only a few operations apiece
rather than few transactions with many operations. By
breaking up large operations into smaller components, it
becomes possible to run several single-sited transactions in
place of a large distributed transaction. This is particularly
relevant when data is needed from multiple tables, each of
which is hashed on a different key.

5.1.3 OLAP Backend and Migration - Postgres and
BigDAWG

Because S-Store provides local storage, OLAP operations
could, in theory, be integrated into the streaming ETL com-
ponent. However, most OLAP engines are specialized and
are able to perform much more sophisticated analytics oper-
ations with much better performance. Because this paper is
primarily focused on ingestion rather than analytics, Post-
gres was chosen as a backend database for simplicity’s sake.
While using Postgres as an OLAP database is straightfor-
ward, the complication is the migration of data between the
streaming ETL and OLAP engines. To address this con-
cern, we chose the built-in data migrator provided by the
BigDAWG polystore.

Intel’s BigDAWG is a polystore of multiple disparate data-
base systems, each of which specializes in one type of data
(e.g., relational, array, streaming, etc.) [7]. BigDAWG
provides unified querying and data migration across each
of its databases, presenting them to the user as a single
system. To facilitate this, BigDAWG includes several “is-
lands of information”, each of which contains multiple sys-
tems that share a common query language. For instance,
all relational databases are connected to “relational island”,
which is queried using standard SQL. The architecture of
BigDAWG is shown in Figure 4.

BigDAWG provides the flexibility needed to handle mul-
tiple OLAP data warehouses under one roof. Because S-
Store is also integrated with BigDAWG, migration between
S-Store and any OLAP system supported by the polystore is
easy to implement and efficient [16]. Most importantly, the
migration between both components is transactional. By us-
ing two-phase commit and maintaining open transactions on

SP1: INGEST Stream Tuple(s) FROM Input Stream
SP2: SELECT CreateDateID FROM DimDate

SELECT CreateTimeID FROM DimTime

SELECT Status FROM StatusType

SELECT Type FROM TradeType
SP3: SELECT SecurityID, CompanyID FROM DimSecurity
SP4: SELECT AccountID, CustomerlID, BrokerID

FROM DimAccount

SP5: INSERT Finished Tuple INTO DimTrade

(a) Pseudo-SQL of DimTrade Ingestion [21]
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(b) Dataflow Graph of DimTrade Ingestion

Figure 5: DimTrade Ingestion in TPC-DI

both S-Store and Postgres until both sides of the migration
have completed, BigDAWG is able to ensure that a batch
of data is either fully migrated or completely rolled back,
thereby avoiding data loss or duplication issues.

It is important to note that while data can be migrated
from S-Store to BigDAWG or vice versa, we chose not to
implement cross-system replication at this time. This is to
ensure that we are only maintaining a single copy of the
data at once, thereby avoiding data consistency issues as-
sociated with replication. We leave cross-system replication
to future work. However, queries sent by the user can be
automatically routed to the correct OLAP warehouse, and
may include UNIONed data from a delta warehouse or from
the staging storage of the streaming ETL engine. Complex
queries that require data from both S-Store and Postgres can
be performed by first migrating the relevant data fully into
one engine or the other, and then performing the operation
there.

5.2 Migration Experiments (TPC-DI)

5.2.1 Experiment Setup

One of the key questions facing a streaming ETL system
is how frequently data should be migrated to the data ware-
house. As discussed in Section 4.4, there are two methods
of determining when this migration occurs: either the inges-
tion engine periodically pushes the data to the warehouse,
or the warehouse pulls the data from the ingestion engine
when it is needed. Thus, we devised an experiment to test
the pros and cons of each.

To test the performance of our inaugural system, we im-
plemented a portion of the TPC-DI workload described in
Section 2.2. In the streaming ETL engine (S-Store), we
implemented the operations required to ingest tuples from
Trade.txt into the DimTrade table, as described in Figure 5.
The necessary transformations can be broken down into a
handful of SQL operations, several of which perform lookups
on other dimension tables which are each partitioned on a



different key (Figure 5(a)). These operations can be divided
into five disparate transactions, each of which accesses a
different table (Figure 5(b)). That way, each transaction
is able to run single-sited, preventing expensive distributed
transactions. The stream ordering constraints on the five-
transaction dataflow ensures that although the operations
are separated and frequently able to run in parallel, the end
result of the workload is still correct.

