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ABSTRACT 

This paper argues that next generation database management 

systems should incorporate a predictive model management 

component to effectively support both inward-facing applications, 

such as self management, and user-facing applications such as 

data-driven predictive analytics. We draw an analogy between 

model management and data management functionality and 

discuss how model management can leverage profiling, physical 

design and query optimization techniques, as well as the pertinent 

challenges. We then describe the early design and architecture of 

Longview, a predictive DBMS prototype that we are building at 

Brown, along with a case study of how models can be used to 

predict query execution performance. 

 

1. INTRODUCTION 

Predictive modeling has been used with varying degrees of 

success for many years [GH05]. As models grow more 

sophisticated, and data collection and storage become increasingly 

more extensive and accurate, the quality of predictions improves. 

As such, model-based, data-driven prediction is fast emerging as 

an essential ingredient of both user-facing applications, such as 

predictive analytics, and system-facing applications such as 

autonomic computing and self management.  

At present, predictive applications are not well supported by 

database systems, despite their growing prevalence and 

importance. Most prediction functionality is provided outside the 

database system by specialized prediction software, which uses 

the DBMS primarily as a backend data server. Some commercial 

database systems (e.g., the data mining tools for Oracle [Ora], 

SQL Server [SS08], and DB2 [DB2]) provide basic extensions 

that facilitate the execution of predictive models on database 

tables in a manner similar to stored procedures. As we discuss 

below, and also noted by others (e.g., [DB07, AM06]), this loose 

coupling misses significant opportunities for improved 

performance and usability. There has also been recent work on 

custom integration of specific models (e.g., [JXW08, HR07, 

ACU10, AU07, APC08]).  

This paper argues that next generation database systems should 

natively support and manage predictive models, tightly integrating 

them in the process of data management and query processing. 

We make the case that such a Predictive Database Management 

System (PDBMS) is the natural progression beyond the current 

afterthought or specialized approaches. We outline the potential 

performance and usability advantages that PDBMSs offer, along 

with the research challenges that need to be tackled when 

realizing them.  

A PDBMS enables declarative predictive queriesby providing 

predictive capability in the context of a declarative language like 

SQL; users will not need to concern themselves with the details of 

tasks like model training and selection. Such tasks will be 

performed by the optimizer behind the scenes, optionally using 

hints from the user. Much as SQL has made programmers more 

productive in the context of data processing, this approach will 

have a similar effect for predictive analytics tasks. While there 

will no doubt be some predictive applications that can benefit 

from custom, manually optimized prediction logic, we expect that 

many users will be satisfied with “commodity” predictive 

functionality. The success of the recent Google Prediction API 

[GP] is early evidence in this direction. This service allows users 

to upload their historical data to the service, which automatically 

and transparently performs model training and selection to 

produce predicted results.  

Predictive queries have a broad range of uses. First, they can 

support predictive analytics to answer complex questions 

involving missing or future values, correlations, and trends, which 

can be used to identify opportunities or threats (e.g., forecasting 

stock-price trends, identifying promising sponsor candidates, 

predicting future sales, monitoring intrusions and performance 

anomalies).  

Second, predictive functionality can help build introspective 

services that assist in various data and resource management and 

optimization tasks. Today, many systems either use very simple, 

mostly static predictive techniques or do not use any prediction at 

all. This is primarily due to the difficulty of acquiring the 

appropriate statistics and efficiently and confidently predicting 

over them. For example, pre-fetching algorithms are often based 

on simple linear correlations to decide future data or query 

requests. Most admission control schemes are based on static 

estimations (thresholds) of the maximum number of tasks that the 

system can cope with. Load distribution algorithms 

typically detect-and-react instead of predict-and prevent problems. 

Query optimizers commonly use simplistic analytical models to 

reason about query costs. There is major recent interest and 

success in applying sophisticated statistical and learning models to 

such problems [GKD09, BBD09, SBC06]. An integrated, readily 

available predictive functionality would make it easy to not only 

consolidate and replace existing solutions but also build new ones. 

As such, an integrated predictive functionality would be an 
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important step towards building the truly autonomic database 

systems of the future. 

A PDBMS integrates predictive models as first-class entities, 

managing them in much the same way as data. Thus, we consider 

model management as the key underlying component of a 

PDBMS. Model management may greatly benefit from analogues 

of many well-established data management techniques:  

 Profiling and modeling: Cost and accuracy characteristics 

of models need to be modeled, and fed to the optimizer so 

that the proper model(s) can be chosen for a given predictive 

task. 

