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ABSTRACT
In many organizations, it is often challenging for users to find rele-
vant data for specific tasks, since the data is usually scattered across
the enterprise and often inconsistent. In fact, data scientists routinely
report that the majority of their effort is spent finding, cleaning, in-
tegrating, and accessing data of interest to a task at hand. In order
to decrease the “grunt work” needed to facilitate the analysis of
data “in the wild”, we present DATA CIVILIZER, an end-to-end big
data management system. DATA CIVILIZER has a linkage graph
computation module to build a linkage graph for the data and a data
discovery module which utilizes the linkage graph to help identify
data that is relevant to user tasks. It also uses the linkage graph
to discover possible join paths that can then be used in a query.
For the actual query execution, we use a polystore DBMS, which
federates query processing across disparate systems. In addition,
DATA CIVILIZER integrates data cleaning operations into query pro-
cessing. Because different users need to invoke the above tasks in
different orders, DATA CIVILIZER embeds a workflow engine which
enables the arbitrary composition of different modules, as well as
the handling of data updates. We have deployed our preliminary
DATA CIVILIZER system in two institutions, MIT and Merck and
describe initial positive experiences that show the system shortens
the time and effort required to find, prepare, and analyze data.

1. INTRODUCTION
An oft-cited statistic is that data scientists spend 80% of their

time finding, preparing, integrating, and cleaning data sets. The
remaining 20% is spent doing the desired analytic tasks. In practice,
80% may be a lower bound; for example one data officer, Mark
Schreiber of Merck, a large pharmaceutical company, estimates that
data scientists in Merck spend 98% of their time on “grunt work”
and only one hour per week on “useful work”.

In this paper, we present DATA CIVILIZER, a system we are
building at MIT, QCRI, Waterloo, and TU Berlin, whose main
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Figure 1: Data Civilizer Architecture

purpose is to decrease the “grunt work factor” by helping data
scientists to (i) quickly discover data sets of interest from large
numbers of tables; (ii) link relevant data sets; (iii) compute answers
from the disparate data stores that host the discovered data sets;
(iv) clean the desired data; and (v) iterate through these tasks using
a workflow system, as data scientists often perform these tasks in
different orders.

DATA CIVILIZER consists of two major components, as shown
in Figure 1. The offline component indexes and profiles data sets;
these profiles are stored in a linkage graph, which is used to process
workflow queries online. Data sets in DATA CIVILIZER consist
of structured data, which may be stored in relational databases,
spreadsheets, or other structured formats. In the remainder of the
paper, we use the term tables or data sets to refer to these. The online
component involves executing a user-supplied workflow that consists
of a mix of discovery, join path selection, and cleaning operations
on data sets, all supported via interactions with the linkage graph.
We elaborate on each module in the remainder of this section, using
Merck as an example.

[Linkage Graph Computation.] The linkages amongst attributes
and tables are needed so that the user can discover interesting data,
assemble relational schemas, and run SQL queries on the discovered
data sets. Initially, all the linkages that can be found in linear time
are built during the offline stage. As existing data changes and
new tables are added, the graph is incrementally updated to reflect
these changes. All the other linkages, such as primary key-foreign
key (PK-FK) relationships, will be built in the background or on-
demand during the online stage. Our current prototype identifies
PK-FK relationships, using inclusion dependencies. As such, the
process of building the linkage graph can be run dynamically and



on-demand; we discuss its details in Section 2.

[Discovery.] A data scientist at Merck has a hypothesis, for exam-
ple, the drug Ritalin causes brain cancer in rats weighing more than
300 grams. His first job is to identify relevant data sets, both inside
and outside of Merck, that might contribute to testing this hypoth-
esis. Inside the company alone, Merck has approximately 4,000
Oracle databases and countless other repositories. The discovery
component in DATA CIVILIZER will assist the scientist in finding
tables of interest from all the Merck tables. Discovery queries are
run as a part of the online workflow which is discussed in Section 3.

