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ABSTRACT
Sensors capable of sensing phenomena at high data rates—on the
order of tens to hundreds of thousands of samples per second—are
useful in many industrial, civil engineering, scientific, networking,
and medical applications. In these applications, high-rate streams of
data produced by sensors must be processed and analyzed using a
combination of both event-stream and signal-processing operations.
This paper motivates the need for a data management and continu-
ous query processing architecture that integrates these two different
desired classes of functions into a single, unified software system.
The key goals of such a system include: the ability to treat a se-
quence of samples that constitute a “signal segment” as a basic data
type; ease of writing arbitrary event-stream and signal-processing
functions; the ability to process several million samples per second
on conventional PC hardware; and the ability to distribute applica-
tion code across both PCs and sensor nodes.

1. INTRODUCTION
There is a need for data management and continuous query

processing systems that integrate high data rate event-stream and
signal-processing operations into a single system. This need is
evident in a large number of signal-oriented streaming applica-
tions, including preventive maintenance of industrial equipment;
detection of fractures and ruptures in pipelines, airplane wings, or
buildings; in situ animal behavior studies using acoustic sensing;
network traffic analysis; and medical applications such as anomaly
detection in electrocardiogram signals.

These target applications use a variety of embedded sensors,
each sampling at fine resolution and producing data at rates as
high as hundreds of thousands of samples per second. In most
applications, processing and analyzing these streaming sensor
samples requires non-trivial event-stream and signal-oriented
analysis. In many cases, signal processing is application-specific,
and hence requires some amount of user defined code. Current
general-purpose data management systems fail to provide the
right features for these applications: stream processing engines
(SPEs) such as Aurora [8], STREAM [23], and TelegraphCQ [9]
as well as more recent commercial offerings (e.g., StreamBase,
Coral8) handle event processing over streaming data, but don’t
provide a convenient way to write user-defined custom code to
handle signal processing operations. In particular, they suffer from
an “impedance mismatch”, where data must be converted back
and forth from its representation in the streaming database to an
external language like Java or C++, or even to a separate system
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like MATLAB. Signal processing operations in these external
languages are usually coded in terms of operations on arrays,
whereas most SPEs represent data streams as sequences of tuples.
These sequences need be packed into and unpacked from arrays
and be passed back and forth. The conversion overheads imposed
by this mismatch also limit the performance of existing SPEs
when performing signal processing operations, constraining the
applicability of these existing systems to lower rate domains.

Another option for building signal processing applications is to
use a graphical modeling package such as Simulink or LabVIEW.
These systems, which offer high-level programming languages
(sometimes data-flow oriented), lack stream processing capabili-
ties, database-like optimization features, distributed execution, and
the ability to integrate naturally with relational data stored on disk.
It is both inconvenient and inefficient to just use one of these signal
processing systems as a front- or back-end to an conventional
stream processor because many applications require alternating
sequences of event stream and signal processing operations.

This paper describes the motivation and high-level architecture
of a combined event-stream and signal-processing system that we
are building as part of the WaveScope project. The project’s com-
ponents include:

• A programming language, WaveScript, that allows users to
express signal processing programs as declarative queries
over streams of data.

• A high-performance execution engine that runs on multipro-
cessor PCs.

• A distributed execution engine that executes programs writ-
ten in WaveScript over both conventional PCs across a net-
work and between PCs and embedded sensor nodes.

WaveScript includes several noteworthy features. Its data model
introduces a new basic data type, the signal segment. A signal seg-
ment is a sequence of isochronous (i.e., sampled regularly in time)
data values (samples) from a signal that can be manipulated as a
batch. WaveScript natively supports a set of operations over signal
segments. These include various transforms and spectral analyses,
filtering, resampling, and decimation operations. Another important
feature of WaveScope is that users express both queries and user-
defined functions (UDFs) in the same high-level language (Wave-
Script). This approach avoids the cumbersome “back and forth”
of converting data between relational and signal-processing opera-
tions. The WaveScript compiler produces a low-level, asynchronous
data-flow graph similar to query plans in traditional streaming sys-
tems. The runtime engine efficiently executes the query plan over
multiprocessor PCs or across networked nodes, using both compiler
optimizations and domain-specific rule-based optimizations.

This position paper is primarily concerned with the main fea-
tures of the WaveScript language and outlines some elements of the
execution engines and the optimization framework. It attempts to
make the case for a signal-oriented streaming system, but does not
describe design details, report on an implementation, or provide any
experimental results.
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Figure 1: Marmot call detection, direction-of-arrival estimation, and
classification workflow.

2. KEY FEATURES
To understand the challenges involved in building a signal ori-

ented stream processor, it is helpful to first consider a specific exam-
ple application. Here we present an example drawn from an acous-
tic sensor network deployed by scientists to study the behavior of
the yellow-bellied marmot1 (Marmota flaviventris) in the wild [24].
The idea is to first use one audio channel to detect the possibility of
a nearby marmot. A detection triggers processing on multiple au-
dio channels to detect, orient, localize, and classify the most likely
behavior of one or more of these rodents.

Each sensor produces samples of acoustic data at a certain con-
figurable frequency—typical data rates are 44 KHz per sensor, and
a typical setup [14] might include eight or ten microphone arrays
each consisting of four microphones (for a combined data rate of
about 1 MHz). The following questions are of interest:

1. Is there current activity (energy) in the frequency band corre-
sponding to the marmot alarm call?

2. If so, which direction is the call coming from? Use that di-
rection to enhance the signal using beamforming on a four-
channel array.

3. Is the call that of a male or female? Is it a juvenile? When
possible, identify and distinguish individual marmots.

4. Where is each individual marmot located over time?

5. Are marmots more responsive to alarm calls from juveniles?
Are males and females commonly found in mixed or separate
groups? Are juveniles predominantly located near males or
females? Do subsets of individuals tend to stay together?

Figure 1 shows a block diagram representing the processing steps
required by the first two queries shown above. The first query uses
continuous spectrum analysis to estimate the energy content in the
frequency range of interest, followed by a smoothed noise estima-
tor and threshold detector with hysteresis to capture complete calls;
this is labeled “Fast 1-ch Detection” in Figure 1. The second query
is implemented by first extracting these time windows of interest
from the historical data recorded at a multi-channel acoustic array;
this is labeled “Temporal Selection”. Next, the query estimates the
direction of arrival (DOA) of the marmot call using an Approx-
imate Maximum Likelihood (AML) beamforming algorithm, en-
hances the signal by phase-shifting and combining the four separate
channels, and finally passes the enhanced signal to a classification
algorithm; this is the “Enhance and Classify” box.