 Physical design and specialized data structures:  Data can 

be structured to facilitate efficient model building and 

predictive query execution (e.g., I/O-aware skip-lists 

[GZ08]).  

 Pre-computation and materialization: Model building is 

often prohibitively expensive for ad hoc or interactive 

queries. In such cases, models can be pre-built and 

materialized for use by the optimizer and executor. 

Furthermore, this process can be automated in many cases.  

 Query optimization: The optimizer considers the alternative 

ways of model building, selection, and execution, as well as 

the inherent cost-accuracy tradeoffs when selecting an 

execution plan.  

In the rest of the paper, we discuss these model management 

techniques as well as the technical challenges that arise when 

building a PDBMS. Our discussion is centered on Longview, a 

prototype predictive DBMS that we have been building at Brown 

University. Longview is being designed to efficiently support 

declarative predictive analytics through novel integrated model 

management techniques. Users can plug new model types into the 

system along with a modest amount of meta-data, and the system 

uses these models to efficiently evaluate queries involving 

predictions.  

We sketch the basic architecture of Longview and its early 

implementation on top of PostgreSQL. We also discuss an internal 

predictive application, query performance prediction, which 

exercises some of the model management issues we raise. Finally, 

we discuss prior work and finish with concluding remarks. 

2. BACKGROUND: PREDICTION WITH 

MODELS 

We use the term model to refer to any predictive function such as 

Multiple Regression, Bayesian Nets, and Support Vector 

Machines. Training a model involves using one or more data sets 

to determine the best model instance that explains the data. For 

example, fitting a function to a time series may yield a specific 

polynomial instance that can be used to predict future values.  

In general, model training (or building) involves selecting (i) the 

feature attributes, a subset of all attributes in the data set, and (ii) a 

training data set. In some cases, a domain expert can manually 

specify the feature attributes. In other cases, this step is trivial as 

the prediction attribute(s) directly determine the feature 

attribute(s), e.g., as in the case of auto-regressive models. 

Alternatively, feature attributes can be learned automatically. 

Most solutions for automatic learning are based on heuristics, 

since given a set of n attributes, trying the power set is 

prohibitively expensive if n is not small or training is costly 

[GH05, MWH98]. A common approach is to rank the candidate 

attributes (often based on their correlation to the prediction 

attribute using metrics such as information gain or correlation 

coefficients [CT06]) and use this ranking to guide a heuristic 

search [GH05] to identify the most predictive attributes tested 

over a disjoint test data set. The training data set may be sampled 

to speed up the process. 

Prediction accuracy is a function of the quality of the estimated 

models. The quality of the model (and the resulting predictions) 

can be measured by metrics such as the variation distance [MU05] 

or the mean square error between the predictions and the true 

values. With assumptions about the underlying stochastic process, 

one may be able to bound these measures analytically, using large 

deviation theory, appropriate versions of the central limit theorem 

and martingale convergence bounds [MU05]. Alternatively, one 

can use multiple tests on available data to compute the empirical 

values for these measures. However, using empirical values to 

estimate the model or prediction error adds another layer of error 

to the estimate, namely the gap between the empirical statistics 

and the true value they estimate. While the empirical statistic is an 

unbiased estimate, the variance of the estimate can be large, 

depending on the size and variance of the test set.  

Hypothesis testing and confidence interval estimations are two 

common techniques for determining predictive accuracy 

[MWH98]. In general, it is not possible to estimate a priori what 

model would be most predictive for a given data set without 

training and testing it.  One form of hypothesis testing that is 

commonly used is K-Fold Cross Validation (K-CV).  K-CV 

divides up the training data into k non-overlapping partitions.  

One of the partitions is used as validation data while the other k-1 

partitions are used to train the model.   

3. LONGVIEW: A PREDICTIVE DBMS 

3.1 Design and Architecture Overview  

3.1.1 Data and Query Model 

Longview provides two interfaces for access to its predictive 

functionality. The first access method is the direct interface, 

which consists of a collection of SQL functions that offers direct 

access to the functionality of the integrated prediction models. 

The direct interface does not provide the user with automated 

model management tools and is thus targeted towards advanced 

users who want to exert hands-on control on the prediction models 

and their operations. For example, using this interface a user can 

ask the system to build a linear regression model with specific 

configuration parameters or perform prediction with a pre-built 

support vector machine instance. We summarize the details of the 

direct interface in Section 3.2.1.  

The second access method is the declarative interface, which 

offers additional, high-level predictive functionality on top of the 

low-level direct interface. 