The tables in the TPC-DI database were also created in
Postgres to serve as our data warehouse and populated with
historic data for the purposes of running analytical queries.
With varying frequency (once every 100 ms to 10 seconds),
an analytical query is run on the data available in Postgres.
TPC-DI is focused solely on ingestion and does not provide
a suitible analytical query for testing purposes. To com-
pensate, we use a pricing summary report query inspired by
Q1 from the TPC-H benchmark [22]. This query scans the
DimTrade table, and for each type of trade calculates aggre-
gates such as the total and average quantity, and the total
and average pricing difference between bid and trade.

We run the experiment under two configurations, one push-
based and one pull-based. In both configurations, the stream-
ing ETL engine periodically pushes newly-processed data to
the warehouse at an interval amount of time. In the sec-
ond configuration, we allow the warehouse to pull all fully-
processed data available in the streaming ETL engine at the
beginning of each analytical query. This allows the query to
run with the freshest data available. In both configurations,
we measure the effects of frequent or sparse migration on 1)
freshness of data available to the OLAP queries, 2) dura-
tion of the OLAP query runtime, and 3) maximum latency
incurred by the ingestion engine.

These experiments were run on an Intel® Core™i7 ma-
chine with 8 virtual cores and 8 GB of memory. For sim-
plicity, S-Store, BigDAWG, and Postgres were all run on a
single node. S-Store was run in single-partition mode, and
Postgres used the default settings. Batches are composed of
a single tuple per batch.

5.2.2 Results

Figure 6 shows the simultaneous effects of the experiment
described in Section 5.2.1.

We define data staleness as the amount of time since new
data has been migrated into the data warehouse at the time
of an analytical query (i.e., the opposite of data freshness).
As shown in Figure 6(a), when data is simply pushed from
the data ingestion engine to the data warehouse on a reg-
ular basis, the data staleness seen by an OLAP query is
solely dependent on the transfer interval. As the time be-
tween migrations increases, the data staleness for analytical
queries does as well. The OLAP query runs at random in-
tervals, and thus may or may not be executed directly after
a migration takes place. When the query is repeated multi-
ple times, the staleness averages out to be roughly half the
duration between migrations. Meanwhile, if the data ware-
house automatically pulls all of the most recent data upon
issuing the OLAP query, then the staleness will always be
kept at zero. Pulling new data with each query is the clear
best option if staleness is the priority.

One tradeoff to data freshness involves the run time of the
OLAP query in question (Figure 6(b)). In the push case,
the analytical query run time is hardly affected at all by
migration. Postgres is able to multitask the migration and

60

50

40

30

20

Average Staleness (sec)

10

0.5 1 2 5 10 20 30 60 120
Seconds between Migration

(a) OLAP Query Staleness

g 25
:E; FPush ®
g 2 pull
>
S 15
&
kS
1
S
3 <&
& <o
g 05 o O—0
0 & <9 <
< H—H—W—A—H—H—6—¥—X
0 % % % S %
0.5 1 2 5 10 20 30 60 120

Seconds between Migration

(b) OLAP Query Run Time

160
140
120
100
80
60
40
20

Max Latency (sec)

0.5 1 2 5 10 20 30 60 120
Seconds between Migration

(c) Max Ingestion Latency

Figure 6: Push vs. Pull (at ingestion saturation)

the query well enough that any effect is negligible, and the
query runs efficiently. In the pull case (which also features
periodic data pushing), performance is affected significantly
by the frequency of the push. Each time the query runs,
a connection must be established with S-Store in order to
receive the latest tuples. There is a baseline overhead in
establishing that connection, so even if very little data is
transferred, the effect is noticeable in terms of performance.
However, if the period between data pushes is large, then
the analytical query ends up pulling significantly more data.
When this happens, the query time quickly balloons, since
the workload is dominated by data migration. If analytical
query performance is a top priority, then exclusively pushing
data from the ingestion engine (rather than pulling before
each query) is ideal.

Data migration also has a significant effect on the perfor-
mance of the data ingestion engine. Figure 6(c) shows the
latency consequences of data migration at various intervals.
In this case, latency is measured as the period between a
data item first arriving at the ingestion engine and being
fully migrated to the data warehouse. Note that there is
only a single line in this graph. This is because the effect



on the data ingestion is the same regardless of push or pull;
only the interval between migrations is important. At sat-
uration, new incoming data items must wait for migration
to finish before they can be ingested (because this particu-
lar ingestion engine implementation requires a full partition
lock during migration). In cases where the interval between
migrations is high, more data must be migrated at once, and
therefore the maximum amount of time a batch may wait is
extremely high. While this effect may be less pronounced in
an implementation with looser locking constraints, ingestion
performance would still be affected.

