
Bulletin of the Technical Committee on

Data
Engineering
December 2000 Vol. 23 No. 4 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .David Lomet 1
Letter from the Special Issue Editor .S. Sarawagi 2

Special Issue on Data Cleaning

Data Cleaning: Problems and Current Approaches .E. Rahm and H. Hai Do 3
Matching Algorithms Within a Duplicate Detection System.. .A. E. Monge. 14
A Comparison of Techniques to Find Mirrored Hosts on the WWW.

. .K. Bharat, A. Broder, J. Dean and M. R. Henzinger21
Automatically Extracting Structure from Free Text AddressesV. Borkar, K. Deshmukh and S. Sarawagi27
Accurately and Reliably Extracting Data from the Web: A Machine Learning Approach .

. .C. Knoblock, K. Lerman, S. Minton and I. Muslea33
ARKTOS: A Tool For Data Cleaning and Transformation in Data Warehouse Environments

. .P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis and T. Sellis42

Conference and Journal Notices
ICDE’2001 Call for Participation .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Luis Gravano
Computer Science Department
Columbia University
1214 Amsterdam Avenue
New York, NY 10027

Alon Levy
University of Washington
Computer Science and Engineering Dept.
Sieg Hall, Room 310
Seattle, WA 98195

Sunita Sarawagi
School of Information Technology
Indian Institute of Technology, Bombay
Powai Street
Mumbai, India 400076

Gerhard Weikum
Dept. of Computer Science
University of the Saarland
P.O.B. 151150, D-66041
Saarbr¨ucken, Germany

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems.

The Data Engineering Bulletin web page is
http://www.research.microsoft.com/research/db/debull.

TC Executive Committee

Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115
salzberg@ccs.neu.edu

Vice-Chair
Erich J. Neuhold
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Z.Meral Ozsoyoglu
Computer Eng. and Science Dept.
Case Western Reserve University
Cleveland, Ohio, 44106-7071

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
nschoultz@computer.org

Letter from the Editor-in-Chief

An Acknowledgment

As editor-in-chief of the Data Engineering Bulletin, I have been helped by the hard work of others. Mark Tuttle
of Digital’s Cambridge Research Lab defined the Latex style files that provide the clean and readable format of
each issue. System support staff, at both Digital and Microsoft, have helped enable delivery of the Bulletin over
the web. Both Digital and Microsoft have generously provided the infrastructure to support Bulletin distribution,
as well as providing me with the editorial time.

I’d like to add to that list of acknowledgments.

� The style files used to generate the Bulletin work flawlessly only with a past version of Latex. I carefully
maintain this version, but it is not readily available to associate editors or authors. The style file problem
involves including an IEEE copyright notice, and arose after the style files were designed. Due to the
efforts of Do Hong Hai, an author in this issue, this problem has been solved. Do Hong Hai modified
one of the style files to permit the latest Latex system to successfully format the Bulletin. The result
both simplifies my life (only the latest system is required) and makes it possible for associate editors
and authors to easily check the formatting of the issue and the individual papers. This is the first issue
produced with the new style files.

� The TCDE membership list is very large. In September, we experienced difficulty in sending email
messages to very large distribution lists. As a result, the distribution list has been shifted to a web-based
distribution list management tool at
http://list.research.microsoft.com/scripts/lyris.pl?enter=debull .
I would like to thankJeff Chirico andWyman Chong for providing the system support. The new email
distribution tool makes it easier to update the distribution list, and TCDE members can remove themselves
from the list if they so desire. As before, if your email address changes, you should contact me, mentioning
both old and new email addresses.

The Current Issue

Heterogenous databases, with their syntactic and semantic differences, are an information legacy that will prob-
ably be with us always. Despite our efforts to define standards for information interchange, e.g., the current
efforts with XML, bringing information together so that it can be sensibly queried remains a difficult and ex-
pensive task, usually requiring human assistence. This is the “data cleaning” problem. Data warehouses usually
face this problem every day, in their role as repository for information derived from multiple sources within and
across enterprises.

Data cleaning has not been a very active area of research. Perhaps the problem was too messy to deal with,
too hard to attack with any generality. However, while research has paid little attention to data cleaning, industry
has been forced to deal with this on a regular basis. This issue of the Bulletin addresses this long-standing and
important problem. Sunita Sarawagi has herself worked in this important area, and has succeeded in soliciting
papers from a mix of academia and industry, with papers from Europe and Asia, as well as the US. Thus the
issue provides a very broad perspective on this important subject. Sunita has done a fine job as editor of the
issue, and I want to thank her for her hard work.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editor

Data cleaning is an important topic which for some reason has taken the backstage with database researchers.
Whenever multiple operational data sources have to be consolidated in a single queryable system data cleaning
becomes necessary. Two scenarios are: constructing data warehouses from operational databases distributed
across an enterprise and, building queryable search engines from web pages on the internet. The proliferation
of data on the web heightens the relevance of data cleaning and makes the problem more challenging because
more sources imply more variety and higher complexity.

The practical importance of data cleaning is well reflected in the commercial marketplace in the form of
the large number of companies providing data cleaning tools and services. However, the topic never caught
momentum in the research world — maybe data cleaning is viewed as a primarily labor-intensive task. We
motivate in this special issue that there is scope for elegant research in providing convenient platforms for data
cleaning, creatively reducing dependence on manual effort and designing practical algorithms that scale with
increasing data sizes.

The first paper by Erhard Rahm and Hong Hai Do surveys the field of data cleaning after neatly classifying
the topics based on the source (single or multiple) and the location (schema level or instance level) of the error.
A key step in all data cleaning activities is identifying duplicates in spite of the myriad manifestations of the
same instance at different sources. We have two papers focusing on two different aspects of the problem. The
second paper by Alvaro Monge addresses the duplicate detection problem at the record level, as is relevant in the
context of warehouse data cleaning. The paper presents an algorithm for reducing the number of comparisons in
previous window-based merge-purge algorithms. An interesting snippet in the paper is the survey of prior work
on record matching with references dating back to 1950. The third paper by Krishna Bharat and others is on
detecting mirror websites, which is duplicate detection at the level of collections of HTML documents. This is
useful when building high-performance search engines and web caches. The paper presents and evaluates several
interesting matching algorithms for finding potentially mirrored sites — the Shingles algorithm is particularly
interesting. Another crucial step during data cleaning is extracting structure from data stored as an unstructured
text string. In addition to providing more powerful querying interfaces, structured records also enable robust
duplicate elimination. The fourth paper by Vinayak Borker and others concentrates on segmenting address
records stored as a text string into structured fields like “city-name” and “zip-code”. Existing commercial tools
are based on manual transformation rules, whereas the paper presents an automated approach to learn to extract
such structure from training examples. The fifth paper by Craig Knoblock and others is about extracting structure
from HTML documents — a field that has attracted a lot of interest in recent years. This paper is one of the few
I have seen that addresses the practical issues of detecting when the underlying HTML source has changed and
doing limited repairs of the wrapper in the event of a change. The final paper by Panos Vassiliadis and others
presents a holistic view of the data cleaning problem in the form of a tool for modeling and executing several
data cleaning activities in a session.

Compiling this special issue on data cleaning was challenging because not too many researchers work in
the area. Yet I wanted to unleash the special role of this bulletin in consolidating the few scattered research
efforts on this topic. Hope the special issue will bring out data cleaning as an important topic in need for further
concentrated research.

S. Sarawagi
IIT Bombay

2

Data Cleaning: Problems and Current Approaches

Erhard Rahm� Hong Hai Do
University of Leipzig, Germany

http://dbs.uni-leipzig.de

Abstract

We classify data quality problems that are addressed by data cleaning and provide an overview of the
main solution approaches. Data cleaning is especially required when integrating heterogeneous data
sources and should be addressed together with schema-related data transformations. In data ware-
houses, data cleaning is a major part of the so-called ETL process. We also discuss current tool support
for data cleaning.

1 Introduction
Data cleaning, also calleddata cleansingor scrubbing, deals with detecting and removing errors and incon-
sistencies from data in order to improve the quality of data. Data quality problems are present in single data
collections, such as files and databases, e.g., due to misspellings during data entry, missing information or other
invalid data. When multiple data sources need to be integrated, e.g., in data warehouses, federated database
systems or global web-based information systems, the need for data cleaning increases significantly. This is
because the sources often contain redundant data in different representations. In order to provide access to accu-
rate and consistent data, consolidation of different data representations and elimination of duplicate information
become necessary.