1A medium-sized rodent common in the western US.

Interestingly, the processing needed to answer this sort of query
turns out to be similar across domains ranging from industrial mon-
itoring to network traffic analysis. For example, in industrial mon-
itoring, vibration signals are matched against known signatures to
determine if a piece of equipment is about to fail. We have distilled
the issues raised by a range of applications into five key features that
must be provided by a signal-oriented stream processing system:

A data model with explicit support for signals. Most signal
processing operations need to run over windows of hundreds or
thousands of data samples. To process these windows, existing
stream processing systems would either treat groups of samples as
uninterpreted blocks of data, or would represent each sample as a
separate tuple and impose sliding windows on these tuples as they
stream into operators. In contrast, our approach is to define a new
fundamental data type, the signal segment (SigSeg). A SigSeg is a
first-class object that represents an isochronous window of fixed
bitwidth samples in a data-stream. Query processing operators
process these SigSeg objects, operating directly on the SigSeg’s
implied time index without incurring the overhead of explicit
per-sample timestamps. It is important to note that our data model
is not completely isochronous; although readings within a SigSeg
are assumed to be isochronous, individual tuples (each containing
SigSegs) may arrive asynchronously.

This approach should yield a substantial performance improve-
ment over traditional approaches. Keeping samples within a SigSeg
isochronous is one key to providing this performance boost, be-
cause there is no space overhead for explicitly storing timestamps,
and efficient time-range lookups are possible. By providing a com-
pact data representation that can be passed by reference, we antic-
ipate that using SigSegs will also improve cache performance, a
critical factor in processing-intensive applications.

Integrated language for expressing queries and UDFs. Wave-
Script combines relational and signal processing operations in one
language, for the reasons mentioned in Section 1.

Efficient runtime execution. The runtime system must minimize
in-memory copying and avoid scheduler overhead. First, it is essen-
tial to use reference counting on SigSegs to eliminate copies as data
flows between operators. Second, the scheduling discipline must be
designed to allow inter-operator control flow to bypass the sched-
uler where possible, while still supporting query plans with branch-
ing and enabling intra-query parallelism via multi-threading.

Extensible optimization framework. We aim to provide an opti-
mization framework that supports database-like commutativity and
merging optimizations, rule-based optimizations similar to extensi-
ble query optimizers [16,26] to express signal processing optimiza-
tions over query plans, and various compiler optimizations.

Distributed execution. WaveScope targets many applications that
must be implemented using distributed sensors. To address this,
the query plan must be divided into segments that run on differ-
ent nodes, and each segment must be compiled and optimized to
run on the appropriate target platform. Finally, inter-node links in
the query plan must efficiently support both wired and wireless net-
works.

3. DATA AND PROGRAMMING MODEL
In this section, we summarize the WaveScope data model, and

discuss how queries and operators are programmed.

3.1 Data Model
WaveScope models data as a stream of tuples. Each tuple within a

stream is drawn from the same schema, and each field in the schema



has a type. Field types are either primitive types (e.g., integer, float,
character, string), arrays or sets, tagged unions (variant records), or
signal segments (SigSegs).2 A SigSeg represents a window into a
signal (time series) of fixed bitwidth values that are regularly spaced
in time (isochronous). Hence, a typical signal in WaveScope will
be represented by a stream of tuples, where each tuple contains a
SigSeg object that represents a fixed sized window on that signal.
A SigSeg object is conceptually similar to an array, in that it pro-
vides methods to get values of elements in the portion of the signal
it contains and determine its overall length. However, SigSegs also
contain a timebase that specifies the measurement times of values in
the SigSeg and provides a set of methods for comparing and map-
ping between signals sampled from sensors at different rates. Al-
though values within a SigSeg are isochronous, a data stream itself
may be asynchronous, in the sense that the arrival times of tuples
will not be spaced completely regularly in time (this is particularly
likely to be true of streams in the middle of a WaveScope plan, after
filtration and transformation operations have been applied.)

Streams of tuples in WaveScope follow pass-by-value (copying)
semantics between operators, including tuples containing SigSegs.
Pass-by-value can be implemented in several ways. For example,
in the case of SigSegs, the implementation will likely include per-
formance optimizations to reduce the cost imposed by copy seman-
tics, e.g., using reference-counting and copy-on-write, which are
discussed in more detail in Section 4. The implementation of the
data model has important performance implications, but should not
affect application semantics.

Regardless of the particular implementation, the WaveScope data
model treats SigSegs as first-class entities that are transmitted in
streams, and may be stored, processed, and forwarded at will. This
is unlike other streaming systems that impose windows on individ-
ual tuples as a part of the execution of individual operators, but
do not allow the windows themselves to be manipulated. By mak-
ing SigSegs first-class entities, windowing can be done once for a
whole chain of operators, and logical windows can be stored and
passed around dynamically, rather than being defined by the query
plan. Packing blocks of readings together in SigSegs is natural for
many signal processing operations that operate on fixed sized win-
dows, and is much more efficient for high data rate operations as
operators are invoked on blocks of hundreds or thousands of sam-
ples at once.

In this paper we focus on one dimensional signals (e.g., streams
of audio and vibration data), but in general the WaveScope data
model also supports SigSegs which refer to multidimensional sig-
nals (e.g., streams of images).

3.2 Programming Model
A compiled WaveScript program is a data-flow graph of stream

operators. The WaveScript source, however, is a script that gen-
erates this graph. Within this script, the user may define and in-
voke reusable stream-graph constructor functions. We call these
subquery constructors. These, like macros, evaluate at compile time
to produce clusters of connected stream operators. In addition, the
user writes POD functions (plain-old-data functions), which in our
context refer to functions that neither produce nor consume streams.
These functions may be used from within the bodies of stream oper-
ators as they process data, and may be either inlined (like subquery
constructor functions) or remain separately compiled.