This declarative interface extends SQL in a few simple ways to 

accommodate the extra specifications needed for expressing 

predictive queries. In particular, queries may refer to predictors 

and predictor relations (p-relations) to access predictive 

functionality. Predictors are essentially SQL functions that 

provide declarative predictive functionality using system-

managed prediction models. P-relations are essentially views 

produced by the application of predictors on select subsets of 

input features. Both p-relations and predictors can be used in 

conjunction with regular relations within standard SQL queries. A 



p-relation is virtual by default; however, it can also be 

materialized to enable further optimizations.  

We give a simple example that illustrates some of the key 

concepts of the query language that we are developing. Consider 

the following schema:  

Customer(cid, name, city),  

Orders(oid, cid, total), 

TrainData(cid, status) 

 

In addition to the Customer and Orders relations, which store the 

records for customers and their orders, we define the TrainData 

relation that stores the status (either “preferred” or “regular”) of a 

subset of the customers. We first show how to build a predictor 

for predicting the status of any customer based on the training 

data supplied for a subset of the customers. Next, we discuss p-

relations and their use through an example p-relation representing 

the status predictions of a select subset of customers based on a 

predictor. 

The first step in creating a predictor is to define a schema 

describing the set of involved features and target attributes. For 

this purpose, we define a schema, named StatusSchema, with the 

target attribute customer status and features name, city and total 

using the CREATE P_SCHEMA statement: 

CREATE P_SCHEMA StatusSchema ( 

name text,  

city text,  

total int,  

TARGET status text)  

To create a predictor, we use the CREATE PREDICTOR 

statement that can be used to automatically build prediction 

model(s) using the given training data set:  

CREATE PREDICTOR StatusPredictor  

ON StatusSchema(name, city, total, status) 

WITH DATA  

SELECT name, city, sum(total) as total, status 

FROM Customer C, Orders O, TrainData T 

WHERE T.cid = C.cid and T.cid = O.cid 

GROUPBY cid, name, city, status 

 WITH ERROR CVERROR(10, “relative_error”, 0.1)

  

With the statement shown above, we instruct the system to create 

a predictor named StatusPredictor by training a set of prediction 

models using the training data specified through a query. The last 

part, WITH ERROR, defines the error estimation process. In this 

example, we want to use 10-fold cross-validation and the 

relative_error accuracy metric with a target average error of 0.1. 

Notice that the decoupling between the schema and predictor 

definitions allows us to create multiple predictors with different 

data sets or accuracy requirements over a single schema.  

The example query below illustrates the use of the StatusPredictor 

for estimating the status of all customers: 

SELECT C.cid, StatusPredictor(C.name, C.city, O.total) 

FROM Customer C,  

            (select cid, sum(total) as total from Orders    

             Group By Cid) as O 

WHERE C.cid = O.cid 

 

The output schema of a predictor is defined by the associated 

p_schema. In addition, one can add special ERROR attributes to a 

p_schema to access the estimated errors for each predicted value. 

For instance, adding the attribute “ERROR relerr real” to 

p_schema would extend the output schema of a predictor with the 

relerr attribute, which represents the estimated prediction error.  

Now, we describe how to define p-relations with the following 

example: 

CREATE VIEW StatusPRelation AS 

SELECT cid, StatusPredictor(name,city,total) 

FROM ( 

        SELECT cid, name, city, sum(total) as total 

        FROM Customer C, Orders O  

        WHERE C.cid = O.cid  

        GROUP BY cid, name, city, status 

        HAVING sum(total) > 1000) 

With the above statement, we create a p-relation named 

StatusPRelation, which is basically a view consisting of status 

predictions from StatusPredictor for the set of features specified 

with the provided query (i.e., customers with order totals greater 

than 1000) and the features themselves.  

When a view definition that accesses a predictor function is 

submitted to the system, Longview registers the given data set as a 

specific target feature set for that predictor. In turn, the model 

generation process for the predictor works to generate more 

efficient and accurate prediction models based on the properties of 

the given feature set.  

The use of declarative queries for the specification of data sets in 

model building and prediction offers an easy and flexible method 

of expressing predictive operations over complex data sets. Users 

can easily specify complex queries (e.g., computing aggregates 

over groups) to supply input data sets for prediction models. 

Moreover, it is also possible to use database views as data 

providers. For instance, a database view can be used to perform 

standard pre-processing tasks such as cleaning, normalization, and 

discretization [DB07], and can cook the raw data into a form that 

is more amenable for effective learning. 