[Polystore Query Processing and Curation.] Since organizations
such as Merck have a variety of massive-scale data storage systems,
it is not feasible to move all data to a central data warehouse. Also,
it is neither economically nor technically practical to perform data
processing on all of the thousands of databases in advance. DATA
CIVILIZER is built using a polystore architecture [12] that federates
query processing across disparate systems inside an enterprise. Our
plan is to leverage the BigDAWG polystore system [13] to pull data
from multiple underlying storage engines to compute the final result
(or the view) that satisfies the user’s specifications.

Obviously, data cleaning, data transformation and entity consoli-
dation must be integrated with querying the polystore and construct-
ing the desired user view. This is an expensive process with the
human effort required to validate cleaning decisions being the most
important cost. Since there may be multiple views that “solve” a
data scientist’s query, each with different accuracy and human vali-
dation cost, DATA CIVILIZER must estimate the cost of curating the
possible views, given a scientist’s time budget. The above aspects
will be discussed in Section 4.

[Updates.] If a source data set is updated, these updates must
be incrementally propagated through the data curation pipeline to
update downstream materialized views. In some cases, the human
effort involved may be daunting and the materialized view should
be discarded rather than updated. In addition, if a scientist updates
a view, we need to propagate changes to other derived views, as
well as back upstream to data sources, if this is possible. Section 5
discusses these issues.

[Workflow.] DATA CIVILIZER offers a workflow engine whereby
data scientists can iterate over its components in whatever order they
wish. Moreover, they need to be able to undo previous workflow
steps and perform alternate branching from the result of a workflow
step. Section 6 discusses our workflow management ideas.

We describe the state of the current implementation of DATA
CIVILIZER in Section 7. We also report on initial user experience
for two use cases: the MIT data warehouse and Merck. We conclude
with final remarks in Section 8.

The main contribution of DATA CIVILIZER is that it is an “end-
to-end” system. In contrast, there has been much work on “point
solutions” that solve small pieces of the overall problem. For ex-
ample, Data Wrangler [16] and DataXFormer [6] automate some
aspects of cleaning and transforming data, Data Tamer [21] mainly
performs schema mappings and record linkage, NADEEF [10] and
BigDansing [17] provide generic programming interface for users
to define their data quality rules, and DeepDive [20] extracts facts
and structured information from large corpora of text, images and
other unstructured sources. However, no solution performs dis-
covery, linkage graph computation, and polystore operations in
concert. In addition, we have recently studied several representa-
tive data cleaning systems on a collection of real world data sets
“from the wild” [4] and we found out that there was no cleaning
Esperanto. Hence multiple tools are required to achieve reasonable

accuracy and point solutions neither offer enough functionalities nor
achieve acceptable performance. Therefore an ensemble approach
is needed.

2. LINKAGE GRAPH COMPUTATION
In this section, we discuss how to build the linkage graph of

DATA CIVILIZER. We first show how to create the data profiles in
linear time — which can then be fed into the linkage graph — and
then formally define our graph model in Section 2.2. Finally, as
an example of linkages, we focus on how we discover and refine
PK-FK relationships in Sections 2.3 and 2.4, respectively.

2.1 Data Profiling at Scale
The key idea is to summarize each column of each table into a

profile. A profile consists of one or more signatures; each signature
summarizes the original contents of the column into a domain-
dependent, compact representation of the original data. By default,
signatures for numerical values consist of a histogram representing
the data distribution and for textual values, they consist of a vector
of the most significant words in the column, indexed using a hash
table. Our profiles also contain information about data cardinality,
data type, and numerical ranges if applicable [5]. In addition to the
profiles, we maintain a global keyword index to facilitate keyword
queries. The index maps keywords to columns containing the word
in their names or content.

To run at scale, data profiling relies on sampling to estimate the
cardinality of columns and the quantiles for numerical data. This
avoids having to sort each column, which is not a linear computation.
This also allows us to avoid making a copy of the data, reducing
memory pressure.