Data warehouses [6, 16] require and provide extensive support for data cleaning. They load and continuously
refresh huge amounts of data from a variety of sources so the probability that some of the sources contain ”dirty
data” is high. Furthermore, data warehouses are used for decision making, so that the correctness of their data
is vital to avoid wrong conclusions. For instance, duplicated or missing information will produce incorrect or
misleading statistics (”garbage in, garbage out”). Due to the wide range of possible data inconsistencies and the
sheer data volume, data cleaning is considered to be one of the biggest problems in data warehousing. During the
so-called ETL process (extraction, transformation, loading), illustrated in Fig. 1, further data transformations
deal with schema/data translation and integration, and with filtering and aggregating data to be stored in the
warehouse. As indicated in Fig. 1, all data cleaning is typically performed in a separate data staging area before
loading the transformed data into the warehouse. A large number of tools of varying functionality is available
to support these tasks, but often a significant portion of the cleaning and transformation work has to be done
manually or by low-level programs that are difficult to write and maintain.

Federated database systems and web-based information systems face data transformation steps similar to
those of data warehouses. In particular, there is typically awrapperper data source for extraction and ame-
diator for integration [32, 31]. So far, these systems provide only limited support for data cleaning, focusing

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was performed while on leave at Microsoft Research, Redmond, WA.

3

Figure 1: Steps of building a data warehouse: the ETL process

instead on data transformations for schema translation and schema integration. Data is not preintegrated as for
data warehouses but needs to be extracted from multiple sources, transformed and combined during query run-
time. The corresponding communication and processing delays can be significant, making it difficult to achieve
acceptable response times. The effort needed for data cleaning during extraction and integration will further
increase response times but is mandatory to achieve useful query results.

A data cleaning approach should satisfy several requirements. First of all, it should detect and remove all
major errors and inconsistencies both in individual data sources and when integrating multiple sources. The
approach should be supported by tools to limit manual inspection and programming effort and be extensible to
easily cover additional sources. Furthermore, data cleaning should not be performed in isolation but together
with schema-related data transformations based on comprehensive metadata. Mapping functions for data clean-
ing and other data transformations should be specified in a declarative way and be reusable for other data sources
as well as for query processing. Especially for data warehouses, a workflow infrastructure should be supported
to execute all data transformation steps for multiple sources and large data sets in a reliable and efficient way.

While a huge body of research deals with schema translation and schema integration, data cleaning has
received only little attention in the research community. A number of authors focussed on the problem of
duplicate identification and elimination, e.g., [11, 12, 15, 19, 22, 23]. Some research groups concentrate on
general problems not limited but relevant to data cleaning, such as special data mining approaches [29, 30],
and data transformations based on schema matching [1, 21]. More recently, several research efforts propose
and investigate a more comprehensive and uniform treatment of data cleaning covering several transformation
phases, specific operators and their implementation [11, 19, 25].

In this paper we provide an overview of the problems to be addressed by data cleaning and their solution. In
the next section we present a classification of the problems. Section 3 discusses the main cleaning approaches
used in available tools and the research literature. Section 4 gives an overview of commercial tools for data
cleaning, including ETL tools. Section 5 is the conclusion.

2 Data cleaning problems
This section classifies the major data quality problems to be solved by data cleaning and data transformation. As
we will see, these problems are closely related and should thus be treated in a uniform way. Data transformations
[26] are needed to support any changes in the structure, representation or content of data. These transformations
become necessary in many situations, e.g., to deal with schema evolution, migrating a legacy system to a new

4

Figure 2: Classification of data quality problems in data sources

information system, or when multiple data sources are to be integrated.
As shown in Fig. 2 we roughly distinguish between single-source and multi-source problems and between

schema- and instance-related problems. Schema-level problems of course are also reflected in the instances; they
can be addressed at the schema level by an improved schema design (schema evolution), schema translation and
schema integration. Instance-level problems, on the other hand, refer to errors and inconsistencies in the actual
data contents which are not visible at the schema level. They are the primary focus of data cleaning. Fig. 2 also
indicates some typical problems for the various cases. While not shown in Fig. 2, the single-source problems
occur (with increased likelihood) in the multi-source case, too, besides specific multi-source problems.

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity con-
straints controlling permissible data values. For sources without schema, such as files, there are few restrictions
on what data can be entered and stored, giving rise to a high probability of errors and inconsistencies. Database
systems, on the other hand, enforce restrictions of a specific data model (e.g., the relational approach requires
simple attribute values, referential integrity, etc.) as well as application-specific integrity constraints. Schema-
related data quality problems thus occur because of the lack of appropriate model-specific or application-specific
integrity constraints, e.g., due to data model limitations or poor schema design, or because only a few integrity
constraints were defined to limit the overhead for integrity control. Instance-specific problems relate to errors
and inconsistencies that cannot be prevented at the schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = current year - birth year should

hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”);
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not
defined

Table 1: Examples for single-source problems at schema level (violated integrity constraints)

For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that uniqueness
constraints specified at the schema level do not prevent duplicated instances, e.g., if information on the same
real world entity is entered twice with different attribute values (see example in Table 2).

Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously
an important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules during
warehouse design can suggest improvements to the constraints enforced by existing schemas.

5

Scope/Problem Dirty Data Reasons/Remarks
Attribute Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one at-
tribute (e.g. in a free-form field)

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Record
type

Word
transpositions

name1= ”J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,. . .);
emp2=(name=”J. Smith”,. . .)

same employee represented twice due
to some data entry errors

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described
by different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined
but wrong

Table 2: Examples for single-source problems at instance level

2.2 Multi-source problems
The problems present in single sources are aggravated when multiple sources need to be integrated. Each source
may contain dirty data and the data in the sources may be represented differently, overlap or contradict. This
is because the sources are typically developed, deployed and maintained independently to serve specific needs.
This results in a large degree of heterogeneity w.r.t. data management systems, data models, schema designs and
the actual data.

At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and struc-
tural conflicts [2, 24, 17]. Naming conflicts arise when the same name is used for different objects (homonyms)
or different names are used for the same object (synonyms). Structural conflicts occur in many variations and
refer to different representations of the same object in different sources, e.g., attribute vs. table representation,
different component structure, different data types, different integrity constraints, etc.

In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g., dupli-
cated records, contradicting records,. . .). Furthermore, even when there are the same attribute names and data
types, there may be different value representations (e.g., for marital status) or different interpretation of the
values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources may be
provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer to different
points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).

A main problem for cleaning data from multiple sources is to identify overlapping data, in particular match-
ing records referring to the same real-world entity (e.g., customer). This problem is also referred to as the
object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the informa-
tion is only partially redundant and the sources may complement each other by providing additional information
about an entity. Thus duplicate information should be purged out and complementing information should be
consolidated and merged in order to achieve a consistent view of real world entities.

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonymsCustomer/Client, Cid/Cno, Sex/Gender) and structural
conflicts (different representations for names and addresses). At the instance level, we note that there are dif-
ferent gender representations (”0”/”1” vs. ”F”/”M”) and presumably a duplicate record (Kristen Smith). The
latter observation also reveals that whileCid/Cnoare both source-specific identifiers, their contents are not com-
parable between the sources; different numbers (11/493) may refer to the same person while different persons
can have the same number (24). Solving these problems requires both schema integration and data cleaning;
the third table shows a possible solution. Note that the schema conflicts should be resolved first to allow data

6

Customer(source 1)
CID Name Street City Sex

11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
24 Christian Smith Hurley St 2 S Fork MN 1

Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax

24 Smith Christoph M 23 Harley St, Chicago IL,
60633-2394

333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South Fork
MN, 48503-5998

444-555-6666

Customers(integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno

1 Smith Kristen L. F 2 Hurley
Place

South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3: Examples of multi-source problems at schema and instance level

cleaning, in particular detection of duplicates based on a uniform representation of names and addresses, and
matching of theGender/Sexvalues.

