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ABSTRACT
Similarity searc h in time-series databases has received sig-
ni�cant attention lately .P opular tec hniques for e�cient re-
trieval of time sequences in time-series databases has been
to use Discrete Fourier Transform (DFT). Recently, the Dis-
crete Wavelet T ransform (DWT) has gained popular interest
in database domain and several proposals have been made to
replace DFT by DWT for similarity search over time-series
databases. In this paper, we explore the feasibility of replac-
ing DFT by DWT with a comprehensive analysis of the DFT
and DWT as matching functions in time-series databases.
Our results show that although the DWT based technique
has several adv an tages,e.g., the D WThas complexity of
O(N) whereas DFT is O(N logN), D WT does not reduce
relativ e matching error and does not increase query precision
in similarity searc h as suggested by previous works [1]. We
conclude that, by exploring the conjugate property of DFT
in real domain, the DFT-based and DWT-based techniques
yield comparable results on similarity searc h in time-series
databases.
Key words. time-series analysis, fourier transform, wavelet
transform, time-series database, smoothing, time-series match-
ing

1. INTRODUCTION
Time-series data constitute a large portion of the data

stored in computers. A time-series is a sequence of real
numbers, each number represents a data value at a point
in time. Examples of time-series data include stock prices,
w eather data, exchange rates, history of product sales, med-
ical information, etc. Many applications with temporal data
require the capability of searc hing, especially based on sim-
ilarity, over the data. For example, w emay wan t to �nd
the stocks that ha ve correlation with Microsoft stock, or
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the time-period during which two commodities have similar
price patterns.
There have been several e�orts to develop e�cient similar-

ity searc h mechanisms in time-series databases. In [2], Dis-
crete F ourier Transform (DFT) was employed to map time-
series data from the time domain to the frequency domain.
After dropping all but the �rst few frequency coe�cients,
the remaining ones are indexed through a multidimensional
index structure such as R�-T ree. Ho w ever, in [2], one of
the main constraints of this approach is that is it assumed
that the data sequence and the query sequence have the
same length. This problem was tackled in [3] which allowed
subsequence matching by using a sliding window over the
data sequence, map each window to the frequency domain
using DFT and keep only the �rst few coe�cients. A data
sequence is thus mapped into a trail in the feature space
and the trail is further divided into sub-trails that can be
represen ted b y their minimum bounding rectangles (MBR)
and stored in a R�-T ree for indexing. Ra�ei and Mendel-
zon [4] extend previous w orks to handle time scaling, i.e.,
stretching or shrinking the time axis. In [5], they proposed
an improvement of DFT-based indexing techniques for time-
series data b y using the last few Fourier coe�cients in the
distance computation to speed up similarity search without
storing them.
All the abo veapproaches assume Euclidean distance as

the measurement of similarity. Agrawal et al. [6] propose a
new distance measure to capture the notions that tw o se-
quences should be considered similar if they ha veenough
non-o verlapping ordered similar subsequences.In [7], Yi et
al. introduce "time warping" distance as the similarity mea-
surement and tec hniquesto speed up the similarity query
processing. Park et al. [8] use time warping distance with a
disk-based su�x tree indexing method for retrieval similar
subsequences without false dismissals. Perng et al. [9] pro-
pose the Landmark Similaritymeasurement that is invarian t
under six transformations (e.g., shifting, uniform amplitude
scaling, etc.), where the landmarks are �ltered local maxima
and minima in the time sequences.
Most of the previous works employ DFT to map time-

series data from the time domain to the frequency domain.
By takingonly the �rst few Fourier coe�cients for index-
ing they e�ectiv ely reduce the search space and speed-up
the similarity query .Chan and Fu [1] �rst proposed to use
the Discrete Wavelet T ransform (DWT) to replace the well-
accepted DFT for various reasons; e.g., the computation of
D WT is more e�cient than DFT in general. They state that
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the DWT as a matching function has more discrimination
power than DFT.
In this paper, we present a comprehensive comparison

between DFT and DWT as matching functions in time-
series databases. Our experiment results show that there
is marginal di�erence for discrimination power with DWT
or DFT if we consider the conjugate property of DFT as
proposed in [5].
The rest of the paper is organized as follows. In Section

2, we gives an overview of the Discrete Fourier Transform
(DFT) and Discrete Wavelet Transform (DWT). In Section
3, we exam the hypothesis proposed by Chan and Fu [1],
and analyze DFT and DWT based matching for time-series
datasets. In Section 4, we compare the relative matching
error and query precision by using the DFT and DWT in
real-world time-series database. We conclude in Section 5.