2The WaveScript source language also allows user defined functions to
process nested tuples, as well as polymorphic tuples (where not all field
types are determined). These features, however, disappear during the
compilation process.

A single, integrated language for queries, reusable subquery-
constructors, and POD functions yields a number of advantages.
First, by using a single data model, WaveScript avoids the com-
plexities of mediating between the query itself and user-defined
functions residing in an external language (such as C). Further, it
enables type-safe construction of queries. In contrast, a language
like SQL is frequently embedded into other languages, but the pro-
grammer that embeds the query is given no compile-time guarantee
about the well-formedness of that SQL query.

We illustrate WaveScript with a code snippet from the marmot
detection query. ProfileDetect is a subquery-constructor that
connects together a number of more basic stream-processing oper-
ators in a reusable way. It instantiates a series of stream-processing
operators which search a data stream for windows matching a given
frequency profile (see Figure 1).

fun profileDetect(S, scorefun, <winsize,step>, threshsettings) {
// Window input stream, ensuring that we will hit each event
wins = rewindow(S, winsize, step);
// Take a hanning window and convert to frequency domain.
scores : Stream< float >
scores = iterate(w in hanning(wins)) {

// Compute frequency decomposition
freq = fft(w);
// Score each frequency-domain window
emit (scorefun(freq));

};
// Associate each original window with its score.
withscores : Stream<float, SigSeg<int16>>
withscores = zip2(scores, wins);
// Find time-ranges where scores are above threshold.
// threshFilter returns <bool, starttime, endtime> tuples.
return threshFilter(withscores, threshsettings);

}

Note that WaveScript is statically typed, but types are in-
ferred from variable usages using standard techniques [22].3

In the above program, wins, scores, and withscores are all
streams of tuples. The type of withscores, for example, is
Stream<float,SigSeg<int16>>. Notice that we allow a tuple
to contain SigSegs, and set-valued types.
ProfileDetect first creates a new windowed view of the

samples in the input stream using the rewindow operator. Here,
the input stream S is divided into windows of size winsize that
advance by step. These values are application-specific: winsize
determines the resolution of the frequency decomposition, while
step determines how sparsely the stream is sampled. For example,
for events shorter than one window, step must be chosen such that
adjacent windows overlap, whereas longer events can be detected
with sparser sampling of the channel. The detector then computes
the frequency decomposition of each individual window, and
passes this frequency map to a custom scoring function to generate
a match score. It accomplishes this using the iterate construct
(discussed below) to execute code against each individual window
in the stream. Finally, the detector zips together the original data
with the computed match score.
Zip2 is a simple operator that merges two streams pair-wise, syn-

chronously. Since data streams in general are asynchronous, zip-
ping only works properly when it is known that there will be a one-
to-one correspondence between the input streams being zipped. Of-
ten a more sophisticated strategy is needed to merge streams. Zip2
turns out to be good enough in this case because all its inputs are
derived from the same source stream.

Note that operations like hanning, fft and rewindow are
library functions—common signal processing operators included

3Type annotations may optionally be included for clarity. For example,
the marmot-detection code in the appendix contains type declarations
for each top-level function.



Class Examples
POD Functions arithmetic, SigSeg operations,

(built-in, linked from C, or user-defined) timebase operations, FFT/IFFT,
Subquery-Constructors profileDetect, classify

beamForm, sync,zip
Fundamental Stream Operators iterate, union

Table 1: Classes of Programming Constructs in WaveScript.

with WaveScope. We are developing an extensive library of such
functions, but do not detail them here.

Table 1 lists the different classes of programming constructs
that are available in WaveScript. Subquery-constructors may be
application-defined (like profileDetect) or may be defined
within the WaveScript library. In either case they may be aug-
mented with optimization rules as discussed in Section 5. Built-in
POD functions are low-level primitive operations (or externally
linked C functions) that cannot or should not be implemented in
WaveScript. The basic stream operators (iterate, union) are
special programming constructs for manipulating streams and are
the fundamental operators recognized by the runtime engine (as
discussed in Section 4.1).

Main query body: Next, we will take a look at the body of a Wave-
Script program for detecting and classifying marmots based on their
audio calls (shown graphically in Figure 1). The first thing to do is
configure the data sources. This can occur in the query file, or sep-
arately in an included catalog file:

Ch0 = AudioSource(0, 48000, 1024);
Ch1 = AudioSource(1, 48000, 1024);
Ch2 = AudioSource(2, 48000, 1024);
Ch3 = AudioSource(3, 48000, 1024);

These statements declare that C0-C3 are audio streams sampled
at 48 KHz from audio channels 0 through 3 and are to be win-
dowed into windows of 1024 samples each. With the variables C0-
C3 bound, we can now write a basic marmot detector using pro-
fileDetect and a few other subquery constructors defined in Wave-
Script.

control = profileDetect(Ch0, marmotScore, <64,192>,
<16.0, 0.999, 40, 2400, 48000>);

// Use the control stream to extract actual data windows.
datawindows = sync4(control, Ch0, Ch1, Ch2, Ch4);
beam<doa,enhanced> = beamform(datawindows, arrayGeometry);
marmots = classify(beam.enhanced, marmotClassifier);

return zip2(beam, marmots);

The above query first uses profileDetect as a real-time
prefilter on one of the four audio channels. The result is a
<bool,time,time> control stream, which is used to “snap-
shot” certain time ranges and discard others. Sync4 accomplishes
this by aligning the four streams in time, and extracting the data
contained within the time-ranges specified by the the control
stream—in this case representing the time-ranges suspected by the
profile-detector as containing marmot calls. The inputs to Sync4
are of type Stream<SigSeg<int16>> for the data streams and
Stream<bool,time,time> for the control stream. Note that
int16 could be replaced by any type: the audio channels happen
to carry int16 samples, but sync4 is generic.