3 Data cleaning approaches
In general, data cleaning involves several phases

� Data analysis: In order to detect which kinds of errors and inconsistencies are to be removed, a detailed
data analysis is required. In addition to a manual inspection of the data or data samples, analysis programs
should be used to gain metadata about the data properties and detect data quality problems.

� Definition of transformation workflow and mapping rules: Depending on the number of data sources, their
degree of heterogeneity and the ”dirtyness” of the data, a large number of data transformation and cleaning
steps may have to be executed. Sometime, a schema translation is used to map sources to a common data
model; for data warehouses, typically a relational representation is used. Early data cleaning steps can cor-
rect single-source instance problems and prepare the data for integration. Later steps deal with schema/data
integration and cleaning multi-source instance problems, e.g., duplicates. For data warehousing, the control
and data flow for these transformation and cleaning steps should be specified within a workflow that defines
the ETL process (Fig. 1).
The schema-related data transformations as well as the cleaning steps should be specified by a declarative
query and mapping language as far as possible, to enable automatic generation of the transformation code.
In addition, it should be possible to invoke user-written cleaning code and special-purpose tools during a
data transformation workflow. The transformation steps may request user feedback on data instances for
which they have no built-in cleaning logic.

� Verification: The correctness and effectiveness of a transformation workflow and the transformation defini-
tions should be tested and evaluated, e.g., on a sample or copy of the source data, to improve the definitions
if necessary. Multiple iterations of the analysis, design and verification steps may be needed, e.g., since
some errors only become apparent after applying some transformations.

� Transformation: Execution of the transformation steps either by running the ETL workflow for loading and
refreshing a data warehouse or during answering queries on multiple sources.

� Backflow of cleaned data: After (single-source) errors are removed, the cleaned data should also replace
the dirty data in the original sources in order to give legacy applications the improved data too and to avoid
redoing the cleaning work for future data extractions. For data warehousing, the cleaned data is available
from the data staging area (Fig. 1).

7

The transformation process obviously requires a large amount of metadata, such as schemas, instance-level
data characteristics, transformation mappings, workflow definitions, etc. For consistency, flexibility and ease of
reuse, this metadata should be maintained in a DBMS-based repository [4]. To support data quality, detailed
information about the transformation process is to be recorded, both in the repository and in the transformed
instances, in particular information about the completeness and freshness of source data and lineage information
about the origin of transformed objects and the changes applied to them. For instance, in Fig. 3, the derived
tableCustomerscontains the attributesCID andCno, allowing one to trace back the source records.

In the following we describe in more detail possible approaches for data analysis (conflict detection), trans-
formation definition and conflict resolution. For approaches to schema translation and schema integration, we
refer to the literature as these problems have extensively been studied and described [2, 24, 26]. Name conflicts
are typically resolved by renaming; structural conflicts require a partial restructuring and merging of the input
schemas.

3.1 Data analysis
Metadata reflected in schemas is typically insufficient to assess the data quality of a source, especially if only a
few integrity constraints are enforced. It is thus important to analyse the actual instances to obtain real (reengi-
neered) metadata on data characteristics or unusual value patterns. This metadata helps finding data quality
problems. Moreover, it can effectively contribute to identify attribute correspondences between source schemas
(schema matching), based on which automatic data transformations can be derived [20, 9].

There are two related approaches for data analysis, data profiling and data mining.Data profiling focusses
on the instance analysis of individual attributes. It derives information such as the data type, length, value range,
discrete values and their frequency, variance, uniqueness, occurrence of null values, typical string pattern (e.g.,
for phone numbers), etc., providing an exact view of various quality aspects of the attribute. Table 3 shows
examples of how this metadata can help detecting data quality problems.

Problems Metadata Examples/Heuristics
Illegal values cardinality e.g., cardinality (gender)> 2 indicates problem

max, min max, min should not be outside of permissible range
variance, deviation variance, deviation of statistical values should not be higher than

threshold
Misspellings attribute values sorting on values often brings misspelled values next to correct values
Missing values null values percentage/number of null values

attribute values + default values presence of default value may indicate real value is missing
Varying value
representations

attribute values comparing attribute value set of a column of one table against that of a
column of another table

Duplicates cardinality + uniqueness attribute cardinality = # rows should hold
attribute values sorting values by number of occurrences; more than 1 occurrence indi-

cates duplicates

Table 3: Examples for the use of reengineered metadata to address data quality problems

Data mininghelps discover specific data patterns in large data sets, e.g., relationships holding between sev-
eral attributes. This is the focus of so-called descriptive data mining models including clustering, summarization,
association discovery and sequence discovery [10]. As shown in [28], integrity constraints among attributes such
as functional dependencies or application-specific ”business rules” can be derived, which can be used to com-
plete missing values, correct illegal values and identify duplicate records across data sources. For example, an
association rule with high confidence can hint to data quality problems in instances violating this rule. So a
confidence of99% for rule ”total = quantity �unit price” indicates that1% of the records do not comply and
may require closer examination.

3.2 Defining data transformations
The data transformation process typically consists of multiple steps where each step may perform schema- and
instance-related transformations (mappings). To allow a data transformation and cleaning system to generate
transformation code and thus to reduce the amount of self-programming it is necessary to specify the required
transformations in an appropriate language, e.g., supported by a graphical user interface. Various ETL tools

8

(see Section 4) offer this functionality by supporting proprietary rule languages. A more general and flexible
approach is the use of the standard query language SQL to perform the data transformations and utilize the
possibility of application-specific language extensions, in particular user-defined functions (UDFs) supported
in SQL:99 [13, 14]. UDFs can be implemented in SQL or a general-purpose programming language with
embedded SQL statements. They allow implementing a wide range of data transformations and support easy
reuse for different transformation and query processing tasks. Furthermore, their execution by the DBMS can
reduce data access cost and thus improve performance. Finally, UDFs are part of the SQL:99 standard and
should (eventually) be portable across many platforms and DBMSs.

CREATE VIEW Customer2 (LName, FName, Gender, Street, City, State, ZIP, CID)
AS SELECT LastNameExtract (Name),FirstNameExtract (Name), Sex, Street,CityExtract (City),

StateExtract (City), ZIPExtract (City), CID
FROM Customer

Figure 4: Example of data transformation mapping

Fig. 4 shows a transformation step specified in SQL:99. The example refers to Fig. 3 and covers part
of the necessary data transformations to be applied to the first source. The transformation defines a view on
which further mappings can be performed. The transformation performs a schema restructuring with additional
attributes in the view obtained by splitting the name and address attributes of the source. The required data
extractions are achieved by UDFs (shown in boldface). The UDF implementations can contain cleaning logic,
e.g., to remove misspellings in city names or provide missing zip codes.

UDFs may still imply a substantial implementation effort and do not support all necessary schema trans-
formations. In particular, simple and frequently needed functions such as attribute splitting or merging are not
generically supported but need often to be re-implemented in application-specific variations (see specific ex-
tract functions in Fig. 4). More complex schema restructurings (e.g., folding and unfolding of attributes) are
not supported at all. To generically support schema-related transformations, language extensions such as the
SchemaSQL proposal are required [18]. Data cleaning at the instance level can also benefit from special lan-
guage extensions such as a Match operator supporting ”approximate joins” (see below). System support for
such powerful operators can greatly simplify the programming effort for data transformations and improve per-
formance. Some current research efforts on data cleaning are investigating the usefulness and implementation
of such query language extensions [11, 25].

3.3 Conflict resolution
A set of transformation steps has to be specified and executed to resolve the various schema- and instance-level
data quality problems that are reflected in the data sources at hand. Several types of transformations are to
be performed on the individual data sources in order to deal with single-source problems and to prepare for
integration with other sources. In addition to a possible schema translation, these preparatory steps typically
include:

� Extracting values from free-form attributes (attribute split): Free-form attributes often capture multiple indi-
vidual values that should be extracted to achieve a more precise representation and support further cleaning
steps such as instance matching and duplicate elimination. Typical examples are name and address fields
(Table 2, Fig. 3, Fig. 4). Required transformations in this step are reordering of values within a field to deal
with word transpositions, and value extraction for attribute splitting.