2. BACKGROUND
In this section, we start by giving a brief introduction

of how to process similarity search in time-series database
followed by a brief description of DFT and DWT.

2.1 Query Processing in Time-series Databases
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Figure 1: Real Stock Data for 360 days

A time-series chart of the stock closing prices of IBM
for 360 consecutive transaction days is shown in Figure 1.
A time-series database consists of thousands of such time-
series sequences. A common operation/query against such
a database would be: Given a query sequence, e.g., Mi-
crosoft stock closing prices for the past 3 months, �nd the
stocks in the database that have a close correlation with its
behavior. Although the data-sequences used in this paper
are from �nancial applications, such data-sequences arise
in a variety of applications. For example, observations of
physical phenomena (temperature, rainfall, etc.), for sci-
enti�c applications over a period of time, seismic activity
in southern California, EKG observations/samples of pa-
tients in the last few years. etc. In the above applica-
tions, correlation or similarity based queries play an im-
portant role. More formally, a time-series database is a
set denoted DB = fX1; X2; :::; Xi; :::; XNg, where Xi =
[xi0; x

i
1; ::::; x

i
n] and a query sequence is a sequence of data

points Q = [q0; q1; ::::; qn]. Given a query Q, the result set
R from the database is R = fX1; X2; :::; Xj ; :::; Xmg, such
that D(Xj ; Q) < d. The distance function D(X;Y ) is the
Euclidean distance between X and Y , that is

D(X; Y ) = (
X

j

jxj � yj j2)1=2 (1)

which is the aggregation of the point to point distance of
two sequences.
One way to solve this problem is as follows. Given a query

sequence Q, we compare all sequences stored in the database
with Q using the distance function in Equation 1 and put all
sequences within distance d into the result set R. Although
this approach is correct, it is not practical for two reasons.
First, the number of sequences in the database may be large
and a sequential scan of all such sequence for every query will
result in severe performance penalty. Second, the number of
data points in a query may need to be matched against each
sequence not once but N (the database size) times so that
all possible subsequences of that sequence are evaluated.
Another approach is to use mathematical transforms to

capture the essence of time-series sequences. One such trans-
form is the discrete Fourier transform (DFT). The DFT
takes the original signals in time/space domain and trans-
forms them into the frequency domain. The signi�cance of
the DFT is that there exists a fast algorithm that can com-
pute the DFT coe�cients in O(n log n) time.
Many previous proposals [2, 4, 5, 3] in time-series databases

use the notion of DFT and separate the query processing
phase from the indexing phase. The indexing phase will
usually take the following steps,

1. Take the original sequence data and chop it into �xed
sized subsequence samples using a sliding window.

2. Normalize all the subsequence samples so that all the
sample data fall into a certain range.

3. Use the DFT to transform the subsequence samples
into the frequency domain.

4. Use only the �rst few DFT coe�cients to represent the
original subsequence.

5. Use any multidimensional index structure such as R-
trees to index the resulting few coe�cients.

By using an appropriate transformation we can capture
the approximate shape of a given long sequence and hence
use fewer data points to describe the overall shape. Note
that, the underlying shape of a sequence/signal, which is
the slow changing part, is the low frequency part of the
sequence/signal. Hence, in step 4, by keeping only the �rst
few DFT coe�cients, the approximate shape of the original
subsequence can be captured.
In the querying phase, given a query sequence Q with the

same number of data samples as all the subsequences in the
database, �nd the most similar ones to Q within a distance
threshold,

1. Normalize and DFT Q as in indexing steps 2 and 3.

2. Take the same number of coe�cients as in indexing
step 4 from the resulting DFT coe�cients or Q0.

3. Search the index structure(e.g., R-tree) with the re-
maining coe�cients. Find all sequences in the indexing
structure that are within distance d to Q0. The result-
ing R0 contains all sequences with estimated distance
within d to Q0.