Next, the synchronized windows of data from all four audio chan-
nels are processed by a beamforming algorithm. This is the second
processing phase which makes the query multi-pass. The algorithm
computes a direction-of-arrival (DOA) probability distribution, and
enhances the input signal by combining phase-shifted versions of
the four channels according to the most likely direction of arrival.
The beam function returns a stream of two-tuples. We use a special
binding syntax, “beam<doa,enhanced> = . . . ”, to give temporary
names to the fields of these tuples. That is, beam.doa projects a
stream of direction-of-arrivals, and beam.enhanced contains the

fun sync2 (ctrl_strm, S1, S2) {
S3 = union3(S1, S2, ctrl_strm);
S4 = iterate (tagged in S3) {
state { acc1 = NullSeg;

acc2 = NullSeg; }
switch(tagged) {
case Input1 v : acc1 := append(acc1, v);
case Input2 v : acc2 := append(acc2, v);
case Input3 <flag,t1,t2> :
if (flag)
then emit <subseg(acc1,t1,t2),

subseg(acc2,t1,t2)>;
acc1 := subseg(acc1, t2, acc1.end);
acc2 := subseg(acc2, t2, acc2.end);

}
}
return S4;

}

Figure 2: A 2-input temporal synchronizer with error-handling omitted.

enhanced versions of the raw input data. Finally, this enhanced sig-
nal is fed into an algorithm that classifies the calls by type (male,
female or juvenile), and, when possible, identifies individuals.

Defining custom operators: The queries we have see thus far pri-
marily wire together existing operators, rather than writing custom
ones. Although we seek to provide a broad array of useful opera-
tors in the WaveScope libraries, it is likely that most applications
will require custom operators that in turn may invoke user-defined
POD functions.

In WaveScope, the user employs the iterate construct to con-
struct a one-input, one-output operator that invokes a user-provided
block of code on its input stream. For example, the following snip-
pet constructs a generic aggregation operator parameterized by the
init, aggr, and out function arguments.

fun build_aggr(S, init, aggr, out) {
S2 = iterate (x in S) {
state { acc = init(); }
acc := aggr(acc, x);
emit out(acc);

}
return S2;

}

Within the iterate construct, state{} is used to declare persistent
(static) state, and an emit produces a value on the output stream
(S2). In any given iteration, emitmay be called zero or more times.
The code inside a iterate construct is restricted to enable efficient
compilation to a low-level imperative language (such as C). But
WaveScript is expressive enough to enable us to write nearly all of
our library operators directly in the language. It allows condition-
als, for-loops, arrays, and handles SigSegs and timebases. In fact,
the sync4 primitive shown in the marmot-query above is written
directly in WaveScript. In figure 3.2 is a definition for sync2 (the
two-input version of sync4) with error-handling omitted. sync2
takes three inputs: one control stream of the same type as sync4,
and two streams of SigSegs,

The union family of operators are the only primitive operators
allowed to take multiple input streams. Union3 takes three input
streams and produces a value on its output stream whenever a
value arrives on any input. The output value must be tagged for
downstream operators to distinguish which input stream created the
value. To accomplish this tagging in a type-safe way, WaveScope
allows tagged union types (also called “variant records”, similar
to type-safe enums) [22]. In particular, the variable tagged has
three variants: Input1, Input2, and Input3 corresponding to which
channel the data arrived on. The switch/case construct uses
pattern matching to dissect variants and their fields. The Input1
and Input2 cases carry SigSeg values from S1 and S2 respectively.
These SigSegs are appended to their respective accumulators.4 The
4In the full version of sync2, exception handling would be required to



state of the iterate operator at any point in time is simply two
SigSegs (acc1 and acc2). Sync2 accumulates both signals until
it receives a message from the control stream. The control stream
provides a time-range and a boolean flag indicating whether to
discard or snapshot that range. The subseg function is used to
crop the accumulators; it produces a new SigSeg that represents a
sub-range of the input SigSeg.

By using a union operator together with a state-carrying
iterate construct, it is possible to implement arbitrary synchro-
nization policies (e.g., different buffering policies and temporal
sensitivities). We have designed WaveScope in this way because
there are a plethora of viable application specific synchronization
policies. The WaveScript library, however, will include a suite of
generally useful synchronization operators, such as sync2.

4. SYSTEM ARCHITECTURE
Queries in WaveScope are WaveScript programs that make use

of a library of built-in signal processing functions. A WaveScope
query, initially of the form we discussed in Section 3.2, must go
through a number of stages to reach deployment and execution.

• Preprocessor: Eliminates syntactic sugar and type-checks
the WaveScript source.

• Expander: Inlines all subquery-constructors and many
POD functions, erasing abstraction boundaries and leaving a
dataflow graph of basic operators—the query plan.

• Optimizer: Applies a number of inter- and intra-operator
optimizations described in Section 5. (Mixed with expander
phase.)

• Compiler: Generates the query plan, which will be in a low
level imperative language (e.g., C) for efficiency. The query
plan wires together functions compiled from each iterate
operator in the original WaveScript query, and links against
the WaveScope runtime library.

• Runtime: The runtime library for single-node execution con-
sists principally of three modules: a scheduler, a memory
manager, and a timebase manager (Section 4.2).

The final step in compilation entails compiling the query plan to
machine code and executing the query. Since WaveScope will also
support distributed query execution and network deployment (e.g.,
on a sensor network or PC cluster), there is an additional phase
where query plans are disseminated to nodes in the network. (Sec-
tion 4.3).

4.1 Compiled Query Plans
After the expander has produced an initial query plan, the opti-

mizer performs multiple passes over the plan (Section 5) and gener-
ates an optimized query plan. The final query plan is an imperative
program, corresponding to an Aurora-style directed graph that rep-
resents the flow of streaming data through the program. The only
operators that survive to this point are iterate, union, and spe-
cial source operators for each data source in the query.

• iterate: An iterate operator is the basic workhorse of a
WaveScope query. Each iterate construct in a WaveScript
program is compiled to an imperative procedure in the query
plan, optionally with a piece of persistent state. This function
is repeatedly invoked on each of the tuples in the operator’s

handle the case where the SigSegs cannot be appended because they are
not adjacent, or are not in the same timebase.
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Figure 3: An example of a WaveScope query running in an execution
engine of a node. Node types: S: source, I: iterate, U: union. A seg-
ment of one of the timeseries has been garbage-collected. Two of the
timeseries share the same timebase.

input stream. The code inside the function may call an emit
construct to output tuples, which will be routed to all of the
operator’s successors in the query plan.

• union: Union is the only operator in compiled query plans
that takes multiple inputs and is the primitive upon which
stream synchronization operations, such as sync and zip are
built. Our previous example code for sync2 illustrates its use.