In both scenarios (push vs. pull) and all three contexts
(staleness, run time, and max ingestion latency), the sit-
uation is significantly improved by smaller, more frequent
migrations. Setting the time between migrations to be some-
where between one and five seconds gives optimal results for
each context. Frequent migrations also mean that data pulls
for queries that require high degrees of data freshness have
good performance as well.

5.3 IoT Proof-of-Concept (MIMIC II)

In addition to our TPC-DI experiments for relational ETL,
we are also able to create a workload that imitates an IoT
use-case on our current streaming ETL system implemen-
tation. As described in our previous work, we have imple-
mented a real-time alert monitoring system over streaming
patient waveforms from an ICU [20]. This is based on the
MIMIC II dataset, which includes a variety of ICU data such
as different types of heart-rate data [4].

In our demonstration, we ingest ECG and PAP heart-rate
data in real-time and run two queries to search for abnor-
mal patterns. One query ensures that PAP levels are above
a given threshold, while the second looks for specific pat-
terns within the ECG waveform. In the event of either case,
an alert is sent to medical devices intended to notify profes-
sionals. The MIMIC dataflow also includes transformation
and ingestion into SciDB [6], an array database, via Big-
DAWG. There, the waveform is stored in a warehouse for
later analysis.

While we were able to successfully implement the work-
load, we noticed some limitations. Though S-Store is de-
signed to handle ordered batch data (which share many
properties with time-series data) in a streaming context, its
query support is extremely rooted in relational databases.
It is not truly optimized to perform complex time-series-
specific operations. SciDB contains a similar problem; while
time-series can be stored as a one-dimensional array, an ar-
ray database lacks support for complicated time-series quer-
ies. Also, because both S-Store and SciDB center around
strong support for mutable state rather than append-heavy
time-series workloads, there are other missed opportunities
for optimization.

Our MIMIC II implementation led us to the conclusion
that a new, single system could be created to both ingest
and analyze time-series at scale. We discuss our plans for
such a system in the next section.

6. FUTURE WORK: TIME-SERIES ETL

While ETL for relational data involves mutation of shared
state, lIoT datasets primarily require consideration of time-
series data, which tends to be very insert-heavy and requires
operators capable of efficiently analyzing waveforms. We be-
lieve that the system we built in this paper can be further
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improved and optimized for an IoT use-case. Using the re-
quirements and architecture that we have established for a
streaming ETL system, we can create an all-in-one inges-
tion and analytics engine specifically for time-series data.
We call this system Metronome.

There are a wide variety of use-cases which prominently
feature time-series. Classically, time series are used for fore-
casting (i.e., prediction) and pattern matching (e.g., outlier
detection). Additionally, when treated as a signal, time se-
ries can participate in FF'Ts, convolutions, and filtering. We
believe that by treating time-series as the primary data type,
a single data model can be used for all of these situations.
We will then be able to specialize the generic data model by
implementing operations that are specific to each time-series
use-case.

Unlike most stream processing systems, Metronome’s fun-
damental data type is a finite sequence of values (a window)
that represents a contiguous piece of a time-series. Rather
than relational tables, time-series store data in a named se-
quence of values indexed by time. A time-series is primarily
updated by appending new values at higher time-index po-
sitions, with tertiary support for updating values in specific
cases (such as error correction).

Because both the streaming ETL operations and the on-
line analytics processing are concerned with time-series data,
we believe that Metronome has the capability to handle an
integrated streaming ETL architecture which includes both
real-time data ingestion and time-series analytics. Figure 7
illustrates the basic architecture of Metronome. Each of the
functionalities from Section 4 are supported. However, be-
cause the entire dataflow stack is optimized within a single
system, components of the streaming ETL architecture do
not directly map one-to-one with components of Metronome.

Streaming data ingestion for time-series shares many sim-
ilarities to that of relational data, and has the same require-
ments listed in Section 3. However, with the change in fun-
damental data type, the priorities for these requirements
change substantially. For instance, relational data priori-
tizes functionality that allows for update-in-place, such as
ACID transactions. For time-series however, workloads are
append-mostly; as new data arrives, it gets appended to the
end of an existing time-series. As a result, the isolation guar-
antees of ACID can be relaxed without significant risk to
correctness and at the benefit of performance. Traditional
ETL requirements such as bulk loading and heterogeneity
can also be de-prioritized, as the incoming time-series data
is always stored as a time-series and that storage is local to
Metronome.