4. For each sequence in R0, if the true distance to Q is
within d, put it in the �nal result set R.
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Since we only stored the approximate shapes of the origi-
nal sample sequences in the database, the distance calcula-
tion in step 3 cannot be the exact distance between query
sequence Q and the original sample sequences in time do-
main. Parseval's Theorem [2] guarantees that the distance
between Q0 and the approximated sample sequence X 0 is al-
ways smaller than the distance between Q and the original
sample sequence X. This result implies that the result set
R0 in step 3 is always a superset of the actual result set R in
step 4. In another word, by keeping only a few DFT coe�-
cients, i.e., keeping the basic shape and dropping the detail
information, we successfully reduce the cost of indexing and
distance calculations. But at the same time, we introduce
false hits in step 3 of the querying phase as a result of losing
detailed information in the indexing phase. This is a design
tradeo� between having fast query processing in step 3 at
the expense of false hits in step 4 versus slow query process-
ing in step 3 but with less false hits for step 4. This can
be adjusted by varying the number of coe�cients that are
chosen in step 4 of the indexing phase.
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Figure 2: Discrete Fourier Transform (DFT)

Figure 2 shows how DFT decomposes a signal into di�er-
ent frequency parts. Each frequency response is represented
by one coe�cient of DFT. The signals on the right hand side
of the equation represent portions of the original signal at
speci�c frequencies.
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Figure 3: Reversed Discrete Fourier Transform
(RDFT)

Figure 3 shows the e�ects of reconstructing the original
sequence with only the low frequency parts of the original
signal using RDFT. The solid line in Figure 3 shows the
original signal. The dashed line in Figure 3 shows the re-
construction using only the �rst 8 DFT coe�cients Note
that the reconstructed signal captures the basic shape of
the original sequence. Database researchers have proposed
to explore this property for e�cient processing of similarity
based queries [2, 4, 3]. The dotted line in Figure 3 shows the
reconstruction of using the �rst 64 DFT coe�cients, which

is half of the total coe�cients. The details in the original
sequence gradually appear as the number of coe�cients in-
creased.
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Figure 4: The conjugate property e�ect of DFT

An interesting property of the DFT is that if the input se-
quence is in the real domain, i.e. all signal samples are real
numbers, then the resulting DFT coe�cients have a mirror
e�ect such that the coe�cients in the rear are complex con-
jugates of the coe�cients in the front. Ra�ei and Mendel-
zon [5] suggested to use this property to increase the preci-
sion of distance calculations without increasing the number
of coe�cients stored for indexing. The idea is that although
only the �rst few coe�cients are used for indexing, say l co-
e�cients are stored, due to the complex conjugate property
we can have 2l coe�cients for the distance calculation. This
technique greatly reduces the error by the thresholding pro-
cess. Figure 4 illustrates the di�erences of signal reconstruc-
tion using this approach. The signi�cance of this technique
is that it can greatly reduce the distance measuring errors
and by doing so reduces the false hits in the result.

2.2 Discrete Wavelet Transform
We now introduce another family of transformations, the

Discrete Wavelet Transform (DWT) [10], that performs sim-
ilar properties as DFT in time-series signals. Whereas the
basis function of the DFT is a sinusoid, the wavelet basis is
a set of functions which are de�ned by a recursive function

 j;k(t) = 2j=2 (2jt� k) (2)

where 2j is the scaling of t (j is the log2 of the scale), 2
�jk is

the translation in t, and 2j=2 maintains the L2 (the space of
square integrable functions) norm of the wavelet at di�erent
scales. So any signal in L2(R) can be represented by the
series

f(t) =
X

j;k

aj;k2
j=2 (2jt� k) (3)

or, using Equation 2, as

f(t) =
X

j;k

aj;k j;k(t) (4)

where the two-dimensional set of coe�cients aj;k is called
the Discrete Wavelet Transform (DWT) of f(t). A more
speci�c form indicating how the ai;j 's are calculated can be
written using inner products as

f(t) =
X

j;k

h j;k(t); f(t)i j;k(t) (5)
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if the  j;k(t) form an orthonormal basis for the space of
signals of interest [10].
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Figure 5: Discrete Wavelet Transform (using Haar
wavelet)