• source: A source operator interfaces with I/O devices
to produce signal data that feed to operators in the query
plan. For example, the AudioSource in the marmot detec-
tion application (Section 3.2) continuously samples audio
data from a sound card, and invokes the memory manager
(Section 4.2.2) to window contiguous chunks of audio into
SigSegs. These SigSegs are wrapped within tuples and
emitted to operators that perform the actual processing. In
the implementation, we envision that source operators will
usually live in their own threads to avoid blocking on I/O.

Although the runtime engine only needs to handle the small col-
lection of primitive operators described above (simplifying imple-
mentation), the WaveScript compiler and optimizer will recognize
the special properties of many signal processing functions (e.g.,
FFT, IFFT, Convolve). This enables several high-level query op-
timizations, as discussed in Section 5.

4.2 Single-Node Runtime
Once deployed on a physical node, the WaveScope program runs

within the execution engine. We provide an example of an audio
processing query running within an engine of a single node in Fig-
ure 3. The figure demonstrates the three main modules of the en-
gine: the scheduler, the memory manager, and the timebase man-
ager. Below, we describe the functions of each of these subsystems
in more detail.

4.2.1 Scheduler
The WaveScope scheduler chooses which operators in the query

to run next, and provides the tuple passing mechanisms by which
operators communicate. The scheduler maintains a thread pool, and
assigns idle threads to available operators in the query graph. An
operator is available if its input queues are non-empty and it is not
already being executed by another thread.



A good scheduler should possess the following desirable proper-
ties:

Compact memory footprint to prevent thrashing, especially on
embedded platforms with little RAM. Compactness includes reduc-
ing the overhead of allocating and deallocating memory, which can
place a heavy burden on the operating system when WaveScope
operates on high-rate streams.

Cache locality, which affects performance and leads to several im-
portant design tradeoffs. For example, executing an operator until
its input queues are drained offers good instruction cache locality
(operator code stays in cache) and data cache locality (operator’s
internal state stays in cache). However, processing many input tu-
ples in one sweep may lead to producing many output tuples, which
could dramatically grow the size of the output queues. On the other
hand, executing each operator one tuple at a time may incur more
CPU cache misses, but could help lower the memory footprint.

Fairness helps avoid starving parts of the query plan. Devoting dis-
proportionate time to the execution of any particular operator may
result in a buildup in its output queues. Fairness is also important
for multi-input operators (such as Sync and Join), where the skew
in arrival rates of input streams may cause accumulation of data
in internal buffers, and lead to delays in materializing the output
tuples.

Because of possible differences in the sampling rates of sources
and the disparity in the costs of computing different input streams
to such operators, achieving fairness is an interesting scheduling
problem which may require run-time profiling of each operator in
the query plan. Since profiling of operators may be relatively expen-
sive, our design may consider profiling the system and adjusting the
schedule occasionally when rate skew is detected.

Scalability with the number of processors or CPU cores. A good
scheduler should minimize the amount of thread synchronization
and ensure affinity between operators and CPU cores to maintain
cache residency of data and code.

One possible design we intend to investigate divides a query plan
into “slices,” constraining the operators in each slice to only exe-
cute on a particular CPU core. The scheduler may run one thread
per core, and schedule the order of execution within each slice sepa-
rately, which avoids synchronization on centralized data structures.
Determining a partitioning of the query plan that maximizes steady-
state throughput is an interesting problem that we plan to investi-
gate.

High-throughput tuple passing. The choice of the scheduler can
also help to entirely eliminate queuing in the system. If the sched-
uler design gives up some flexibility in choosing the next operator
to execute, and instead traverses the query plan along the opera-
tor connections (for example, in depth-first order), it can use direct
operator-to-operator function calls, passing tuples by reference. Of
course, assuring fairness in such schemes may be more difficult be-
cause of extra constraints on the order of execution.

4.2.2 Memory Management
The task of the memory manager is to provide a simple and ef-

ficient way for operators to create, access and garbage collect all
signal data flowing through the query plan.

All signal data in a WaveScope query originates either from
source operators in the query plan (e.g., sensors or network
sockets), or from intermediate operators that create new signals as
output (e.g., FFT). Conceptually, these operators invoke a memory
manager API call to continuously append signal samples to a time
series in the in-memory signal store. This API call, which we term

create sigsegs, batches chunks of isochronous samples into
SigSegs, which are returned to the application and in turn passed to
subsequent operators in the query plan.

Operators in the query plan pass SigSegs between each other.
Semantically, copying a SigSeg is equivalent to making a copy of
the underlying signal data. However, to scale to high data rates and
reduce in-memory copying overhead, we plan to use an implemen-
tation where SigSegs are passed by reference with copy-on-write
semantics. In this implementation, the signal store automatically
garbage collects signal data using standard reference counting.

SigSegs could overlap in range, so maintaining the correct refer-
ence counts requires some care. In addition, to ensure that a SigSeg
always refers to valid data, WaveScript restricts how they can be
created to three interfaces: create sigsegs, which appends new
samples to an existing timeseries; append, which creates a SigSeg
by joining two existing adjacent SigSegs; and subseg, which cre-
ates a subrange of an existing SigSeg. The latter is useful in sev-
eral applications (including the acoustic monitoring application de-
scribed earlier) that identify and lookup an interesting time range of
data for further processing.

4.2.3 Timebase Manager
Managing timing information corresponding to signal data is a

common problem in signal processing applications. Signal process-
ing operators typically process vectors of samples with sequence
numbers, leaving the application developer to determine how to
interpret those samples temporally. For example, a decimation fil-
ter that halves the input rate takes in 2N samples and outputs N
samples—but the fact that the rates of the two vectors are different
must be tracked separately by the application.

To address this problem, WaveScope introduces the concept of a
timebase, a dynamic data structure that represents and maintains a
mapping between sample sequence numbers and time units. As part
of its metadata, a SigSeg specifies a timebase that defines what its
sequence numbers mean. Based on input from signal source drivers
and other WaveScope components, the timebase manager maintains
a conversion graph (shown in Figure 3) that denotes which conver-
sions are possible. In this graph, every node is a timebase, and an
edge indicates the capability to convert from one timebase to an-
other. The graph may contain cycles as well as redundant paths.
Conversions may be composed along any path through the graph;
when redundant paths exist, a weighted average of the results from
each path may result in higher accuracy [18].