� Validation and correction: This step examines each source instance for data entry errors and tries to correct
them automatically as far as possible. Spell checking based on dictionary lookup is useful for identifying
and correcting misspellings. Furthermore, dictionaries on geographic names and zip codes help to correct
address data. Attribute dependencies (birthdate - age, total price - unit price / quantity, city - phone area
code,. . .) can be utilized to detect problems and substitute missing values or correct wrong values.

� Standardization: To facilitate instance matching and integration, attribute values should be converted to a
consistent and uniform format. For example, date and time entries should be brought into a specific for-
mat; names and other string data should be converted to either upper or lower case, etc. Text data may
be condensed and unified by performing stemming, removing prefixes, suffixes, and stop words. Further-

9

more, abbreviations and encoding schemes should consistently be resolved by consulting special synonym
dictionaries or applying predefined conversion rules.

Dealing with multi-source problems requires restructuring of schemas to achieve a schema integration, in-
cluding steps such as splitting, merging, folding and unfolding of attributes and tables. At the instance level,
conflicting representations need to be resolved and overlapping data must to be dealt with. Theduplicate elim-
ination task is typically performed after most other transformation and cleaning steps, especially after having
cleaned single-source errors and conflicting representations. It is performed either on two cleaned sources at
a time or on a single already integrated data set. Duplicate elimination requires to first identify (i.e. match)
similar records concerning the same real world entity. In a second step, similar records are merged into one
record containing all relevant attributes without redundancy. Furthermore, redundant records are purged. In the
following we discuss the key problem of instance matching. More details on the subject are provided elsewhere
in this issue [22].

In the simplest case, there is an identifying attribute or attribute combination per record that can be used for
matching records, e.g., if different sources share the same primary key or if there are other common unique at-
tributes. Instance matching between different sources is then achieved by a standard equi-join on the identifying
attribute(s). In the case of a single data set, matches can be determined by sorting on the identifying attribute
and checking if neighboring records match. In both cases, efficient implementations can be achieved even for
large data sets. Unfortunately, without common key attributes or in the presence of dirty data such straightfor-
ward approaches are often too restrictive. To determine most or all matches a ”fuzzy matching” (approximate
join) becomes necessary that finds similar records based on a matching rule, e.g., specified declaratively or
implemented by a user-defined function [14, 11]. For example, such a rule could state that person records are
likely to correspond if name and portions of the address match. The degree of similarity between two records,
often measured by a numerical value between 0 and 1, usually depends on application characteristics. For in-
stance, different attributes in a matching rule may contribute different weight to the overall degree of similarity.
For string components (e.g., customer name, company name,) exact matching and fuzzy approaches based on
wildcards, character frequency, edit distance, keyboard distance and phonetic similarity (soundex) are useful
[11, 15, 19]. More complex string matching approaches also considering abbreviations are presented in [23].
A general approach for matching both string and text data is the use of common information retrieval metrics.
WHIRL represents a promising representative of this category using the cosine distance in the vector-space
model for determining the degree of similarity between text elements [7].

Determining matching instances with such an approach is typically a very expensive operation for large data
sets. Calculating the similarity value for any two records implies evaluation of the matching rule on the cartesian
product of the inputs. Furthermore sorting on the similarity value is needed to determine matching records
covering duplicate information. All records for which the similarity value exceeds a threshold can be considered
as matches, or as match candidates to be confirmed or rejected by the user. In [15] a multi-pass approach
is proposed for instance matching to reduce the overhead. It is based on matching records independently on
different attributes and combining the different match results. Assuming a single input file, each match pass
sorts the records on a specific attribute and only tests nearby records within a certain window on whether they
satisfy a predetermined matching rule. This reduces significantly the number of match rule evaluations compared
to the cartesian product approach. The total set of matches is obtained by the union of the matching pairs of
each pass and their transitive closure.

4 Tool support
A large variety of tools is available on the market to support data transformation and data cleaning tasks, in
particular for data warehousing.y Some tools concentrate on a specific domain, such as cleaning name and
address data, or a specific cleaning phase, such as data analysis or duplicate elimination. Due to their restricted
domain, specialized tools typically perform very well but must be complemented by other tools to address the
broad spectrum of transformation and cleaning problems. Other tools, e.g., ETL tools, provide comprehensive
transformation and workflow capabilities to cover a large part of the data transformation and cleaning process.

yFor comprehensive vendor and tool listings, see commercial websites, e.g., Data Warehouse Information Center
(www.dwinfocenter.org), Data Management Review (www.dmreview.com), Data Warehousing Institute (www.dw-institute.com)

10

A general problem of ETL tools is their limited interoperability due to proprietary application programming
interfaces (API) and proprietary metadata formats making it difficult to combine the functionality of several
tools [8].

We first discuss tools for data analysis and data rengineering which process instance data to identify data
errors and inconsistencies, and to derive corresponding cleaning transformations. We then present specialized
cleaning tools and ETL tools, respectively.

4.1 Data analysis and reengineering tools
According to our classification in 3.1,data analysis toolscan be divided into data profiling and data mining
tools. MIGRATIONARCHITECT (EvokeSoftware) is one of the few commercialdata profiling tools. For each
attribute, it determines the following real metadata: data type, length, cardinality, discrete values and their
percentage, minimum and maximum values, missing values, and uniqueness. MIGRATIONARCHITECT also as-
sists in developing the target schema for data migration.Data mining tools, such as WIZRULE (WizSoft) and
DATA MININGSUITE (InformationDiscovery), infer relationships among attributes and their values and com-
pute a confidence rate indicating the number of qualifying rows. In particular, WIZRULE can reveal three
kinds of rules: mathematical formula, if-then rules, and spelling-based rules indicating misspelled names, e.g.,
”value Edinburgh appears 52 times in field Customer; 2 case(s) contain similar value(s)”. W IZRULE

also automatically points to the deviations from the set of the discovered rules as suspected errors.
Data reengineering tools, e.g., INTEGRITY (Vality), utilize discovered patterns and rules to specify and per-

form cleaning transformations, i.e., they reengineer legacy data. In INTEGRITY, data instances undergo several
analysis steps, such as parsing, data typing, pattern and frequency analysis. The result of these steps is a tabular
representation of field contents, their patterns and frequencies, based on which the pattern for standardizing
data can be selected. For specifying cleaning transformations, INTEGRITY provides a language including a set
of operators for column transformations (e.g., move, split, delete) and row transformation (e.g., merge, split).
INTEGRITY identifies and consolidates records using a statistical matching technique. Automated weighting
factors are used to compute scores for ranking matches based on which the user can select the real duplicates.

4.2 Specialized cleaning tools
Specialized cleaning tools typically deal with a particular domain, mostly name and address data, or concentrate
on duplicate elimination. The transformations are to be provided either in advance in the form of a rule library or
interactively by the user. Alternatively, data transformations can automatically be derived from schema matching
tools such as described in [21].

� Special domain cleaning: Names and addresses are recorded in many sources and typically have high cardi-
nality. For example, finding customer matches is very important for customer relationship management. A
number of commercial tools, e.g.,IDCENTRIC (FirstLogic), PUREINTEGRATE (Oracle), QUICKADDRESS

(QASSystems), REUNION (PitneyBowes), and TRILLIUM (TrilliumSoftware), focus on cleaning this kind
of data. They provide techniques such as extracting and transforming name and address information into
individual standard elements, validating street names, cities, and zip codes, in combination with a match-
ing facility based on the cleaned data. They incorporate a huge library of pre-specified rules dealing with
the problems commonly found in processing this data. For example, TRILLIUM ’s extraction (parser) and
matcher module contains over 200,000 business rules. The tools also provide facilities to customize or
extend the rule library with user-defined rules for specific needs.

� Duplicate elimination: Sample tools for duplicate identification and elimination include DATACLEANSER

(EDD), MERGE/PURGELIBRARY (Sagent/QMSoftware),MATCHIT (HelpITSystems), and MASTERMERGE

(PitneyBowes). Usually, they require the data sources already be cleaned for matching. Several approaches
for matching attribute values are supported; tools such as DATACLEANSER and MERGE/PURGELIBRARY

also allow user-specified matching rules to be integrated.