Unlike the DFT that takes the original signals in time/space
domain and transforms them into frequency domain, the
Wavelet transform takes the original signals in time/space
domain and transforms them into time/frequency or space/
frequency domain. In Figure 5, we show how DWT de-
composed the original signal into di�erent frequency com-
ponents, which is similar to DFT. Several things have to be
noted. First, the wavelet we used is not sinusoid. We use a
special class of wavelets called Haar wavelet [10] throughout
this paper because of its simplicity. One can use any other
orthonormal basis wavelets and achieve similar results as we
present here. Second, the decomposed signals di�er not only
in the frequency but also in the position/time of the signal
responses. Each time/frequency response is represented by
one coe�cient of DWT. The signals on the right hand side
of the equation represent portions of the original signal at
speci�c time/frequencies. The frequencies they represent in-
crease from left to right and top to bottom. And the time
responses spreads through the entire time domain at di�er-
ent frequency levels. Since the wavelet transform gives a
time-frequency localization of the signal, it means most of
the energy of the signal can be represented by only a few
DWT coe�cients.
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Figure 6: Reversed Discrete Wavelet Transform

In Figure 6, we show the e�ects of reconstructing the orig-
inal sequence with only some of the time/frequency parts of
the original signal using reversed discrete wavelet transform.
The solid line in Figure 6 shows the original signal. The
dashed line shows the reconstruction of using only the �rst
8 DWT coe�cients, i.e., the �rst 8 time/frequency parts of
the original sequence. And the dotted line shows the recon-
struction using the �rst 64 DWT coe�cients. Note how the
basic shapes of the original sequence are captured by using
DWT. Comparing the results by using DFT in Figure 3 and

by using DWT in Figure 6, we note that DWT appears to
be superior DFT in capturing the underlying shape of the
original signal.
The di�erence between DFT and DWT is that DFT maps

a one dimensional time domain discrete function into a rep-
resentation in frequency domain while the wavelet transform
maps it into a representation that allows localization in both
time and frequency domains. This special property of DWT
supports the hypothesis proposed in [1] that the DWT is
more suitable than the DFT in time series database appli-
cations because it reduce the error of distance estimates on
the transformed domains. In the next section, we verify this
hypothesis by a comprehensive analysis on real data sets.

3. WHY WAVELETS?
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Figure 7: Standard deviation of individual
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In this section we verify the hypothesis that DWT is supe-
rior than DFT in time-series database domain as described
in Section 2. As discussed in Section 2.1, the main purpose
of using any type of transformation on the original time se-
quences is to extract only a few representative transformed
coe�cients for identifying and indexing the original time se-
quences. That is, we try to select the coe�cients that can
most di�erentiate the transformed sequence from others; in
most cases, the coe�cients that reserve the most energy of
the original sequence.
The data set we used throughout this section contains

36000 stock price sequences as described in Section 4. Each
sequence consists of the stock closing price of one company
for 128 days. We applied the DFT and DWT on all 36000
sequences to construct the coe�cient dataset for analysis. In
Figure 7, we show how the individual DFT and DWT coef-
�cients are actually distributed. Each point in Figure 7 rep-
resents the standard deviation of individual transformed co-
e�cients of the 36000 sample sequences in the test data set.
For example, Figure 7 shows that the 20th DWT coe�cient
in the dataset has a standard deviation of 6012. Note that
the DFT coe�cients are complex numbers. Hence there are
two separate distributions for the real and imaginary parts
of each coe�cients, as shown in Figure 7. In Figure 7, the
�rst few DFT coe�cients have higher standard deviations;
this implies that by incorporating the �rst few coe�cients
we can di�erentiate the sequences from each others better.
In other words, the sample sequences in database tend to
have more di�erences in the �rst few coe�cients than the
rest. This supports the general intuition of keeping only the
�rst few coe�cients for similarity comparisons because they
have more di�erentiate power than the rest. The distribu-
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tions of the DWT coe�cients have the same property as the
DFT coe�cients. Note that the distributions of the DFT
coe�cients have the symmetric spread as discussed in Sec-
tion 2.1, the coe�cients in the front are complex conjugates
of the coe�cients in the rear, as shown in Figure 7. Another
observation is that the standard deviations of DWT coe�-
cients decrease in a hierarchical manner as a result of the
multiresolution property of the DWT. This special multires-
olution property suggests that hierarchical indexing struc-
tures are possible for the DWT coe�cients.
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Figure 8: Averaged energy contained in each indi-
vidual DFT/DWT coe�cients