3.1.2 Basic Architecture 

We illustrate the high-level architecture of Longview in Figure 1, 

which shows the primary functional units of interest, along with 

the data they require. The architecture reflects the notion of 

models as first-class citizens by depicting the data manager and 

model manager as co-equal modules.   

The Data Manager is very similar to a typical data manager in a 

conventional DBMS. The Model Manager is responsible for 

creating materialized models a priori (materialized) or in an on-

demand fashion when an adequate materialized model does not 

exist.  The role of materialized models in the model world is 

similar to that of indices and materialized views in the data world: 

they are derived products that can be used to quickly generate data 

of interest. Indices and materialized views improve query speed 

while materialized models improve prediction speed. 

The Model Manager trains appropriate models (based on the 

available model templates) for each predictor in the database. The 

Model Manager can run as a background process, constantly 

instantiating models for improved accuracy and efficiency. In 

order to build and maintain prediction models, the Model 



Manager can utilize many different strategies. For example, it can 

choose to sample data at different amounts and times and it can 

build different types of prediction models over different subsets of 

available features. In addition, the Model Manager also 

determines the best model for the query at hand: if an appropriate 

model has already been pre-computed and materialized, it will 

identify and use that model; if not, it will create a new 

instantiation on the fly. 

The Model Manager and the Data Manager must cooperate in 

their decision making. As we discuss later, special data structures 

can assist the process of model training. This is consistent with the 

fact that DBMSs, in general, get much of their performance gains 

from supporting specialized data structures like indices.  

Model meta-data entered through the model interface as well as 

those derived during run-time such as the list of materialized 

models and their parameters, training results, error values for 

various data sets, are all stored in a model catalog. The model 

manager is responsible for updating the catalog.  

Longview will try to produce a good model whenever possible by 

trying various parameter assignments (e.g., history length, 

sampling density, etc.) and using hypothesis testing to find the 

best fit. While Longview aggressively tries to optimize this model 

search process, in some cases, this is either not possible or would 

require testing too many alternatives.  In these cases, Longview 

will provide a set of tools with which the DBA can inspect the 

data and add additional information about the datasets which 

might indicate, for example, that the data is seasonal, or that the 

data might best be modeled using exponential smoothing.  

Traditional DBMSs provide such tuning tools for DBAs as well. 

P-relation queries are written against views that include predicted 

attributes. When a p-relation query is received by the system, the 

optimizer might generate a query plan that contains prediction 

operators. These operators are selected from a collection of 

instantiated models that are managed by the Model Manager, or 

created on the fly. Alternatively, tuples in the predicted view can 

be computed eagerly and materialized as resources become 

available, in which case p-relation queries can be executed as 

scans over the materialized tuples. 

3.2 Model Management 

As a design philosophy towards a generic model manager, we 

strive to build on existing database extension mechanisms such as 

views, triggers, rules and user defined functions to simplify our 

implementation and produce highly portable functionality.  

3.2.1 Database Integration of Prediction Models 

Prediction Model API. Longview currently supports a black-

box-style integration approach that allows existing model 

implementations (available from a plethora of standalone 

applications and libraries such as libsvm [CC01]) to be used by 

the system as database functions. This approach offers an easy 

and effective way of utilizing pre-tested and optimized prediction 

logic within a SQL execution framework. New prediction models 

are registered into the system by providing implementations of a 

simple model interface (the prediction model API) describing 

function templates for training and application of prediction 

methods. This interface decouples implementation and predictive 

functionality, while allowing multiple predictive models to be 

used for the same task.  Table 1 summarizes the basic interface 

methods. 

Function Arguments Description 

Build 
training data 
model parameters 

feature and target values 
model-specific training parameters 

Predict 
 

model pointer 

feature list 

pointer to previously built model 

feature values for use in prediction 

Serialize model pointer  

Deserialize byte array serialized model 

The build function is used to train a prediction model based on the 

given features and target values, as well as model-specific training 

parameters. The predict function uses a previously built model to 

predict a target attribute based on the input feature values. Finally, 

Longview uses the serialize and de-serialize functions to store and 

retrieve prediction models. Most third-party model libraries 

include built-in model (de)serialization methods for this purpose. 

Prediction Model Direct Interface. The prediction model API is 

used internally by the Longview system to access the functionality 

of prediction models and is not visible to the user. However, as 

mentioned earlier, Longview also provides an interface for direct 

access to the prediction models by the user. The main functions 

included in this interface are given in Table 2. These functions 

have dynamic implementations in Longview, as wrappers around 

the prediction model API, and provide a unified method of access 

to all the available prediction model types within SQL statements.  