WaveScope will support several types of timebases:

• Analytic timebases represent abstract units, e.g., Seconds
(since the epoch), Hertz (for frequency domain signals),
Meters, and Sequence Numbers—essentially, anything that
could represent the independent variable (“x axis”) of a
signal or time series. For example, a SigSeg of data sampled
at one sample per second would have a timebase of Seconds,
since each sequence number would correspond directly to
that number of seconds.

• Derived timebases represent a linear relationship to an ex-
isting “parent” timebase. For example, a SigSeg sampled at 2
samples per second would derive its timebase as 2 × Seconds.

• Empirical timebases represent a real free-running clock,
e.g., a CPU clock or a sample clock. Conversions associ-
ated with empirical timebases are empirically derived by
collecting measurements that associate clock values in dif-
ferent timebases. Since clocks are locally linear, conversions
to empirical timebases can generally be approximated by
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Figure 4: A distributed query for marmot localization.

piece-wise linear functions. For example, the CPU clock and
a sound card’s sample clock are both empirical timebases.
A relation between them can be derived by periodically
observing the CPU time at which a particular sample was
taken.

Using the timebase infrastructure, application developers can
pass around SigSegs without worrying about keeping track of
the temporal meaning of the samples, because this is captured
automatically in the timebase graph. For example, a SigSeg that
was transformed by a decimation filter can be related to the original
signal by simply converting any sequence number in the decimated
version to the corresponding sequence number in the original. Since
conversion can be composed along any path through the timebase
graph, this is even true across multiple composed decimations.

Empirical timebases can also be used to represent node-to-node
time conversion, by correlating events observed in terms of both
CPU clocks. By adding these node-to-node conversions to the time-
base graph, sensor data measured on separate nodes can be related
just as data measured on the same node.

4.3 Distributed Query Execution
Support for distributed queries is a key component of many

WaveScope applications. For example, consider the marmot de-
tection example from Figure 1. Suppose we now want to run that
detection algorithm on embedded sensor nodes in a deployment
and combine the results to localize the detected marmots via
triangulation.

A workflow diagram for the localization step is shown in Fig-
ure 4. The components in the upper dotted box run in parallel on
each sensor node in the system, detecting and classifying marmot
calls. The components in the lower box run only on a centralized
server, identifying events that are common across multiple nodes,
triangulating the marmots, and re-classifying based on complete
information. These computational domains are connected together
through two simple network primitives, ToRegion and ToCollector.

ToRegion accepts tuples and multicasts them to all nodes in the
specified region, where they are received back into the query plan.
The target region might be specified as a particular set of nodes,
a region in physical space, or by some other predicate. ToCollec-
tor accepts tuples and forwards them along a sink tree to a node
identified as the collector. Note that when SigSegs are transmitted

over the network, the signal data they contain must be marshaled
and transmitted, rather than only transmitting the metadata. This
operation can be expensive, but there will be instances in which it
can be optimized. For example, if a SigSeg is forwarded through
ToRegion, and all of the nodes in the region will want the data, a
multicast distribution tree might be the most efficient way to dis-
seminate the signal data. Alternatively, if only a few of the target
nodes will want to process the data, a lazy transmission scheme
could be used, in which the metadata is disseminated, and the sig-
nal data is “pulled” only by those nodes that need it.

Although these simple primitives appear to be sufficient for this
application, we expect that other primitives may arise as we explore
new applications. Another common example of a distributed query
is the case where each node maintains a local persistent store of data
(e.g., data that might be needed in the future but is not currently im-
portant enough to send back over the network). If the sync operator
spills the raw signal data to disk, queries could be installed post-
facto to perform further analysis of that data. Such a query could be
installed by the system operator when something particularly inter-
esting was observed, and the results sent back via ToCollector.

In Figure 4, the query defines the desired physical network
mapping by explicitly specifying network links and where different
parts of the query are executed. In principle, WaveScope could
optimize the selection of these “cuts” based on a variety of metrics
including processing and network capacity. We do not envision a
completely autonomous cut selection algorithm in the near future;
rather, we plan to provide a variety of profiling tools that can
inform the user about where best to make the cut.

4.4 Querying Stored Data
In addition to handling streaming data, many WaveScope appli-

cations will need to query a pre-existing stored database, or histori-
cal data archived on secondary storage (e.g., disk or flash memory).
For instance, consider the query mentioned in Section 2 that tracks
the positions of individual marmots as a function of time. In order
to identify an individual marmot from an audio segment, the ap-
plication needs to compare the segment with signatures of audio
segments from previously seen marmots and determine the closest
match, if any. This requires the ability to archive past events (like
historical marmot detections) and query this archive at some point
in the future.

We plan to provide two special WaveScope library functions that
will support archiving and querying stored data declaratively:

• DiskArchive, which consumes tuples from its input stream
and writes them to a named relational table on disk. The table
name is a global, system-wide identifier.

• DiskSource, which reads tuples from a named relational ta-
ble on disk and feeds them upstream. This operator is similar
to the other source operators that were discussed earlier, but
in addition may support indexing signal data, and pushing
down predicates to allow efficient access to relevant regions
of history.

Storing and retrieving large segments of signal data (both at a
single node, and across a network of nodes) will pose several inter-
esting research questions, including:

• Assuming that the goal is to support both efficient archiving
and retrieval, what is the best way to store and represent sig-
nal data on disk? For instance, compressing signal data might
be one strategy to save space and enable faster lookup by re-
ducing disk bandwidth usage.



• For how long in the past should signal data be retained, and
which data should be discarded first? Discard policies are
likely to be application specific, but the library could include
several policies for applications to choose from. For instance,
some viable policies might include allowing applications to
prioritize important data, or using progressively lossier en-
coding for older data (e.g., using wavelets).

• What are the best ways to index signal data stored on disk so
that lookup (e.g., matching audio segments against signatures
of previously seen marmots) is efficient? Traditional indexing
techniques are unlikely to work for signal data [7, 19], and
indexing strategies may also need to be application specific
(e.g., audio and images have different requirements). There-
fore, the above mentioned operators will provide an interface
to specify and make use of custom indexing policies.