The profiler consists of a pipeline of stages. The first stage per-
forms basic de-noising of the data, such as removing empty values
and dealing with potential formatting issues of the underlying files,
e.g., figuring out the separator for a CSV file. The second stage
determines the data type of each column, information that is propa-
gated along with the data to the next stages. The rest of the stages
are responsible for computing cardinalities, and performing quantile
estimation, e.g., to determine numerical ranges.

The profiler has connectors to read data from different data
sources, such as HDFS files, RDBMS, and CSV files. Data sets
are streamed through the profiler pipeline; the pipeline outputs the
results to a profile store where it is later consumed by the graph
builder, which will be explained in Section 2.2. The profiler works
in a distributed environment using a lightweight coordinator that
splits the work among multiple processors, helping to scale the
computation.

2.2 Graph Builder
The linkage graph is a graph with both simple nodes, which rep-

resent columns, and hyper-nodes which are multiple simple nodes
that represent tables or compound keys. Each edge represents a rela-
tionship between two nodes (either simple nodes or hyper-nodes)
in the graph. Note that in this way the model can express rela-
tionships involving individual columns as well as groups of them.
This is necessary to capture relationships among tables, e.g., PK-FK
relationship between compound keys.

Examples of relationships are column similarity, schema similar-
ity, structure similarity, inclusion dependency, PK-FK relationship,
and table subsumption. The node label contains table metadata,
such as table name, cardinality and other information computed
by the profiler. The edge label includes metadata about the rela-
tionship it represents, e.g., type and score, if any. Computing the
different relationships requires different time complexities. We thus



categorize them into light relationships, which can be computed
in sub-quadratic time, and heavy relationships, which need at least
quadratic time. The light relationships contain column similarity
and schema similarity. The heavy relationships include primary
key-foreign key (PK-FK), inclusion dependency, and structure simi-
larity.

The graph builder first computes the light relationships amongst
pairs of nodes in advance during offline processing. In particular,
the graph builder first finds column similarity and schema similarity
relationships. Each edge is assigned a weight that represents the
strength of the relationship: the particular meaning depends on
the edge semantics. Also, edges with a similarity less than a user-
defined threshold are discarded to avoid having a graph with too
many edges that are not significant. A straightforward computation
of such relationships requires an O(n2) computation, which will not
scale. However, for light-relationships, which depend on similarity
metrics such as edit distance and Jaccard similarlity, we can employ
locality sensitive hashing (LSH) [11] to yield sub-quadratic runtime;
we have found LSH to run quite well in practice, even for data sets
up to several Terabytes.

It is usually expensive to compute the heavy relationships. To
address this issue, the graph builder adopts the following general
approaches: (i) the computation of heavy relationships is performed
in the background, (ii) data profiles and light relationships are used
as much as possible to prune the search space for the heavy relation-
ships, and (iii) after the user chooses the data of interest, if the heavy
relationships are not ready amongst this data, the graph builder can
construct the heavy relationships online.

We use the PK-FK relationships as an example of how we effi-
ciently compute a heavy relationship and deal with the complexities
that arise in real data where errors and noise make finding such
relationships tricky. The graph builder utilizes an implementation
of inclusion dependency (i.e., column A includes all the values
of column B) to find candidate PK-FK relationships, since a PK
column should include all values in an FK column. We then refine
the candidates using machine learning methods. However, as it is
well known, data in the wild is quite dirty, which makes discovering
inclusion dependencies difficult. Specifically, foreign keys may
not match a primary key, because of errors in either the PK or the
FK. To tolerate errors, we extend traditional inclusion dependency
discovery by both key coverage and text similarity and propose an
error-robust inclusion dependency approach. We describe this ap-
proach in Section 2.3 and the machine learning techniques to refine
the candidate PK-FK relationships in Section 2.4.