The create function is used to create a prediction model entry in 

the model catalogs for the given model type and attribute schema. 

The Longview model catalog stores all model data and associated 

meta-data. Each model instance built is recorded in a relation that 

contains a unique (auto-generated) instance id, model type, and a 

serialization field storing the type-specific representation of a 

prediction model (e.g., the coefficients of a regression model). We 

also store model attributes; each is represented with a name, id, a 

type (e.g., double) and a role (i.e., feature, target). 

The build and predict SQL-functions are similar to the 

corresponding functions in the prediction model API. The build 

Figure 1: High-level Longview architecture. The system 

provides full-fledged support for models; model and data 

management are tightly integrated. 

Table 1 - Prediction Model API 



function trains the prediction model specified by the model id, and 

stores its serialized representation in the model catalog. The 

predict function performs prediction with the given model id over 

the provided feature data set. We also provide a test function that 

can be used to apply the model on a feature data set and compute 

its accuracy over the true values of the target attributes. We 

provide an argument to specify the accuracy function for use (e.g., 

absolute error, squared error).  The outputs of the test and 

prediction functions are represented as relations and can be used 

as data sources in other queries. 

Function Arguments Description 

Create 

model schema 

 
model type 

description of features and target 

attributes 
prediction model type 

Build 

model id 

training query 

 
model 

parameters 

specifies the model instance 

query computing the feature and 

target values 
model-specific training parameters 

Predict 
 

model id 

feature list | 
query 

 

feature values for use in prediction 

Test 

model id 

training query 
accuracy 

options 

 

 
parameters for the accuracy 

function 

3.2.2 Model Building and Maintenance 

Model Materialization. Longview builds and materializes model 

instances much as a conventional DBMS pre-computes indices or 

materialized views. For each predictor and associated p-relations, 

there can be multiple materialized prediction models built using 

different model types and different feature subsets. As a result, 

model building and maintenance may easily become a bottleneck 

as the number of pre-built models increases. Therefore, methods 

for decreasing the cost of building and maintaining models are an 

essential part of Longview.  

The quality of a model is primarily a function of its training data 

and model-specific configuration parameters. In the limit, we 

would like to produce one materialized model for each prediction 

query. This approach will likely be infeasible for two reasons: (1) 

the time required to build a model per query is larger than some 

target threshold, e.g., in applications involving interactive queries; 

and (2) the estimated time required to update these models in the 

face of newly arriving data is greater than some maintenance 

threshold.  

In many ways, this problem is very similar to the problem of 

automatic index or materialized view selection. We require (1) a 

reasonably good cost and accuracy model that can be used to 

compare the utility of the materialized models, and (2) a way to 

heuristically prune the large space of possible models.  

A good solution to this problem involves covering the underlying 

“feature space” well such that a prediction with acceptable 

accuracy can be made for a large set of queries subject to a limit 

on model maintenance costs. In prior work, we proposed a 

solution along these lines for time-series-based forecasting using 

multi-variate regression [GZ08]. 

In addition to the techniques mentioned earlier such as sampling, 

feature selection and materialized models, there are further 

opportunities to reduce the execution costs of these tasks. First, 

these operations can be done in parallel for multiple models on the 

same data. In this multi-model building process (akin to multi-

query optimization), data can be read once and all relevant models 

can be updated at the same time. Moreover, we can build and 

update models in an opportunistic manner based on memory-

resident data. 

Auto Design. The auto-design problem is a related problem in 

which the goal is to choose and build a set of prediction models 

based on a given workload that contains a set of predictive queries 

that are most likely to be submitted, i.e., queries that we would 

like to execute quickly and with good predictive accuracy. For 

this purpose, the database system would need to identify the most 

common prediction attributes in the workload and then the set of 

features that are highly predictive of those attributes.  

Specialized Data Structures. There are opportunities for a 

PDBMS to leverage data representations that are tuned to the 

process of prediction.  In particular, structures that can enhance 

model training have the most potential to yield major performance 

improvements with the idea being accessing “just enough” data to 

build a model of acceptable accuracy. 

Data-driven training commonly involves accessing select regions 

in the underlying feature space, combined with sampling 

techniques that can be used to further reduce I/O requirements. 