We leave these, and related questions to future work.

5. OPTIMIZATIONS
A restricted query language and intermediate representation, and

support for isochronous signal segments as first-class objects enable
a wide range of optimizations in WaveScope. We illustrate some
classes of optimizations below.

Query Plan Transformations: Optimizations such as predi-
cate reordering (the compiler can determine that certain stateless
iterates are merely predicates) and query merging are possible
in WaveScope, similar to optimizations in other streaming database
systems. For example, in the marmot application, queries for both
marmot classification and localization involve a common prepro-
cessing and signature extraction step. The query optimizer can
statically analyze and merge portions of the two queries.

Another plan-level optimization is merging adjacent iterate
operators, which has two benefits. First, fusing adjacent iterate
operators enables optimizations across multiple user functions.
The resulting fused code can expose optimizations such as loop
fusion or common subexpression elimination. Second, because
each iterate corresponds to a different operator in the wiring
diagram, reducing the number of operators can reduce scheduling
overhead (at the cost of decrease in potential parallelism).

Conversely, the optimizer can factor iterate operators to sep-
arate out processing on the input (or output) channel that does not
depend on the operator’s state. This, in turn, offers further opti-
mization possibilities. For example, consider multiple iterate
operators that first apply an FFT to their input. The compiler can
factor these FFTs out into their own, stateless, iterate operators.
Then, if the original iterates are applied to the same stream,
query merging can eliminate the redundant FFT computation. This
scenario is common in signal processing. For example, a common
way to implement speaker identification involves computing the
aggregate power (area under the FFT) of overlapping windows
in an audio signal in both preprocessing and feature extraction
stages. WaveScope eliminates one redundant FFT computation per
window, yielding significant savings. These optimizations become
particularly important when the user is relying heavily upon high-
level subquery constructors contained in libraries. They may not
be aware of redundant computations within the abstractions they
invoke.

Domain-specific Rewrite Optimizations: WaveScope will sup-
port a rule-based framework for rewrite optimizations that rely on
domain-specific properties of particular signal processing library
functions. This framework is similar to previous work on extensi-
ble relational optimizers [15, 26]. Optimization rules are written in

S2=autocorr(S1);
S3=FFT(S2);

S2=IFFT(Mult(FFT(S1),FFT(S1)));
S3=FFT(S2);

T1=FFT(S1);
S3=Mult(T1,T1);

T1=FFT(S1);
S2=IFFT(Mult(T1,T1));
S3=FFT(S2);

autocorr(X) ≡ convolve(X,X)
convolve(X,Y) ≡ IFFT(mult(FFT(X),FFT(Y))

Common Sub-expression

FFT(IFFT(X)) ≡ X

S2=autocorr(S1);
S3=FFT(S2);

S2=IFFT(Mult(FFT(S1),FFT(S1)));
S3=FFT(S2);

T1=FFT(S1);
S3=Mult(T1,T1);

T1=FFT(S1);
S2=IFFT(Mult(T1,T1));
S3=FFT(S2);

autocorr(X) ≡ convolve(X,X)
convolve(X,Y) ≡ IFFT(mult(FFT(X),FFT(Y))

Common Sub-expression

FFT(IFFT(X)) ≡ X

Figure 5: Diagram illustrating rewrite optimizations in WaveScope.

terms of named operators, so that when a new operator is added to
the WaveScope library, the programmer can also add rewrite rules
for that operator (e.g., a typical rule might express that IFFT is the
inverse for FFT).

Some signal processing operators permit complex rewrite op-
timizations. For example, the denial-of-service detection scheme
described in [17] analyzes the power spectrum of network packet
counts to classify attacks. This technique involves an autocorrela-
tion operation, followed by power spectrum analysis to determine
if activity at a particular frequency is unusual. The standard way to
compute the autocorrelation is to convolve a signal with itself, and
the standard way to compute a power spectrum is to compute the in-
tegral of the FFT of a signal. To optimize this query, the optimizer
takes advantage of several signal processing identities, which can
be specified as rules to the optimizer as follows:

1. autocorrelate(S ) = convolve(S , S )

2. convolve(X,Y) = IFFT(FFT(X)*FFT(Y))

3. FFT(IFFT(X)) = X

Applying the rules reduces the above sequence of operations to
finding the FFT of the packet count sequence and squaring it, as
shown in Figure 5. This requires onlyΘ(n log n) operations—faster
than the original implementation which performs Θ(n2) operations,
where n is the length of the packet-count time-series.

6. RELATED WORK
WaveScope is related to streaming data management systems [1–

3, 8, 9, 23]. The key differentiating feature of WaveScope is that
it provides a single language and a unified framework that inte-
grates both stream and signal processing operations. This also dis-
tinguishes WaveScope from existing math, scientific and engineer-
ing tools like MATLAB, Simulink and LabVIEW [4–6] that have
excellent support for signal processing functions but unsatisfactory
support for event-stream operations.

There is a large body of related work on temporal and sequence
databases (databases containing time-varying data) that provide a
context for our research, including SEQ and Gigascope [10, 27].
These systems do view time-series data as first class objects, but are
targeted at simpler trend analysis queries, as opposed to our effort,
which is focused on supporting more complex signal processing
operations.

The compiler technology in WaveScope is related to the authors’
previous work on the Regiment programming language [25]. In
fact, many programming languages have been proposed for stream-
processing, and many general purpose languages include streaming
features [29]. For example, StreamIt system [30] is a programming
language and compiler that targets high performance streaming ap-
plications. StreamIt’s compiler backend targets architectures rang-
ing from highly-parallel research platforms to commodity unipro-
cessors. StreamIt, however, is based on a synchronous data-flow



model where the data production and consumption patterns of op-
erators are static and known at compile time. WaveScope, in con-
trast, is targeted at the asynchronous data-flow world where opera-
tors are less predictable and produce data at varying rates. Instead,
our proposal exploits isochrony to leverage some of the benefits of
synchronous data-flow.

Ptolemy II [21] is widely-used data-flow system for modeling
and simulation of signal processing applications. Unlike Wave-
Scope, it is not focused on efficiency or on providing a high-level,
optimizable programming language.