2.3 Error-Robust Inclusion Dependency
As noted above, PK-FK relationships are usually identified using

inclusion dependency techniques. To overcome the presence of
dirty data, we propose an error-robust inclusion dependency scheme.
Consider two columns (or compound columns) from two tables R
and S denoted by R[X ] and S[Y ]. If there is a foreign key constraint
on R[X ] with reference S[Y ], all the values in R[X ] must appear
in S[Y ], which yields an inclusion dependency from R[X ] to S[Y ].
However, in the real world, values in foreign key fields may not
exist in the primary key fields due to errors. In this case an inclusion
dependency from the foreign key to the primary key does not hold.

To address this, for each distinct value in R[X ], we calculate
the text similarity to values in S[Y ] and use the similarity as the
strength of a value matching. We then compute the total strength
of the maximum matching between the two columns divided by
the number of values in R[X ]. This is the overall strength of the
inclusion dependency. If this number exceeds a set threshold δ , we
add an inclusion dependency from R[X ] to S[Y ] in our linkage graph.

When dealing with compound columns, we can utilize different
text similarity functions on different fields. Also, we must compose
the individual column scores to achieve an overall strength.

2.4 Refine Candidate PK-FK Relationships
The error-robust inclusion dependency algorithm returns a col-

lection of candidate PK-FK relationships. We use the algorithms
from [19] to refine our candidate selection. The authors proposed
10 different features to distinguish foreign key constraints from
spurious inclusion dependencies. Consider two columns R[X ] and
S[Y ] with an inclusion dependency from the first one to the second
one. Examples of features include coverage, the ratio of distinct
values in R[X ] that are contained in S[Y ], column name similarity,
the similarity between the attribute names, and out-of-domain range,
the percentage of values in S[Y ] not within [min(R[X ]),max(R[X ])]
where min(R[X ]) and max(R[X ]) are respectively the minimum and
maximum values in R[X ].

Using the defined features, we implemented the four machine
learning classification algorithms from Rostin et al. [19]. These
allow us to distinguish spurious inclusion dependencies from real
ones with high accuracy. We add the highest confidence candidate
PK-FK pairs as edges in the linkage graph.

In Section 3, we will discuss how to utilize the linkage graph to
help the user discover his interesting data. The PK-FK relationships
can be used to link the tables of interest from the discovery module.
However, there may exist multiple subgraphs in the linkage graph
that can connect all the interesting tables, which we call join paths.
In Section 4, we discuss the choice of which join paths to use to
materialize a view for the user.

3. DISCOVERY
The data discovery module’s goal is to find relevant data from per-

haps hundreds to thousands of data sets spread across the different
storage systems of an enterprise, using the linkage graph.

Current solutions to finding relevant data include asking an expert
(if one is available) or performing manual exploration by inspect-
ing data sets one by one. Obviously, both approaches are time-
consuming and prone to missing relevant data sources. Recently,
there have been efforts to automate this process, some examples are
Goods [14] and InfoGather [23]. Goods permits users to inspect
datasets and find others similar to datasets of interest. Infogather
permits to extend the attributes of a dataset with attributes from
other datasets. These systems are designed to solve these particular
use cases, and so their indexes are built for this specific purpose. In
contrast, our discovery module aims to support general discovery
queries that can then be used for unanticipated discovery needs.
Hence, the discovery module uses a linkage graph (Section 2.2) to
permit a broader range of queries.

The data discovery module narrows down the search for relevant
data from the entire space of available data sources to a handful,
on which finer-grained relationships can be computed efficiently.
DATA CIVILIZER discovery supports a user-level API to search for
relevant data using a variety of techniques such as searching for
tables with specific substrings in the schemas (schema search) or
table values (content search).

3.1 Discovery Queries
Users can submit discovery queries to find data sets whose schemas

are relevant to the task at hand. For example, to find all data sets
that contain names of employees in a company, the user issues a
discovery query that searches for all attributes referring to an em-
ployee or a name. The user can then write a SQL query to filter
from a list. Here are some examples of functions that the discovery



module provides to users; each of these queries can be answered
using data collected as a part of profiling as well as the information
in the linkage graph:

◦ Fill-in schema. Given a set of names, this function retrieves
tables or groups of tables that contain the desired attributes.
The core of the operation consists of finding tables with simi-
lar attribute names to provided ones, using the keyword index.