4.3 ETL tools
A large number of commercial tools support the ETL process for data warehouses in a comprehensive way,
e.g., COPYMANAGER (InformationBuilders), DATA STAGE (Informix/Ardent), EXTRACT (ETI), POWERMART

(Informatica), DECISIONBASE (CA/Platinum), DATATRANSFORMATIONSERVICE (Microsoft), METASUITE

11

(Minerva/Carleton), SAGENTSOLUTIONPLATFORM (Sagent) and WAREHOUSEADMINISTRATOR (SAS). They
use a repository built on a DBMS to manage all metadata about the data sources, target schemas, mappings,
script programs, etc., in a uniform way. Schemas and data are extracted from operational data sources via both
native file and DBMS gateways as well as standard interfaces such as ODBC and EDA. Data transformations
are defined with an easy-to-use graphical interface. To specify individual mapping steps, a proprietary rule
language and a comprehensive library of predefined conversion functions are typically provided. The tools also
support reusing existing transformation solutions, such as external C/C++ routines, by providing an interface
to integrate them into the internal transformation library. Transformation processing is carried out either by an
engine that interprets the specified transformations at runtime, or by compiled code. All engine-based tools (e.g.,
COPYMANAGER, DECISIONBASE, POWERMART, DATA STAGE, WAREHOUSEADMINISTRATOR), possess a
scheduler and support workflows with complex execution dependencies among mapping jobs. A workflow
may also invoke external tools, e.g., for specialized cleaning tasks such as name/address cleaning or duplicate
elimination.

ETL tools typically have little built-in data cleaning capabilities but allow the user to specify cleaning func-
tionality via a proprietary API. There is usually no data analysis support to automatically detect data errors and
inconsistencies. However, users can implement such logic with the metadata maintained and by determining
content characteristics with the help of aggregation functions (sum, count, min, max, median, variance, devia-
tion,). The provided transformation library covers many data transformation and cleaning needs, such as data
type conversions (e.g., date reformatting), string functions (e.g., split, merge, replace, sub-string search), arith-
metic, scientific and statistical functions, etc. Extraction of values from free-form attributes is not completely
automatic but the user has to specify the delimiters separating sub-values.

The rule languages typically coverif-thenandcaseconstructs that help handling exceptions in data values,
such as misspellings, abbreviations, missing or cryptic values, and values outside of range. These problems
can also be addressed by using a table lookup construct and join functionality. Support for instance matching
is typically restricted to the use of the join construct and some simple string matching functions, e.g., exact
or wildcard matching and soundex. However, user-defined field matching functions as well as functions for
correlating field similarities can be programmed and added to the internal transformation library.

5 Conclusions
We provided a classification of data quality problems in data sources differentiating between single- and multi-
source and between schema- and instance-level problems. We further outlined the major steps for data transfor-
mation and data cleaning and emphasized the need to cover schema- and instance-related data transformations
in an integrated way. Furthermore, we provided an overview of commercial data cleaning tools. While the
state-of-the-art in these tools is quite advanced, they do typically cover only part of the problem and still require
substantial manual effort or self-programming. Furthermore, their interoperability is limited (proprietary APIs
and metadata representations).

So far only a little research has appeared on data cleaning, although the large number of tools indicates both
the importance and difficulty of the cleaning problem. We see several topics deserving further research. First of
all, more work is needed on the design and implementation of the best language approach for supporting both
schema and data transformations. For instance, operators such as Match, Merge or Mapping Composition have
either been studied at the instance (data) or schema (metadata) level but may be built on similar implementation
techniques. Data cleaning is not only needed for data warehousing but also for query processing on hetero-
geneous data sources, e.g., in web-based information systems. This environment poses much more restrictive
performance constraints for data cleaning that need to be considered in the design of suitable approaches. Fur-
thermore, data cleaning for semi-structured data, e.g., based on XML, is likely to be of great importance given
the reduced structural constraints and the rapidly increasing amount of XML data.

Acknowledgments
We would like to thank Phil Bernstein, Helena Galhardas and Sunita Sarawagi for helpful comments.

12

References
[1] Abiteboul, S.; Clue, S.; Milo, T.; Mogilevsky, P.; Simeon, J.:Tools for Data Translation and Integration. In [26]:3-8,

1999.
[2] Batini, C.; Lenzerini, M.; Navathe, S.B.:A Comparative Analysis of Methodologies for Database Schema Integra-

tion. In Computing Surveys 18(4):323-364, 1986.
[3] Bernstein, P.A.; Bergstraesser, T.:Metadata Support for Data Transformation Using Microsoft Repository. In [26]:9-

14, 1999
[4] Bernstein, P.A.; Dayal, U.:An Overview of Repository Technology. Proc. 20th VLDB, 1994.
[5] Bouzeghoub, M.; Fabret, F.; Galhardas, H.; Pereira, J; Simon, E.; Matulovic, M.:Data Warehouse Refreshment. In

[16]:47-67.
[6] Chaudhuri, S., Dayal, U.:An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record 26(1),

1997.
[7] Cohen, W.:Integration of Heterogeneous Databases without Common Domains Using Queries Based Textual Simi-

larity. Proc. ACM SIGMOD Conf. on Data Management, 1998.
[8] Do, H.H.; Rahm, E.:On Metadata Interoperability in Data Warehouses. Techn. Report 1-2000, Department of

Computer Science, University of Leipzig. http://dol.uni-leipzig.de/pub/2000-13.
[9] Doan, A.H.; Domingos, P.; Levy, A.Y.:Learning Source Description for Data Integration. Proc. 3rd Intl. Workshop

The Web and Databases (WebDB), 2000.
[10] Fayyad, U.:Mining Database: Towards Algorithms for Knowledge Discovery. IEEE Techn. Bulletin Data Engineer-

ing 21(1), 1998.
[11] Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E.:Declaratively cleaning your data using AJAX. In Journees Bases

de Donnees, Oct. 2000. http://caravel.inria.fr/ galharda/BDA.ps.
[12] Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E.:AJAX: An Extensible Data Cleaning Tool. Proc. ACM SIGMOD

Conf., p. 590, 2000.
[13] Haas, L.M.; Miller, R.J.; Niswonger, B.; Tork Roth, M.; Schwarz, P.M.; Wimmers, E.L.:Transforming Heteroge-

neous Data with Database Middleware: Beyond Integration. In [26]:31-36, 1999.
[14] Hellerstein, J.M.; Stonebraker, M.; Caccia, R.:Independent, Open Enterprise Data Integration. In [26]:43-49, 1999.
[15] Hernandez, M.A.; Stolfo, S.J.:Real-World Data is Dirty: Data Cleansing and the Merge/Purge Problem. Data

Mining and Knowledge Discovery 2(1):9-37, 1998.
[16] Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.:Fundamentals of Data Warehouses. Springer, 2000.
[17] Kashyap, V.; Sheth, A.P.:Semantic and Schematic Similarities between Database Objects: A Context-Based Ap-

proach. VLDB Journal 5(4):276-304, 1996.
[18] Lakshmanan, L.; Sadri, F.; Subramanian, I.N.:SchemaSQL - A Language for Interoperability in Relational Multi-

Database Systems. Proc. 26th VLDB, 1996.
[19] Lee, M.L.; Lu, H.; Ling, T.W.; Ko, Y.T.:Cleansing Data for Mining and Warehousing. Proc. 10th DEXA, 1999.
[20] Li, W.S.; Clifton, S.:SEMINT: A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using

Neural Networks. In Data and Knowledge Engineering 33(1):49-84, 2000.
[21] Milo, T.; Zohar, S.:Using Schema Matching to Simplify Heterogeneous Data Translation. Proc. 24th VLDB, 1998.
[22] Monge, A. E.:Matching Algorithm within a Duplicate Detection System. IEEE Techn. Bulletin Data Engineering

23(4), 2000 (this issue).
[23] Monge, A. E.; Elkan, P.C.:The Field Matching Problem: Algorithms and Applications. Proc. 2nd Intl. Conf. Knowl-

edge Discovery and Data Mining (KDD), 1996.
[24] Parent, C.; Spaccapietra, S.:Issues and Approaches of Database Integration. Comm. ACM 41(5):166-178, 1998.
[25] Raman, V.; Hellerstein, J.M.:Potter’s Wheel: An Interactive Framework for Data Cleaning. Working Paper, 1999.

http://www.cs.berkeley.edu/ rshankar/papers/pwheel.pdf.
[26] Rundensteiner, E. (ed.): Special Issue on Data Transformation. IEEE Techn. Bull. Data Engineering 22(1), 1999.
[27] Quass, D.:A Framework for Research in Data Cleaning. Unpublished Manuscript. Brigham Young Univ., 1999
[28] Sapia, C.; H¨ofling, G.; Müller, M.; Hausdorf, C.; Stoyan, H.; Grimmer, U.:On Supporting the Data Warehouse

Design by Data Mining Techniques. Proc. GI-Workshop Data Mining and Data Warehousing, 1999.
[29] Savasere, A.; Omiecinski, E.; Navathe, S.:An Efficient Algorithm for Mining Association Rules in Large Databases.