This process is often iterative: more data is systematically 

included to check if the resulting model is better. In general, 

multi-dimensional index structures defined over the feature space 

can be effectively used here, but care must be taken that index-

based sampling does not introduce any biases. Multi-dimensional 

clustering, when performed in a manner that facilitates efficient 

sampling, can provide further benefits. As an alternative to the 

index-based sampling of disk-resident data, we can also opt to 

replicate the data (or materialize the results of a training query) 

using disk organizations tuned for efficient sampling, e.g., 

horizontally partition the data into uniform samples so that 

sampling can be done with sequential I/O. 

As a concrete example for time-series prediction, we introduced a 

variant of skip lists to efficiently access arbitrary ranges of the 

underlying time dimension with different sampling granularities. 

The original skip-list formulation is modified to make it I/O 

conscious by copying the relevant data from each lower level up 

to the higher-levels. Each level is essentially a materialized 

sample view [JJ08] stored in clustered form on disk, allowing us 

to access a particular time range with desired density with a small 

number of disk accesses (see Figure 2 for an illustration). 

Table 2 - Prediction Model Direct User Interface 
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Figure 2: I/O conscious skip-lists. Each node indicates a block 

of tuples sampled from the original relation. Unlike in 

standard skip lists, nodes (blocks) are not shared across levels. 

M’s indicate different time ranges and sampling density.  



3.2.3 Query Execution and Optimization 

Predictor optimization. Declarative predictive queries specify 

what to predict but not how. For a given prediction task, it is the 

responsibility of the predictor to build and use an appropriate 

prediction model satisfying the desired accuracy. For this purpose, 

each Longview predictor continuously tries to build accurate 

prediction models for as much of its input feature space as 

possible, while keeping resource consumption under a 

configurable threshold to avoid negatively impacting the other 

database tasks. In the case of p-relations, predictors can build 

more targeted prediction models using select parts of the training 

data (i.e., model segmentation) based on the target data of p-

relations. We discuss an application of the model segmentation 

idea and demonstrate its potential in Section 4. 

In addition, Longview automatically keeps track of model cost-

accuracy characteristics. For each model instance, the run-time 

cost and quality of the predictions during build and test operations 

are recorded. Using this information, Longview can monitor the 

evolution of models, track the used training data sets and the 

performance values on test data sets. These model profiles guide 

query optimization decisions. We may also expect expert users (or 

model developers) to supply simple cost functions, akin to those 

for the relational operators, for training and prediction costs, 

which can also be stored and leveraged as part of model profiles. 

Finally, we observed the need for a more formal, expressive tool 

when working with sophisticated prediction models. To this end, 

we believe that a model algebra that captures common model 

operations such as choice (selection), composition, and merge is 

warranted. Properties of these operations could introduce further 

functionality as well as optimization opportunities. A model 

ensemble, which uses a set of prediction models collectively to 

perform a prediction task, is an example for this complex model 

case. Model ensembles rely on the collective power of multiple 

prediction models to smooth their predictions and mitigate the 

potential errors from a single prediction model.    

Online execution. Online execution of predictive queries (along 

the lines of online aggregation), in which predictions, and thus the 

query results, get progressively better over time, is an important 

usage model for interactive, exploratory tasks. Predictive accuracy 

can be improved over time using more data, more features, or 

more models. The challenge is to effectively orchestrate this 

process and perform efficient revision of query results. 

4. CASE STUDY: PREDICTING QUERY 

EXECUTION LATENCIES 

We now describe our ongoing work on an inward-looking 

predictive task, query performance prediction (QPP), which 

involves the estimation of the execution latency of query plans on 

a given hardware platform. Modern database systems can greatly 

benefit from accurate QPP. For example, resource managers can 

utilize QPP to allocate workload such that interactive behavior is 

achieved or specific quality of service targets are met. Optimizers 

can choose among alternative plans based on expected execution 

latency instead of total work incurred.  

While accurate QPP is important, it is also challenging: database 

systems are becoming increasingly complex, with several 

database and operating system components interacting in 

sophisticated and often unexpected ways. Analytical cost models 

are not designed to capture these interactions and complexity. As 

such, while they do a good job of comparing the costs of 

alternative query plans, they are poor predictors of plan execution 

[GKD09]. 

As an alternative, we express the QPP task using the declarative 

prediction interface in Longview. In addition to describing the 

query specification and execution, we also show different 

modeling approaches to achieve accurate QPP under various 

workload scenarios. If a representative workload is available, for 

example, we can build good models using coarse-grained, plan-

level models. Such models, however, do not generalize well, and 

perform poorly for unseen or changing workloads. In these cases, 

fine-grained, operator-level modeling performs much better due to 

its ability to capture the behavior of arbitrary plans, although they 

do not perform as well as plan-level models for fixed workloads. 