While some requirements can be relaxed, the need for
others becomes even more pronounced. Streaming require-



ments, in particular, are extremely important. For instance,
when receiving information from thousands of devices in an
TIoT workload, out-of-order tuples are a frequent occurrence
that needs to be directly addressed by the data collection
mechanism. Each sensor likely generates its own times-
tamps, and even if the clocks are extremely accurate, they
are almost certainly offset from one another. Additionally,
data items may become delayed in-transit to Metronome.
Thus, the data collection mechanism must be responsible for
synchronizing incoming tuples into simultaneous batches. It
is also unreasonable for a full batch to be held from process-
ing as the system waits for tuples that it knows are missing
or lost. Instead, the data collection mechanism should be
able to use historic data to predict what those missing tu-
ples are whenever possible.

As discussed in Section 3.3.3, scalability is also a crucial
factor when considering data collection and analysis in a
single system. Because resources will be directly shared be-
tween the two, it is very important that long-running ana-
lytics queries do not strongly affect ingestion performance,
or vice versa. To accomplish this, it is necessary to intelli-
gently determine when to migrate data between components
based on resource availability, in much the same way as the
prototype implementation.

Using the lessons learned in our implementation of stream-
ing ETL, we believe that Metronome can be a novel, next-
generation approach to the ingestion and analysis of time-
series data at an IoT scale.

7. RELATED WORK

There has been a plethora of research in ETL-style data
ingestion [12, 23]. The conventional approach is to use file-
based tools to periodically ingest large batches of new or
changed data from operational systems into backend data
warehouses. This is typically done at coarse granularity, dur-
ing off-peak hours (e.g., once a day) in order to minimize the
burden on both the source and the backend systems. More
recently, there has been a shift towards micro-batch ETL
(a.k.a., “near real-time” ETL), in which the ETL pipelines
are invoked at higher frequencies to maintain a more up-to-
date data warehouse [24]. It has been commonly recognized
that fine-granular ETL comes with consistency challenges
[10, 8]. In most of these works, ETL system is the main
source of updates to the warehouse, whereas the OLAP sys-
tem takes care of the query requests. Thus, consistency
largely refers to the temporal lag among the data sources
and the backend views which are used to answer the queries.
In such a model, it is difficult to enable a true “real-time”
analytics capability. In contrast, the architecture we pro-
pose in this paper allows queries to have access to the most
recent data in the ETL pipeline in addition to the warehouse
data, with more comprehensive consistency guarantees. Im-
plementing the ETL pipeline on top of an in-memory trans-
actional stream processing system is the key enabler for this.

Modern big data management systems have also looked
into the ingestion problem. For example, AsterixDB high-
lights the need for fault-tolerant streaming and persistence
for ingestion, and embeds data feed management into its
big data stack so as to achieve higher performance than glu-
ing together separate systems for stream processing (Storm)
and persistent storage (MongoDB) [9]. Our architecture ad-
dresses this need by using a single streaming ETL system for
streaming and storage with multiple guarantees that include

fault tolerance.

Shen et al. propose a stream-based distributed data man-
agement architecture for IoT applications [19]. This a three-
layer (edge-fog-cloud) architecture like ours. However, the
main emphasis is on embedding lightweight stream process-
ing on network devices located at the edge layer (like our
data collection layer) with support for various types of win-
dow joins that can address the disorder and time alignment
issues common in IoT streams.

There has been a large body of work in the database com-
munity that relates to time-series data management. As an
example for one of the earliest time-series database systems,
KDB+ is a commercial, column-oriented database based on
the Q vector programming language [3, 2]. KDB+ is pro-
prietary and is highly specialized to the financial domain,
and therefore, is not suitable for the kinds of IoT applica-
tions that we propose to study in this proposal. There are
several examples of recent time-series databases, including
InfluxDB [1], Gorilla [17], and OpenTSDB [25]. Each of
these provide valuable insight into time-series databases but
do not meet our ingestion requirements and are not a great
fit for the kinds of IoT applications that we consider.

8. CONCLUSIONS

This paper makes the case for streaming ETL as the ba-
sis for improving the currency of the warehouse, even when
the implied ingestion rate is very high. We have discussed
the major functional requirements such a streaming ETL
approach should address, including embedded local storage
and transactional guarantees. We have then described a sys-
tem architecture designed to meet these requirements using
a transactional stream processing system as its base tech-
nology for ingestion. Our proof-of-concept implementation
using the S-Store system [15] shows the viability of this ap-
proach in real-world use cases such as brokerage firm inges-
tion (TPC-DI) and medical sensor monitoring (MIMIC II).

IoT points out how in many applications the streams can
be viewed as time-series. We believe that high-speed inges-
tion support is necessary, but that we can do even better
when the input streams are known to be time-series. Thus,
our future research directions include evaluating and com-
paring the performance of our approach against other ETL
alternatives using IoT-scale benchmarks as well as enhancing
our approach with time-series data management support.
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