Proc. 21st VLDB, 1995.
[30] Srikant, R.; Agrawal, R.:Mining Generalized Association Rules. Proc. 21st VLDB conf., 1995.
[31] Tork Roth, M.; Schwarz, P.M.:Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sources. Proc.

23rd VLDB, 1997.
[32] Wiederhold, G.:Mediators in the Architecture of Future Information Systems. In IEEE Computer 25(3): 38-49, 1992.

13

Matching Algorithms within a Duplicate Detection System

Alvaro E. Monge
California State University Long Beach

Computer Engineering and Computer Science Department,
Long Beach, CA, 90840-8302

Abstract

Detecting database records that are approximate duplicates, but not exact duplicates, is an important
task. Databases may contain duplicate records concerning the same real-world entity because of data
entry errors, unstandardized abbreviations, or differences in the detailed schemas of records from multi-
ple databases – such as what happens in data warehousing where records from multiple data sources are
integrated into a single source of information – among other reasons. In this paper we review a system
to detect approximate duplicate records in a database and provide properties that a pair-wise record
matching algorithm must have in order to have a successful duplicate detection system.

1 Introduction

Many of the current technological improvements has lead to an explosion in the growth of data available
in digital form. The most significant of these being the popularity of the Internet and specifically the
world wide web. There are other more traditional sources of data however that has also contributed to
this exponential growth. The commercial success of relational databases in the early 1980’s has lead to
the efficient storage and retrieval of data. Hardware improvements have also contributed significantly
now that external storage has faster access times and continue to increase in density.

Such technological changes allow for easy and widespread distribution and publishing of data. The
availability of these data sources increases not only the amount of data, but also the variety of and
quality in which such data appears. These factors create a number of problems. The work presented here
concentrates on one such problem: the detection of multiple representations of a single entity. Following
are examples where solutions to such a problem are needed:

� As more and more data becomes available, it is desirable to integrate the data whenever possible. For
example, one data source may contain bibliographic data for published scientific papers. Another data
source may contain a white pages service for web pages of people. By integrating the data from these two
sources, one can go directly to the authors’ web pages to obtain information about the more recent work
by the authors. Such an integration is much like thejoin operation in relational databases [1, 2]. While the
join of two relations is based on an exact match of corresponding attributes, here we relax that condition
and allow for an approximate match.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

14

� Another typical example is the prevalent practice in the mass mail market of buying and selling mailing
lists. Such practice leads to inaccurate or inconsisten data. One inconsistency is the multiple represen-
tations of the same individual household in the combined mailing list. In the mass mailing market, this
leads to expensive and wasteful multiple mailings to the same household

Relational database systems disallow the entry of records containing duplicate primary key values.
Unfortunately, due to errors such as from data entry, whenever the value of the primary key attributes
is affected by these errors the relational database system can no longer guarantee the non-existence of
duplicate records.

The next section reviews the system for detecting approximate duplicate database records [3, 4, 5].
One important module in the system is the algorithm to detect pair-wise approximate duplicates. The
system uses the algorithm to establish “is a duplicate of” relationships between pairs of records leading
to its adaptability among different data sources and different dynamics of the database records. Section 2
looks at the different matching algorithms that could be plugged in to the duplicate detection system. The
article concludes in Section 4 with final remarks about this work.

2 Algorithms to match records

The wordrecord is used to mean a syntactic designator of some real-world object, such as a tuple in a
relational database. The record matching problem arises whenever records that are not identical, in a
bit-by-bit sense – or in a primary key value sense – may still refer to the same object. For example, one
database may store the first name and last name of a person (e.g. “Jane Doe”), while another database
may store only the initials and the last name of the person (e.g. “J. B. Doe”).

The record matching problem has been recognized as important for at least 50 years. Since the 1950s
over 100 papers have studied matching for medical records under the name “record linkage.” These
papers are concerned with identifying medical records for the same individual in different databases,
for the purpose of performing epidemiological studies [16]. Record matching has also been recognized
as important in business for decades. For example tax agencies must do record matching to correlate
different pieces of information about the same taxpayer when social security numbers are missing or
incorrect. The earliest paper on duplicate detection in a business database is by [17]. The “record
linkage” problem in business has been the focus of workshops sponsored by the US Census Bureau
[12, 18]. Record matching is also useful for detecting fraud and money laundering [19].

Almost all published previous work on record matching is for specific application domains, and
hence gives domain-specific algorithms. For example, papers discuss record matching for customer
addresses, census records, or variant entries in a lexicon. Other work on record matching is not domain-
specific, but assumes that domain-specific knowledge will be supplied by a human for each application
domain [20, 7].

Record matching algorithms vary by the amount of domain-specific knowledge that they use. The
pairwise record matching algorithms used in most previous work have been application-specific. Many
algorithms use production rules based on domain-specific knowledge. The process of creating such rules
can be time consuming and the rules must be continually updated whenever new data is added to the mix
that does not follow the patterns by which the rules were originally created. Another disadvantage of
these domain-specific rules is that they answer whether or not the records are or are not duplicates, there
is no in between.

The goal of this work is to create a detection system that is of general use. Record matching algo-
rithms should use as little domain-specific knowledge as possible and should also provide a measure of
the strength of the match. This information is crucial to the efficiency with which the detection system
can process the data.

15

2.1 The record matching problem

In this work, we say that two records areequivalentif they are equal semantically, that is if they both
designate the same real-world entity. Semantically, this problem respects the reflexivity, symmetry, and
transitivity properties. The record matching algorithms which solve this problem depend on the syntax
of the records. The syntactic calculations performed by the algorithms are approximations of what we
really want – semantic equivalence. In such calculations, errors are bound to occur and thus the semantic
equivalence will not be properly calculated. However, the claim is that there are few errors and that the
approximation is good.

Equivalence may sometimes be a question of degree, so a function solving the record matching
problem returns a value between0:0 and1:0, where1:0 means certain equivalence and0:0 means certain
non-equivalence. Degree of match scores are not necessarily probabilities or fuzzy degrees of truth. An
application will typically just compare scores to a threshold that depends on the domain and the particular
record matching algorithm in use.

2.2 Algorithms based on approximate string matching

One important area of research that is relevant to approximate record matching is approximate string
matching. String matching has been one of the most studied problems in computer science [21, 22, 23,
24, 25, 26]. The main approach is based on edit distance [27]. Edit distance is the minimum number of
operations on individual characters (e.g. substitutions, insertions, and deletions) needed to transform one
string of symbols to another [28, 23]. In [23], the authors consider two different problems, one under
the definition of equivalence and a second using similarity. Their definition of equivalence allows only
small differences in the two strings. For examples, they allow alternate spellings of the same word, and
ignore the case of letters. The similarity problem allows for more errors, such as those due to typing:
transposed letters, missing letters, etc. The equivalence of strings is the same as the mathematical notion
of equivalence, it always respects the reflexivity, symmetry, and transitivity property. The similarity
problem on the other hand, is the more difficult problem, where any typing and spelling errors are
allowed. The similarity problem then is not necessarily transitive; while it still respects the reflexivity and
symmetry properties. Edit distance approaches are typically implemented using dynamic programming
and run inO(mn) time wherem andn are the lengths of the two records. Thus the importance on
avoiding unnecessary calls to the record matching function by the duplicate detection system.

Any of the approximate string matching algorithms can be used in place of the record matching al-
gorithm in the duplicate detection system. In previous work we have used a generalized edit-distance
algorithm. This domain-independent algorithm is a variant of the well-known Smith-Waterman algo-
rithm [29], which was originally developed for finding evolutionary relationships between biological
protein or DNA sequences.