We then build hybrid models that combine plan- and operator-

level models to provide the best of both worlds by striking a good 

balance between generality and accuracy. 

Plan-level Prediction. We first consider a basic approach that 

extracts features from query plans and then couples them with 

sample plan executions to build models using supervised learning 

(as also explored in [GKD09]). Once built, these models can 

perform predictions using only static plan information. The 

following features are extracted from each query plan for 

modeling purposes: optimizer estimates for query plan costs, 

number of output tuples and their average sizes (in bytes), and 

instance (i.e., occurrence) and cardinality counts for each operator 

type included in the query plan.  

We integrated two prediction models, Support Vector Machines 

and Linear Regression, into the PostgreSQL database system 

(version 8.4.1) through the use of machine learning libraries 

LIBSVM [CC01] and Shark [IMT08]. We used the TPC-H 

decision support benchmark to generate our database and query 

workload. The database size is set to 10GB and experiments were 

run on a 2.4 GHz machine with 4GB memory. Our query 

workload consists of 500 TPC-H queries, which are generated 

from 18 TPC-H query templates and executed one after another 

with clean start (i.e., file system and database buffers are cleared).  

Fixed Workload Experiment: In the first experiment, we defined a 

plan-level predictor using the described query plan features and 

the execution time target attribute as our p_schema (named 

PlanSchema). For this purpose, we first inserted the runtime query 

plan features and the execution times of all queries in our TPC-H 

workload to database tables (runtimefeats and qexec). Then, we 

defined our predictor to use 90% of the workload for building 

prediction models to estimate the execution times of the 

remaining 10% of the queries. We provide the definition of the 

plan-level predictor below; however at this point we do not have a 

SQL parser for the extensions proposed in the declarative 

predictor interface and thus performed our operations using the 

direct interface along with a few additional SQL functions that 

provide functionality similar to the declarative predictor interface. 

CREATE PREDICTOR PlanLvlPredictor  

ON PlanSchema(…) 

WITH DATA  

        SELECT R.*, Q.exec_time 

        FROM runtimefeats R, qexec Q 

                WHERE R.qid = Q.qid and R.qid <= 450       

 

The qid attribute is a key in both tables that uniquely defines a 

query in the TPC-H workload. Next, we used the pre-runtime 



estimations of the query plan features from the query optimizer 

(stored in table estimatedfeats) for performance prediction of the 

remaining 10% of the queries. The following query is used to 

express this operation: 

 

SELECT qid, PlanLvlPredictor(…).exec_time 

FROM estimatedfeats E 

WHERE E.qid > 450 

In this experiment, we used support vector machines (SVMs) as 

our prediction model. In addition, our current predictor optimizer 

uses a standard feature selection algorithm for choosing the set of 

features to use in prediction models. The set of features (7 of the 

total 29 features) used in the resulting model are: number of 

Group Aggregate, Hash Aggregate, and Materialization operators, 

estimated total plan cost, cardinality of Hash Aggregate and Hash 

Join operators and the estimated total number of output rows from 

all operators in the query plan. The error value (defined as |true 

value – estimate| / true value) for each TPC-H template is shown 

in Figure 3 (The average prediction accuracy is 90%).  

We observed that queries from the 9th template (which has the 

unusual high errors) run close to the 1 hour time limit (after which 

we killed and discarded queries) and therefore execute longer than 

most other queries. We then performed manual model-

segmentation by building a separate prediction model for the 

queries of the 9th template, which achieved 93% accuracy.  

This example illustrates the potential efficiency of using 

segmented models built from different data partitions. As 

discussed before, intelligent model-building algorithms that 

automatically identify such partitions in the feature space are 

essential for improved accuracy.  

Finally, when we added the additional feature used by that model 

(cardinality of the Nested Loop operator) to the general prediction 

model and retrained it, we increased its accuracy to 93% (shown 

with the bars for 2-step feature selection in the figure).  

Figure 3: Query Prediction Performance for TPC-H Queries. 

 

Changing Workload Experiment: In this experiment, we built 

separate prediction models for each TPC-H template using only 

the queries from the other TPC-H templates for training. In this 

case the average prediction error increased to 232%. In addition, 

the error values were highly dependent on the target query 

template and were distributed in a large range (2% to 1692%). 

Operator-level Prediction.  We also studied an operator-level 

modeling approach with the goal of building better models for the 

Changing Workload scenario. In this case, we build separate 

Linear Regression models to estimate the execution time for each 

operator type and compose them in a bottom-up manner up the 

query tree to predict the total execution time.  