◦ Extend attribute. This is similar to the extend operator of
Octopus [7], or the ABA operation of Infogather [23]. Using
this function users can extend tables of interest with addi-
tional attributes. The core of the operation consists of finding
matches to the current table using the linkage graph, and then
retrieving attributes that do not appear in this table.

◦ Subsumption relationships. Given some reference table,
this function provides a list of tables or groups of tables that
have some form of subsumption relationship (i.e., are con-
tained in or contain) with respect to the reference table; this
can be done directly from the linkage graph.

◦ Similarity and lookup. Discovery can also be used to find
schemas that contain data similar to some provided schema
(attribute or table), as well as to find schemas that contain
certain values, i.e., keyword search for textual data and range
search for numerical data.

Discovery works similarly to an information retrieval system:
schema retrieval queries do not return a specific answer, but in-
stead return a ranked set of results. We are currently exploring
several ranking options, and a model that decouples discovery query
processing from ranking evaluation seems the most promising.

4. POLYSTORE QUERY PROCESSING
DATA CIVILIZER uses the BigDAWG polystore [13] to federate

access to multiple storage systems inside an organization. BigDAWG
consists of a middleware query optimizer and executor, and shims to
various local storage systems. We assume that a user has run discov-
ery and that the corresponding linkage graph has been computed. If
the user is interested in a composite table containing a particular set
of columns that are not available in any single data source, we can
use the PK-FK mining techniques described in the previous section
to find a set of possible join paths that can be used to materialize
the table of interest to the user. Furthermore, for any particular
join path, it is straightforward to construct the BigDAWG query that
materializes the view specified by each join path. However, we still
need to choose which of several possible join paths is the best to
compute the table of interest to the user.

4.1 Join Path Selection
The conventional data federation wisdom is to choose the join

path that minimizes the query processing cost. However, this ignores
data cleaning issues, to which we now turn. To achieve high quality
results, one has to clean the data in conjunction with querying the
table. For example, if one has a data value, New Yark, and wants
to transform it to one of its airport codes (JFK, LGA), then one
must correct the data to New York, prior to the airport code lookup.
Cleaning usually entails a human specification of the correct value
or a review of the value produced by an automatic algorithm. Such
human costs can easily dominate the total query execution time and
represent a significant financial cost in many data cleaning scenarios.
As such, one goal of DATA CIVILIZER is to choose the join path
that produces the highest quality answer, rather than the one that is
easiest to compute.

In DATA CIVILIZER, a user has to decide how to trade off data
quality and cleaning cost. DATA CIVILIZER defines two parameters,
both under the user’s control.

1. Minimize cost for a specific cleanliness metric. In this case,
the user requires the data to be a certain percentage, P, correct
and will spend the least it takes to get to that point.

2. Maximize accuracy for a specific cost. In this case, the user
is willing to spend M and wishes to make the data as clean as
possible.

Sometimes the user is the one actually cleaning the data. In this
case, she can use P and M to quantify the value of her time. In other
cases, cleaning is performed by other domain experts, who generally
need to be paid. In this case, P and M are statements about budget
priorities.

Sometimes the user may prefer the join path that yields the largest
view size, i.e., the number of rows in the view. For example, the
user may want a view with 1,000 rows and 90% cleanliness rather
than a view with 10 rows and 98% cleanliness. We can combine all
these facets as the criteria for join path selection. Estimating result
set sizes has been extensively studied in the literature [15] and we
just utilize the cardinality estimates produced by BigDAWG.

As a result, DATA CIVILIZER must make the following decisions.
First, it needs to assess the cleanliness of the result of any given join
path. We discuss this issue in Section 4.2. Then, we need to choose
where to place, in the resulting query plan, data cleaning operations
to be the most efficient. This is the topic of Section 4.3.

4.2 Cleanliness Model
To assess the cleanliness of join paths and eventually full queries,

we need to devise an accuracy metric for each cell, namely an
estimate for the probability of the cell to be erroneous. To this end,
DATA CIVILIZER first applies automatic error detection tools and
then uses a composite metric to accumulate detected errors.