The Smith-Waterman algorithm is domain-independent under the assumptions that records have sim-
ilar schemas and that records are made up of alphanumeric characters. The first assumption is needed
because the Smith-Waterman algorithm does not address the problem of duplicate records containing
fields which are transposed, see [5] for solutions to this problem. The second assumption is needed be-
cause any edit-distance algorithm assumes that records are strings over some fixed alphabet of symbols.
Naturally this assumption is true for a wide range of databases, including those with numerical fields
such as social security numbers that are represented in decimal notation.

16

3 System to detect duplicate database records

This section summarizes the system used in detecting approximately duplicate database records [3, 4, 5].
In general, we are interested in situations where several records may refer to the same real-world entity,
while not being syntactically equivalent. A set of records that refer to the same entity can be interpreted in
two ways. One way is to view one of the records as correct and the other records as duplicates containing
erroneous information. The task then is to cleanse the database of the duplicate records [6, 7]. Another
interpretation is to consider each matching record as a partial source of information. The aim is then
to merge the duplicate records, yielding one record with more complete information [8]. The system
described here gives a solution to the detection of approximately duplicate records only. In particular, it
does not provide a solution to the problem of consolidating the detected duplicate records into a single
representation for the real-world entity.

3.1 Standard duplicate detection

The well known and standard method of detectingexact duplicatesin a table is to sort the table and then
to check if consecutive records are identical. Exact duplicates are guaranteed to be next to each other
in the sorted order regardless of which part of a record the sort is performed on. The approach can be
extended to detect approximate duplicates. The idea is to do sorting to achieve preliminary clustering,
and then to do pairwise comparisons of nearby records [9, 10, 11]. In this case, there are no guarantees
as to where duplicates are located relative to each other in the sorted order. At best, the approximate
duplicate records may not be situated next to each other but will be found nearby. In the worse case they
will be found in opposite extremes of the sorted order. Such results are possible due to the choice of field
to sort on and also to the errors present in the records. In order to capture all possible duplicate records,
every possible pair of records must be compared, leading to a quadratic number of comparisons – where
the comparison performed is typically an expensive operation as we will see in section 2. This gives rise
to an inefficient and possibly infeasible solution since the number of records in the database may be in
the order of hundreds of millions.

To avoid so many comparisons, we can instead compare only records that are within a certain dis-
tance from each other. For example, in [7], the authors compare nearby records by sliding a window of
fixed size over the sorted database. As a window of sizeW slides over the database one record at a time,
the new record is compared against the otherW � 1 records in the window. Now, the number of record
comparisons decreases fromO(T 2) toO(TW) whereT is the total number of records in the database.

There is a tradeoff here between the number of comparisons performed and the accuracy of the
detection algorithm. The more records the window contains (large value ofW) the better the system will
do in detecting duplicate records. However this also increases the number of comparisons performed and
thus leads to an increase in running time. An effective approach is to scan the records more than once but
in a different order and apply the fixed windowing strategy to compare records and combine the results
from the different passes[9, 12]. Typically, combining the results of several passes over the database
with small window sizes yields better accuracy for the same cost than one pass over the database with a
large window size.

One way to combine the results of multiple passes is by explicitly computing the transitive closure
of all discovered pairwise “is a duplicate of” relationships [7]. If recordR1 is a duplicate of recordR2,
and recordR2 is a duplicate of recordR3, then by transitivityR1 is a duplicate of recordR3. Transitivity
is true by definition if duplicate records concern the same real-world identity, but in practice there will
always be errors in computing pairwise “is a duplicate of” relationships, and transitivity will propagate
these errors. However, in typical databases, sets of duplicate records tend to be distributed sparsely over
the space of possible records, and the propagation of errors is rare. The experimental results confirm this

17

claim [7, 13, 4, 5].

3.2 An adaptive and efficient duplicate detection system

Under the assumption of transitivity, the problem of detecting duplicates in a database can be described
in terms of keeping track of the connected components of an undirected graph. Let the vertices of a
graphG represent the records in a database of sizeT . Initially, the graph will containT unconnected
vertices, one for each record in the database. There is an undirected edge between two vertices if and
only if the records corresponding to the pair of vertices are found to match according to the pairwise
record matching algorithm. At any time, the connected components of the graphG correspond to the
transitive closure of the “is a duplicate of” relationships discovered so far. To incrementally maintain the
connected components of an undirected graph we use the union-find data structure[14, 15].

The standard algorithm has another weakness in that the window used for scanning the database
records is of fixed size. If a cluster in the database has more duplicate records than the size of the
window, then it is possible that some of these duplicates will not be detected because not enough com-
parisons are being made. Furthermore if a cluster has very few duplicates or none at all, then it is
possible that comparisons are being done which may not be needed. An approach is needed that re-
sponds adaptively to the size and homogeneity of the clusters discovered as the database is scanned,
in effect expanding/shrinking the window when necessary. To achieve this, the fixed size window is
replaced by a priority queue of duplicate records.

The system scans the sorted database with a priority queue of record subsets belonging to the last
few clusters detected. The priority queue contains a fixed number of sets of records. Each set contains
one or more records from a detected cluster. For efficiency reasons, entire clusters should not always be
saved since they may contain many records. On the other hand, a single record may be insufficient to
represent all the variability present in a cluster. Records of a cluster will be saved in the priority queue
only if they add to the variability of the cluster being represented. The set representing the cluster with
the most recently detected cluster member has highest priority in the queue, and so on.

Suppose that recordRj is the record currently being considered. The algorithm first tests whether
Rj is already known to be a member of one of the clusters represented in the priority queue. This test
is done by comparing the cluster representative ofRj to the representative of each cluster present in the
priority queue. If one of these comparisons is successful, thenRj is already known to be a member of
the cluster represented by the set in the priority queue. We move this set to the head of the priority queue
and continue with the next record,Rj+1. Whatever their result, these comparisons are computationally
inexpensive because they are done just withFind operations.

Next, in the case whereRj is not a known member of an existing priority queue cluster, the algorithm
uses the matching algorithm to compareRj with records in the priority queue. The algorithm iterates
through each set in the priority queue, starting with the highest priority set. For each set, the algorithm
scans through the membersRi of the set.Rj is compared toRi using the matching algorithm. If a match
is found, thenRj ’s cluster is combined withRi’s cluster, using aUnion(Ri; Rj) operation. In addition,
Rj may also be included in the priority queue set that representsRi’s cluster – and now also represents
the new combined cluster. Intuitively, ifRj is very similar toRi, it is not necessary to include it in the
subset representing the cluster, but ifRj is only somewhat similar then includingRj in the subset will
help in detecting future members of the cluster.

On the other hand, if the comparison betweenRi andRj yields a very low score then the system
continues directly with the next set in the priority queue. The intuition here is that ifRi andRj have no
similarity at all, then comparisons ofRj with other members of the cluster containingRi will likely also
fail. If the comparison still fails but the score is close to the matching threshold, then it is worthwhile to
compareRj with the remaining members of the cluster. These heuristics are used to counter the errors

18

which are propagated when computing pairwise “is a duplicate of” relationships.
Finally, if Rj is compared to members of each set in the priority queue without detecting that it is a

duplicate of any of these, thenRj must be a member of a cluster not currently represented in the priority
queue. In this caseRj is saved as a singleton set in the priority queue, with the highest priority. If this
action causes the size of the priority queue to exceed its limit then the lowest priority set is removed
from the priority queue.

Earlier research showed that this adaptive duplicate detection system performs much fewer com-
parisons than previous work [3, 4, 5]. Fewer comparisons usually translates to decreased accuracy.
However, similar accuracy was observed because the comparisons which are not performed correspond
to records which are already members of a cluster, most likely due to the transitive closure of the “is
a duplicate of” relationships. All experiments show that the improved algorithm is as accurate as the
standard method while significantly performing many fewer record comparisons – as much as a 75%
savings over the methods by [7, 13].

4 Conclusion

The integration of information sources is an important area of research. There is much to be gained from
integrating multiple information sources. However, there are many obstacles that must be overcome to
obtain valuable results from this integration.

This article has explored the problem of approximate duplicate detection. To integrate data from
multiple sources, one must first identify the information which is common in these sources. Different
record matching algorithms were presented that determine the equivalence of records from these sources.
Section 2 presents the properties of such record matching algorithms to be applied to alphanumeric
records that contain fields such as names, addresses, titles, dates, identification numbers, and so on.