Another metric to measure the performance of transfor-
mation/thresholding processes is to evaluate how the trans-
formed and thresholded sequences resemble the original se-
quences. In other words, we measure how much energy
of the original sequence is preserved after the transforma-
tion/thresholding processes. The energy of the original se-
quence and the transformed sequence can be computed as
described in Appendix A. Note that the Parseval's Theorem
holds for both the DFT and DWT because the Haar wavelet
we used in this paper is also orthonormal.
In the thresholding process, we keep the coe�cients with

most energy to reduce the transformation/thresholding er-
ror. Figure 8 shows the energy of the original sequence
spread on individual DFT/DWT coe�cient on average. For
example, Figure 8 shows that the �rst DFT/DWT coe�-
cients contain an average of 16% energy of the original se-
quence. Several observations can be made from Figure 8.
First, the �rst DFT/DWT coe�cients contains the same
energy is not a coincident because they both represent the
mean values of the original sequences. Second, the symmet-
ric energy spread of the DFT coe�cients suggest that most
energy is preserved in the low-frequency and high-frequency
coe�cients but not in mid-frequency coe�cients. Third, the
hierarchical energy spread of the DWT coe�cients suggest
that most of the energy is reserved in the low resolution
DWT coe�cients. The above observations again suggest
that in the thresholding step, keeping the �rst few coe�-
cients can minimize transformation/thresholding error.
In some cases, selecting the �rst few coe�cients does not

guaranteed minimum error for thresholding. It is known
that by keeping the largest m coe�cients (in absolute value)
is optimal in minimizing the absolute error for thresholding,
assuming that the transformation is orthonormal [10]. The
proof is in Appendix B. But keeping the largest coe�cients
need additional indexing space and indexing structures other
than R-tree. Furthermore, the distance computation be-
tween two coe�cients set, where the coe�cients do not align

and have di�erent frequency contents, is expensive.
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Figure 9: Accumulated energy of DFT/DWT coef-
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Figure 10: Accumulated energy of DFT/DWT coef-
�cients (zoom-in)

Next, we want to verify the hypothesis that the DWT has
less transformation/thresholding error in time-series appli-
cation than the DFT. Figure 9 shows the preserved energy
by keeping varying numbers of DFT/DWT coe�cients in
the thresholding process. It shows that by keeping the �rst
20 DFT coe�cient in the thresholding process we can pre-
served an average 56% energy of the original sequence; while
keeping 20 DWT coe�cients we can preserved 92% of the en-
ergy on average. It clearly shows that DWT is superior than
the DFT in preserving energy. But when we consider the
conjugate property of DFT explored by Ra�ei and Mendel-
zon [5] as described in Section 2.1, Figure 9 shows that the
�rst 20 DFT coe�cients can recover an average 97% energy
of the original sequence. This result suggest that the hy-
pothesis by Chan and Fu [1], that by replacing DFT with
DFT can reduce time series matching error, does not hold
if we consider the conjugate property of DFT. In practice,
we can only keep a very small number of coe�cients, usu-
ally less than six, because by keep one more coe�cient we
increase the dimension of the indexing structure by one; and
the R-tree family is known to degenerate as the dimension
increase. Figure 10 is a zoom-in version of Figure 9. Fig-
ure 10 shows that even in very low dimension, by keeping
very few coe�cients, the DWT can not preserve more en-
ergy than the DFT if we consider the conjugate property of
DFT.
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4. EXPERIMENTS
In this section, we conduct extensive experiments to eval-