While there are several types of data errors that we could consider,
in DATA CIVILIZER we limit to the following three types:

(i) Outliers – these are data values that are distant from the distribu-
tion of values in the same column.

(ii) Duplicates – these are groups of tuples that refer to the same
real-world entity. The mismatching values between these duplicate
tuples is considered to be an error.

(iii) Integrity Constraint (IC) Violations – these include functional
dependency (FD) violations and inclusion dependency (IND) viola-
tions. There is a violation between two tuples in a table R of an FD
ϕ : R(X → Y ) if their values on the LHS of ϕ are the same while
their values on the RHS are not. There is a violation between tuples
in tables R and S of an IND: R[X ]⊆ S[Y ] if a value on the LHS does
not exist in the RHS. To detect more errors, we can further conduct
schema mapping, merge semantically equivalent tables, and detect
the IC violations in the merged table.

We have recently studied several representative data cleaning sys-
tems on a collection of real world data sets “from the wild” [4]
and we found out that there was no cleaning Esperanto. Hence
multiple tools are required to achieve reasonable accuracy and point
solutions neither offer enough functionalities nor achieve acceptable
performance. Therefore an ensemble approach is required. For this
purpose, we model the errors detected from multiple tools (we use
one tool for each of the above error category) as a conflict hyper-
graph [9] and compose an overall cleanliness score for each cell.
Next we discuss how to estimate the cleanliness of a join path, based
on the cleanliness estimation of each cell participating in the join.



For each join path, we first construct a query corresponding to
this join path and execute it. Then we extend the techniques in data
lineage [22] to find the cell level lineage λ . Given a cell in the
result, λ indicates all the cells in the source table that can affect the
probability of the result cell to be clean. To obtain the lineage λ ,
we propagate for each join predicate the cells in the attributes that
participate in the predicate to the other cells within the same tuple.
Then for each result cell, we multiply the cleanliness values of all
the source cells in its lineage to get its cleanliness. In this way, we
can propagate the cleanliness of the source cells to the result cells.

The cleanliness of a join path is measured by the average clean-
liness of all the cells in the result. DATA CIVILIZER selects the
join paths based on the criteria that linearly combines the sizes and
the cleanlinesses of their corresponding query results. Note that
DATA CIVILIZER also uses schema mapping [21] to cluster the join
paths based on their semantics and ranks the join paths within each
categories for users to choose.

4.3 Query Planning with Data Cleaning
In a query plan with cleaning operations, the cleaning cost and

the result quality are different based on the position of the data
cleaning operation. For example, cleaning a whole column before
the selection on this column yields a higher cleaning cost and query
accuracy than putting the cleaning operation after the selection
operation. Obviously expensive cleaning should be performed on
as few records as possible and have as most impact as possible. In
DATA CIVILIZER, we assume that given a query and the cleanliness
estimation value on each result cell we are give a set budget B
of user’s actions to check and eventually change a value if it is
erroneous. Based on this input, we need to determine which cells
need to be sent to the user for feedback in order to achieve the
highest quality gain.

More specifically, we first execute the query and obtain its result.
We then map the cells in the query result back to the cells in the
source tables using the data lineage as discussed in the previous
section. To achieve the maximum quality and be able to reuse user’s
cleaning efforts, we focus only on the source cells that are involved
in the erroneous result cells. As each source cell can contribute to
multiple erroneous result cells, for each source cell, we accumulate
its impact on the result and clean them in the decreasing order of
their impacts until the budget is exhausted. This is not only effective
in cleaning the current join path results, but also help enhance the
quality of the whole system and subsequent queries.

5. UPDATES
Real-world data is rarely static and hence some way to deal new

datasets and updates is needed. We consider three types of updates.

(1) Insertions/deletions on source tables. This happens when
there is a change to a table, e.g., the insertion of a new procure-
ment record in the MIT Data Warehouse. This may also happen
when data sources are cleaned (see Section 4).