Each operator is modeled using a generic set of features such as 

the number of input/output tuples and estimated execution times 

for child operators (runtime and estimated values for these 

features are stored in opruntimefeats and opestimatedfeats tables). 

Bottom-up prediction requires a nested use of predictors. 

Moreover, the connections between predictors are dynamic as 

they depend on the plan of the query at hand. Currently, we 

perform this nested prediction operation within a user-defined 

database function that uses the operator predictors as required by 

the plan of each query. We think that such complex models can be 

built and used more effectively with a model algebra as mentioned 

in Section 3.  

The results for the Changing Workload experiment using the 

operator-level prediction methods are shown in Figure 3 for 10 

TPC-H templates. The average error rate is 56%, which represents 

a major improvement over query-level prediction for this 

workload.  

Hybrid Prediction. Looking closer, we observe that the error (of 

233%) for the operator-level prediction of template 4 queries is 

much higher than those for other templates. To gain more insight, 

we provide the error values for each operator in the execution plan 

for an example template-4 query (Figure 4). Observe that the 

errors originate from the 

highlighted sub-plan and 

propagate to the upper 

levels. Here, the error is 

due to the inability of the 

models to capture the per-

tuple processing time of 

the Hash Aggregate 

operator, which in this case 

is computation-bound. 

Thus the I/O cost of the 

Sequence Scan operation 

that normally determines 

the overall execution 

latency is dominated by 

Hash Aggregate’s high 

computational cost in this 

case. The fundamental 

problem is that operator-

level training inherently 

fails to capture the 

“context” of the operator behavior.   

To solve this problem, we combined the plan- and operator-level 

prediction methods for template 4 by modeling the highlighted 

sub-plan with a plan-level model and using operator-level 

prediction for the remainder of the query plan. With this approach, 

we reduced the template error to 53% and the overall average 

error across templates to 38% for the Changing Workload 

scenario.  

5. RELATED WORK 

We draw from a large number of subject areas, which we 

summarize below. Other closely related work was cited inline as 

appropriate.  

Figure 4: Query Tree and 

Prediction Errors for Template 4. 



Major commercial DBMSs support predictive modeling tools 

(e.g., Oracle Data Mining tools, SQL Server Data Mining and 

DB2 Intelligent Miner). Such tools commonly allow users to 

invoke model instances, typically implemented as stored 

procedures, using extended SQL (e.g., the “FORECAST” clause 

[Ora]). In SQL Server Analysis Services, users are provided with 

a graphical interface within Visual Studio in which they can 

interactively build and use a number of prediction models such as 

decision trees and naïve Bayes networks. While we utilize similar 

prediction models and techniques, our goal is to create a more 

automated and integrated system in which predictive functionality 

is mostly managed by the system with help from the user (akin to 

existing data management functionality).   

On the academic side, MauveDB [AM06] was an early system to 

support model-based views defined using statistical models. Such 

views can be used for a variety of purposes including cleaning, 

interpolation and prediction (with a focus on sensor network 

applications). The PDBMS functionality we sketch in this paper 

goes significantly beyond the scope of MauveDB. Our direct 

prediction interface and MauveDB views have similar 

functionality and purpose. However, we believe that automated 

model building and maintenance services, such as our declarative 

predictor interface, are essential for commoditization of predictive 

functionality.  

Another closely related system is Fa [DB07], which was designed 

to support forecasting queries over time-series data. Fa offers 

efficient strategies for model building and selection, making a 

solid contribution towards model management and predictive 

query processing. Longview can leverage many of Fa’s 

techniques but also aims for deeper, more comprehensive model 

management, by treating models as native entities and addressing 

the entire predictive model life cycle. 

Recently, there have been successful applications of machine 

learning techniques to DBMS self-management problems. Query-

plan-level predictions have been studied in [GKD09]. NIMO 

proposed techniques for accelerating the learning of cost models 

for scientific workflows [SBC06]. Performance prediction for 

concurrent query workloads was investigated in [AAB08].  

6. CONCLUDING REMARKS 

We argue that it is high time for the database community to start 

building predictive database systems. We discussed how 

predictive queries could meaningfully leverage and, at the same 

time, contribute to next generation data management. We 

presented our vision for a predictive DBMS called Longview, 

outlined the main architectural and algorithmic challenges in 

building it, and reported experimental results from an early case 

study of applying the predictive functionality for query 

performance prediction.  
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