uate the retrieval e�ciency of DFT and DWT. The original
time-series sequences are taken from real stock closing prices
for a time span of 360 transaction days. There are more
than nine thousands company stocks in the market today.
We take the �rst 100 stocks in the order of ascending tick
symbols from AA to ADBE. For each stock closing price
sequence we use a 128 days window and slide it through
the 360 days sequences from the beginning and take a 128
days long sample beginning at each data point. When the
128 days window reaches the end of the 360 days original
sequence we simply warp the beginning of the 360 days
sequence to the end. After the sampling process we have
360 subsequence samples of the original data sequences with
each sample being 128 days long. Since we have 100 di�er-
ent stocks in our experiment, we end up with 36000 samples
that are 128 days long.

4.1 Approximation Errors after Transforms
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Figure 11: Relative errors for di�erent transforma-
tions

The matching processes relied on �rst applying the DFT/DWT
on the data sequence, taking only a few coe�cients as the ba-
sis for matching and discarding all the other coe�cients. By
reducing the number of transformed coe�cients, the origi-
nal data sequence cannot be obtained by the reversed trans-
form and thus we introduce errors. One can measure the
performance of di�erent transformations by measuring the
errors after transformation and thresholding. In the �rst
experiment, we take each of the 36000 data samples in the
database, perform the transformations, retain only a few
coe�cients, apply the reverse transform and compare it to
the original data. We measure the error by the Euclidean
distance between the transformed sequence and the original
data sequence. The relative error is de�ned as,

Erel =
D(~x; x̂)

D(~x;~0)
(6)

Relative error 0% means that after the transformation
and thresholding process, the original data can be recovered
completely; i.e., the energy is 100% preserved.
Note that, unlike the DWT coe�cients that are real num-

ber,the DFT coe�cients are complex numbers thus require
twice the storage space. With the same storage space and
indexing scheme, we can keep twice as many coe�cients if
we use DWT instead of DFT. Throughout this section, all
the experiments assume that keeping a DFT coe�cient takes

two oating numbers while keeping a DWT coe�cient takes
only one oating number.
Figure 11 shows the relative errors of thresholding after

DFT or DWT. It shows that keeping more DFT coe�cients
does not reduce the relative errors accordingly because the
rest of the coe�cients do not carry much information and
the energy they carried approaches zero. However, if we
consider the conjugate e�ect as described in Section 2.1, the
relative error reduces much faster because the coe�cients
the rear end are complex conjugates of the front end and
thus contains the same energy. Figure 11 also shows that,
when considering the the conjugate property of the DFT,
applying the DWT or DFT has marginal impact on relative
errors.

4.2 Matching Errors after Transforms
In the next experiment we choose one sequence from the

36000 sample data database as the query sequence and mea-
sure the relative error when comparing the query sequence
to each sample data sequence. The relative error between
the query sequence and each sample data is de�ned as

Erel( ~Q; ~X) =
D(Q̂; X̂)

D( ~Q; ~X)
(7)

This metric tells us how good the transformation/thresholding
process can estimate the true distance between two sequences.
Then the average relative error of a query sequence and all
sample data sequences is

Eavg(Q) =

Pn
i=1 Erel(Q;Xi)

n
(8)
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Figure 12: Query sequence ABRX and average error
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Figure 13: Average Errors for 100 Random Queries

Figure 12(a) shows the �rst query sequence, which is stock
ABRX closing prices with 128 days time span. Figure 12(b)
shows the average error when we use the DFT and DWT
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and keep di�erent number of coe�cients in the thresholding
process. It shows that by using DFT and keeping only the
�rst few coe�cients as a distance measurement produces
large average error, no matter how many coe�cients are
kept. By using the DWT and keeping that same number of
coe�cients we can achieve much smaller relative error than
using the DFT. But with the conjugate property, the average
relative error of the DFT is greatly reduced and comparable
to the DWT. Figure 13 shows the average relative errors of
100 random queries. It suggests similar result.