(2) Replacement of source tables. Large companies typically rely
on both internal and external information to build their knowledge
bases. For instance, Merck collects published standard medical
names from the World Health Organization (WHO) to help construct
their own ontology. These data sources are updated periodically by
WHO. Sometimes, even the format may be changed, e.g., from a
JSON file to a CSV file.

(3) Updating Materialized Views (MV). MVs might be created
based on other MVs. Since new data can arrive at any time, and
cleaning can be done at any time to any record, MVs may need to
be updated.

DATA CIVILIZER uses three corresponding strategies to cater to
the above updates.

(i) MV maintenance. DATA CIVILIZER will need to incrementally
propagate updates through the data curation pipeline to update down-
stream MVs, as well as from intermediate results that are cleaned
back to data sources, if possible. To perform this propagation, we
plan to leverage the techniques in DBRx [8], a system developed by
QCRI and Waterloo. In some cases, the human effort to update and
clean MVs may be daunting, and automatic methods may fail. In
such cases, MVs should be discarded rather than updated.

(ii) Provenance management. To perform update propagation,
DATA CIVILIZER will need to keep track of the relationships be-
tween data sets (their provenance). DATA CIVILIZER will leverage
Decibel [18], a system developed at MIT for this purpose.

(iii) Incremental graph updates. As data changes, the linkage
graph and profiles will also need to be updated. To support in-
cremental updates to profiles we use a simple reference counting
scheme, where each keyword has a count associated with it that is
decremented when a word is removed. A word is removed from the
profile when its count reaches zero. To support updates to the graph,
rather than recomputing relationships every time a table changes, we
maintain an estimate of the fraction of rows in a column that have
changed since we last updated its node and edges in the graph, and
re-index a column when this estimate goes above a set threshold.

6. TRACTABLE CURATION WORKFLOW
The process of data curation entails multiple iterations of discov-

ery, linking, querying, and curation. Cleaning and transformation
procedures must be guided by the user. DATA CIVILIZER will use
a fairly conventional workflow system that will allow a human to
construct sequences of operations, undo ones that are unproductive,
and utilize branching to try multiple processing operations.

In addition, we plan to build a workflow orchestrator which will
retain previous operation sequences and propose those that best fit
a new situation. We expect this tactic to be successful because the
types of data curation and preparation steps in an enterprise often fol-
low repetitive patterns. Specifically, our workflow orchestrator will
store the user query, the sequence of operations in a central workflow
registry together with the metadata and signatures provided by the
data discovery component.

The orchestrator will evaluate a new user query and the initial re-
sults of the data discovery component against the workflow registry.
Similar queries and similar data profiles are likely to demand simi-
lar cleaning procedures. Previous workflows will be ranked based
on the similarity of the user query and retrieved discovery results.
Accordingly, the related curation and preparation procedures will be
shown in ranked order to the user.

7. DATA CIVILIZER IN THE WILD
We have built an initial prototype of DATA CIVILIZER containing

the linkage graph builder and the data discovery module as discussed
in Sections 2 and 3, respectively. Ultimately, we will integrate DATA
CIVILIZER with BigDawg, our implementation of a polystore, to
realize the end-to-end system described in this paper. We have been
working closely with end users to adapt our prototype to relevant
real world problems. In particular, we have deployed a preliminary
prototype of discovery in two different organizations. The MIT
Data warehouse (MIT DWH) is a group at MIT responsible for
building and maintaining a data warehouse that integrates data from
multiple source systems. Merck, a big pharmaceutical company,
manages large volumes of data, which are handled by different



storage systems. In the following, we first outline the current state
of the system and the modules that are currently deployed. We then
provide details on each organizations’ requirements, and how we
are using DATA CIVILIZER to help them.