There has been work on individual signal processing applica-
tions in the sensor network community [14, 28], but these systems
are typically built from scratch, requiring many months of effort
to implement. The Acoustic ENSBox [14] is a development plat-
form specifically designed to support distributed signal process-
ing. While this has significantly reduced application development
time, it requires error-prone C programming and lacks an interac-
tive, query-like interface.

Time synchronization is a critical aspect of distributed sensing
applications, and a fertile topic in the sensor network commu-
nity [11–13, 18, 20]. The WaveScope timebase construct is similar
to those used in the implementation of Reference Broadcast Syn-
chronization [12] used in the Acoustic ENSBox system [14].
However, in WaveScope these principles are more deeply inte-
grated, providing a more natural interface.

7. CONCLUSION
Today, developers of many streaming applications that require

even the simplest forms of signal processing face a devil’s choice:
either write significant amounts of custom code in a language like
Java or C++, or use a stream processing engine together with an ex-
ternal system such as Simulink (MATLAB) or LabVIEW and move
data back and forth between the two. Both approaches have a num-
ber of obvious flaws. In this position paper, we have sought to re-
dress these problems with WaveScope, a data stream management
system that combines even stream and signal processing operations.
We believe—and hope to demonstrate soon—that WaveScope will
be significantly faster and more usable than current approaches.
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APPENDIX: MARMOT PHASE 1 FILTER
Below is the full source for the first pass of marmot-dection ap-
plication. This pass performs the fast, real-time prefiltering of
the audio-stream, looking for time windows containing potential
marmot calls. Note that before each top-level function, or variable
we have included a type annotation of the form “name : type”.
(Function types are written using arrows (->). These are optional,
but provide useful documentation. Further, they may be used to
assert more restrictive types than those that would be infered by the
type-inferencer. For example, we assert that marmotScore expects
complex numbers rather than any numeric type.

// We use rewindow, sync4, cnorm, hanning, and fft
// from the WaveScript standard library.
include "stdlib.ws";

//========================================
// Main query:

Ch0, Ch1, Ch2, Ch3 : Stream< SigSeg<int16> >
Ch0 = AudioSource(0, 48000, 1024);
Ch1 = AudioSource(1, 48000, 1024);
Ch2 = AudioSource(2, 48000, 1024);
Ch3 = AudioSource(3, 48000, 1024);

// Invoke profileDetector with appropriate scoring
// function and settings.
control : Stream<bool, int, int>
control = profileDetect(Ch0, marmotScore,

<64,192>, <16.0, 0.999, 40, 2400, 48000>);

// Use the control stream to extract actual data windows.
datawindows : Stream<SigSeg<int16>, SigSeg<int16>,

SigSeg<int16>, SigSeg<int16>>
datawindows = sync4(control, Ch0, Ch1, Ch2, Ch4);

// Final query result:
return datawindows;

//====================================================
// Application POD functions and subquery-constructors

// POD function: Compute a score for a time-window of audio data.
marmotScore : SigSeg<complex> -> Stream<float>
fun marmotScore(freqs) {
// Return the complex magnitude for energy
// in particular hardcoded frequency bins.
return cnorm(freqs[6] + freqs[7] + freqs[8] + freqs[9]);

}

// The main detection function.
profileDetect : Stream<SigSeg<int16>>, (SigSeg<complex> -> float),

<int,int>, <float,float,int,int,int>
-> Stream<bool, int, int>

fun profileDetect(S, scorefun, <winsize,step>, threshsettings) {
// Window input stream, ensuring that we will hit each event
wins = rewindow(S, winsize, step);
// Take a hanning window and convert to frequency domain.
scores : Stream< float >
scores = iterate(w in hanning(wins)) {

// Compute frequency decomposition
// Note: our fft produces complex numbers.
freq = fft(w);
// Score each frequency-domain window
emit scorefun(freq);

};
// Associate each original window with its score.
withscores : Stream<float, SigSeg<int16>>

withscores = zip2(scores, wins);
// Find time-ranges where scores are above threshold.
// threshFilter returns <bool, starttime, endtime> tuples.
return threshFilter(withscores, threshsettings);

}

// Aggregate a stream of scored windows into labeled, contiguous
// time ranges that are either above or below threshold.
threshFilter : Stream<float, SigSeg<int16>>,

<float, float, int, int, int>
-> Stream<bool,int,int>

fun threshFilter(scorestrm, <hi_thresh, alpha, refract_interval,
padding, max_run_length>) {

// Constants
startup_init = log(0.75)/log(alpha);

iterate((score,win) in scorestrm) {
state {
thresh_value = 0.0;
trigger = false; trigger_value = 0.0;
smoothed_mean = 0.0; smoothed_var = 0.0;
startind = 0; refract = 0;
startup = startup_init;

}
if trigger then {
if win.end - startind > max_run_length then {
print("Detection length exceeded maximum of " ++

show(max_run_length) ++
", re-estimating noise\n");

// Reset all state variables:
thresh_value := 0.0;
trigger := false;
smoothed_mean := 0.0;
smoothed_var := 0.0;
startind := 0;
trigger_value := 0.0;
startup := startup_init;
refract := 0;

}
// Over threshold; set refractory.
if score > thresh_value then {
refract := refract_interval;

} else if refract > 0 then {
// refractory counting down
refract := refract - 1;

} else {
// Untriggering!
trigger := false;
emit <true, // yes, snapshot this

startind - padding, // start sample
win.end + padding>; // end sample

startind := 0;
}

} else { // If we are not triggering...
// Compute the new threshold.
thresh = int_to_float(hi_thresh) *

sqrt(smoothed_var) + smoothed_mean;

if startup == 0 && score > thresh then {
// We’re over threshold and not in startup
// period (noise estimation period).
trigger := true;
refract := refract_interval;
thresh_value := thresh;
startind := win.start;
trigger_value := score;

} else {
// Otherwise, update the smoothing filters.
smoothed_mean := score * (1.0 - alpha) +

smoothed_mean * alpha;
delt = score - smoothed_mean;
smoothed_var := (delt * delt) * (1.0 - alpha) +

smoothed_var * alpha;
}
// Count down the startup phase.
if startup > 0 then startup := startup - 1;

// We know there are no events here,
// so we free from time 0 to the present.
emit <false, 0, max(0, win.end - samples_padding)>;

}
}

}