4.3 Precision of Epsilon Query with Trans-
forms
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Figure 14: Average Precisions for 100 Random
Queries

One of the most important categories of query in time-
series database is epsilon distance query: Given a query se-
quence Q, �nd all the data sequence Xi in the database such
that the distance between Q and Xi is below a threshold d,
i.e., D(Q;Xi) <= d. In other words, �nd all similar time
sequences in the database to a query sequence Q with simi-
larity threshold d. For example, when the similarity thresh-
old is 200, there are 3 data sequences in the data base which
are under that range. As described in Section 2.1, accord-
ing to Parseval's theorem, the transformation/thresholding
processed will always result in underestimating the distance
in the transformed domains; i.e., no false dismissal but false
hits. We want to reduce the size of the estimated result
set to be as close to the actual result set as possible, such
that we can save more real distances computations in the
post processing stage; i.e., increase precision to reduce false
admissal.
The precision of an epsilon query is de�ned as

PrecisionOfEpsilonQuery(Q) =
jActualResultSet(Q)j

jEstimatedResultSet(Q)j
(9)

Figure 14 shows the epsilon distance query precision result
of 100 random queries. We can see that the precisions of
epsilon distance queries using the DWT are similar to the
DFT. The result suggests that the DWT is not likely to
produce a smaller estimated epsilon distance query result
set than the DFT if we consider the conjugate property of
DFT.

5. CONCLUSION
The DFT has been traditionally used as the de facto pro-

cessing function for time-series data because time-series data

can be treated as a 1-dimension signal and DFT is a proven
technique that has been widely used in signal processing do-
main. In this paper, we explore the feasibility of replacing
the DFT by DWT with a comprehensive analysis of the DFT
and DWT as matching functions in time-series databases.
Our results show that although the DWT based technique
has several advantages, e.g., the DWT has complexity of
O(N) whereas DFT is O(N logN), DWT does not reduce
relative matching error and does not increase query pre-
cision in similarity search. We conclude that, by exploiting
the conjugate property of DFT in the real domain, the DFT-
based and DWT-based techniques yield not much di�erent
behavior in the context of similarity search in time-series
databases.
Our suggestions for future work are to explore the unique

properties of DWT which the DFT does not have; e.g, mul-
tiresolutional property. For example, since DWT is inher-
ently multiresolutional, it is possible to match time-series
data at di�erent resolutions concurrently. More e�cient hi-
erarchical searching structures other than the R-tree fami-
lies can be derived by exploring this unique multiresolution
property of the DWT.
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Appendix A: Mathematics for Discrete Fourier
Transform (DFT)
The n-point DFT of a signal x = [xt]; t = 0; :::; n � 1 is
de�ned to be a sequence X of n complex numbers Xf ; f =
0; :::; n� i, given by

Xf = 1=
p
n

n�1X

t=0

xte
�j2�ft=n; f = 0; 1; :::; n� 1 (10)

where j is the imaginary unit j =
p�1. The signal x can

be recovered by the inverse transform:

xt = 1=
p
n
n�1X

f=0

Xfe
j2�ft=n; t = 0; 1; :::; n� 1 (11)

Xf is a complex number. If the signal is real, then X0 is
real.
The energy of Signal x is de�ned as the sum of energies

at every point of the sequence:

E(x) � kxk2 �
n�1X

t=0

jxj2 (12)

The Parseval's Theorem

n�1X

i=0

jxij2 =
n�1X

j=0

jXj j2 (13)

we have

kx� yk2 = kX � Y k2 (14)

Appendix B: Minimizing Thresholding Error
Let the original function be

f(x) =

mX

i=1

ciui(x) (15)

and let �(i) be a permutation of 1; :::; m and the function
after thresholding is

f̂(x) =

m̂X

i=1

c�(i)u�(i)(x) (16)

where m̂ < m. Then the L2 error between the original
function and the thresholded one is given by

kf(x)� f̂(x̂)k2 = hf(x)� f̂(x̂)jf(x)� f̂(x̂)i

=
mX

i=m̂+1

mX

j=m̂+1

c�(i)c�(j)hu�(i)ju�(j)i

=

mX

i=m̂+1

(c�(i))
2 (17)

if the basis is orthonormal. In order to minimize this error
for any give m̂, �(i) satis�es jc�(1)j � ::: � jc�(m)j. The
complete proof can be found in [11].
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