7.1 Current Data Civilizer Prototype
The current prototype runs as a server and can access data that

resides in a file system or one or more databases. Clients connect
to DATA CIVILIZER through a RESTful API. The current deploy-
ment of DATA CIVILIZER includes both the graph builder with the
error-robust inclusion dependency discovery from Section 2 and the
discovery component described in Section 3. Thus a user is able to
submit queries that consist of attribute names, attribute values, or
tables, and receive different types of results based on the selected
similarity function. The similarity function depends on the specific
use case, which we will discuss based on our two use cases MIT
and Merck. We plan to demo our DATA CIVILIZER prototype at the
conference.

7.2 MIT Data Warehouse
One of the key tasks of the MIT DWH team is to assist its cus-

tomers – generally MIT administrators – to answer any of their
questions about MIT data. For example, staff usually want to create
reports, for which they need access to various kinds of data. The
warehouse contains around 1TB of data spread across approximately
3K tables.

In the current workflow, a DWH customer presents a question,
which a DWH team members addresses by manually searching for
tables containing relevant data. Once they have determined the
tables of interest, they create a view that is accessed by the customer
to solve the question at hand. Below are some of the common use
cases we have encountered:
Fill in virtual schema. When a customer arrives with a question
such as: I need to create a report with the gender distribution of
the faculty per department and year, the data warehouse personnel
can use DATA CIVILIZER to find all the tables that contain schema
names similar to the attributes exposed by the query, e.g., gender,
faculty name, department, and year.
Table redundancy. Multiple views are created for different cus-
tomers. Many of them contain very similar data, as multiple cus-
tomers are interested in similar items. To reduce the redundancy
of data, DATA CIVILIZER helps detect complementary as well as
repeated sources. This sheds light on the status of the warehouse
and helps to maintain it tidy and minimal.

Our prototype is deployed in an Amazon EC2 instance managed
by the MIT DWH team with access to their data. We have been
working with them for 3 months, iterating over priorities and learn-
ing about the problems they are facing. In the future, we aim to
deploy the entire DATA CIVILIZER system to enable running queries
directly over the hundreds of data sources, by using the polystore
query processing and curation module and linkage graph builder to
create the necessary views on demand.

7.3 Merck
Merck is a large pharmaceutical company that manages massive

volumes of data spread across around 4K databases in addition to
several data lakes. One of the data assets of any pharmaceutical com-
pany are internal databases of chemical compounds and structures.
Usually, these are more valuable when integrated with external, well-
known and curated databases, such as PubChem [3], ChEMBL [1],
or DrugBank [2]. We describe two common use cases that occur in
this context:
Enrich data. One of the reasons for the existence of multiple chem-

ical databases is that each puts an emphasis on different information.
Analysts typically face situations in which they are interested in a
set of attributes that are spread across different tables on different
databases. DATA CIVILIZER helps to detect such attributes and
bring them together on-demand to serve the users’ purpose.
Identify entities. One single chemical entity may be referred to with
different identifiers and formats in different databases. Chemical
identifiers have been a subject of research in the bioinformatics
community: multiple different formats have been proposed with
different properties according to the scenario. DATA CIVILIZER
helps on this task by discovering datasets that contain schemas with
the entities of interest.

We have been collaborating with 4 engineers and bioinformatics
experts at Merck during the last 2 months. During this period we
have learned about their use cases and we have used discovery on
chemical databases that are publicly available. It is interesting that
DATA CIVILIZER was used to discover publicly available chemical
datasets first, and that internal datasets will be future work.

8. CONCLUSIONS
In this paper, we presented DATA CIVILIZER, an end-to-end big

data management system. DATA CIVILIZER aims to support the
discovery of data that is relevant to specific user tasks, the link-
age of the relevant data for allowing complex polystore queries,
the cleaning of the data under limited budget, the handling of data
updates, and the iterative processing of the data. As data in large
companies are usually scattered across multiple data storage plat-
forms, we proposed the use of a polystore architecture to deploy our
system. A key characteristic of DATA CIVILIZER is that it places
the data cleaning operations in the query plan while trading-off the
query result quality with the cleaning costs. We have deployed our
preliminary system at two different institutions, MIT and Merck,
and obtained positive feedback from the users.
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