The duplicate detection system described in this work and in [4, 5] improve previous related work
in two significant ways. The first contribution is to show how to compute the transitive closure of “is a
duplicate of” relationships incrementally, using the union-find data structure. The second contribution
is a heuristic method for minimizing the number of expensive pairwise record comparisons that must
be performed while comparing individual records with potential duplicates. These two contributions
can be combined with any pairwise record matching algorithm. It is desirable for the record matching
algorithms to be as domain-independent as possible and also for the algorithms to indicate the strength
of the match (or non-match) between the records.

References

[1] A. E. Monge and C. P. Elkan, “WebFind: Automatic retrieval of scientific papers over the world wide web,” in
Working notes of the Fall Symposium on AI Applications in Knowledge Navigation and Retrieval, p. 151, AAAI
Press, Nov. 1995.

[2] A. E. Monge and C. P. Elkan, “The WebFind tool for finding scientific papers over the worldwide web,” inProceed-
ings of the 3rd International Congress on Computer Science Research, (Tijuana, Baja California, M´exico), pp. 41–46,
Nov. 1996.

[3] A. E. Monge and C. P. Elkan, “An efficient domain-independent algorithm for detecting approximately duplicate
database records,” inProceedings of SIGMOD Workshop on Research Issues on Data Mining and Knowledge Dis-
covery, (Tucson, Arizona), May 1997.

[4] A. Monge,Adaptive detection of approximately duplicate database records and the database integration approach
to information discovery. Ph.D. thesis, Department of Computer Science and Engineering, University of California,
San Diego, 1997. Available from University Microfilms International.

[5] A. E. Monge, “An adaptive and efficient algorithm for detecting approximately duplicate database records,” June
2000. Submitted for journal publication.

19

[6] A. Silberschatz, M. Stonebraker, and J. D. Ullman, “Database research: achievements and opportunities into the 21st
century.” A report of an NSF workshop on the future of database research, May 1995.

[7] M. Hernández and S. Stolfo, “The merge/purge problem for large databases,” inProceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 127–138, May 1995.

[8] J. A. Hylton, “Identifying and merging related bibliographic records,” M.S. thesis, MIT, 1996. Published as MIT
Laboratory for Computer Science Technical Report 678.

[9] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James, “Automatic linkage of vital records,”Science,
vol. 130, pp. 954–959, Oct. 1959. Reprinted in [12].

[10] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,”Journal of the American Statistical Association, vol. 64,
pp. 1183–1210, 1969.

[11] C. A. Giles, A. A. Brooks, T. Doszkocs, and D. Hummel, “An experiment in computer-assisted duplicate checking,”
in Proceedings of the ASIS Annual Meeting, p. 108, 1976.

[12] B. Kilss and W. Alvey, eds.,Record linkage techniques, 1985: Proceedings of the Workshop on Exact Matching
Methodologies, (Arlington, Virginia), Internal Revenue Service, Statistics of Income Division, 1985. U.S. Internal
Revenue Service, Publication 1299 (2-86).

[13] M. Hernández,A Generalization of Band Joins and the Merge/Purge Problem. Ph.D. thesis, Columbia University,
1996.

[14] J. E. Hopcroft and J. D. Ullman, “Set merging algorithms,”SIAM Journal on Computing, vol. 2, pp. 294–303, Dec.
1973.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms. MIT Press, 1990.
[16] H. B. Newcombe,Handbook of record linkage: methods for health and statistical studies, administration, and

business. Oxford University Press, 1988.
[17] M. I. Yampolskii and A. E. Gorbonosov, “Detection of duplicate secondary documents,”Nauchno-Tekhnicheskaya

Informatsiya, vol. 1, no. 8, pp. 3–6, 1973.
[18] U. C. Bureau, ed.,U.S. Census Bureau’s 1997 Record Linkage Workshop, (Arlington, Virginia), Statistical Research

Division, U.S. Census Bureau, 1997.
[19] T. E. Senator, H. G. Goldberg, J. Wooton, and M. A. C.et al., “The financial crimes enforcement network AI system

(FAIS): identifying potential money laundering from reports of large cash transactions,”AI Magazine, vol. 16, no. 4,
pp. 21–39, 1995.

[20] Y. R. Wang, S. E. Madnick, and D. C. Horton, “Inter-database instance identification in composite information sys-
tems,” inProceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, pp. 677–
84, Jan. 1989.

[21] R. S. Boyer and J. S. Moore, “A fast string-searching algorithm,”Communications of the ACM, vol. 20, no. 10,
pp. 762–772, 1977.

[22] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in strings,”SIAM Journal on Computing, vol. 6,
no. 2, pp. 323–350, 1977.

[23] P. A. V. Hall and G. R. Dowling, “Approximate string matching,”ACM Computing Surveys, vol. 12, no. 4, pp. 381–
402, 1980.

[24] Z. Galil and R. Giancarlo, “Data structures and algorithms for approximate string matching,”Journal of Complexity,
vol. 4, pp. 33–72, 1988.

[25] W. I. Chang and J. Lampe, “Theoretical and empirical comparisons of approximate string matching algorithms,” in
CPM: 3rd Symposium on Combinatorial Pattern Matching, pp. 175–84, 1992.

[26] M.-W. Du and S. C. Chang, “Approach to designing very fast approximate string matching algorithms,”IEEE Trans-
actions on Knowledge and Data Engineering, vol. 6, pp. 620–633, Aug. 1994.

[27] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”Soviet Physics – Doklady
10, vol. 10, pp. 707–710, 1966.

[28] J. Peterson, “Computer programs for detecting and correcting spelling errors,”Communications of the ACM, vol. 23,
no. 12, pp. 676–687, 1980.

[29] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,”Journal of Molecular Biology,
vol. 147, pp. 195–197, 1981.

20

A Comparison of Techniques to Find Mirrored Hosts on the
WWW

Krishna Bharat
Google Inc.

2400 Bayshore Ave
Mountain View, CA 94043

bharat@google.com

Andrei Broder
AltaVista Company
1825 S. Grant St.

San Mateo, CA 94402
andrei.broder@av.com

Jeffrey Dean
Google Inc.

2400 Bayshore Ave
Mountain View, CA 94043

jeff@google.com

Monika R. Henzinger
Google Inc.

2400 Bayshore Ave
Mountain View, CA 94043

monika@google.com

Abstract

We compare several algorithms for identifying mirrored hosts on the World Wide Web. The algo-
rithms operate on the basis of URL strings and linkage data: the type of information about web pages
easily available from web proxies and crawlers.

Identification of mirrored hosts can improve web-based information retrieval in several ways: First,
by identifying mirrored hosts, search engines can avoid storing and returning duplicate documents.
Second, several new information retrieval techniques for the Web make inferences based on the explicit
links among hypertext documents – mirroring perturbs their graph model and degrades performance.
Third, mirroring information can be used to redirect users to alternate mirror sites to compensate for
various failures, and can thus improve the performance of web browsers and proxies.

We evaluated 4 classes of “top-down” algorithms for detecting mirrored host pairs (that is, algo-
rithms that are based on page attributes such as URL, IP address, and hyperlinks between pages, and not
on the page content) on a collection of 140 million URLs (on 230,000 hosts) and their associated con-
nectivity information. Our best approach is one which combines 5 algorithms and achieved a precision
of 0.57 for a recall of 0.86 considering 100,000 ranked host pairs.

1 Introduction
The WWW differs from information retrieval in classical collections in many respects. Two of the most obvious
are the very large size of the Web (the largest search engines have over a billion URLs in their index [2] as of
mid 2000) and redundancy in the form of sources with the same or roughly the same information. The fraction
of the total WWW collection consisting of duplicates and near-duplicates has been estimated at 30 to 45 percent.
(See [6] and [15].)

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

21

Duplication has both positive and negative aspects. On one hand the redundancy makes retrieval easier: if
a search engine has missed one copy, maybe it has the other; or if one page has become unavailable, maybe a
replica can be retrieved. On the other hand, from the point of view of search engines storing duplicate content
is a waste of resources and from the user’s point of view, getting duplicate answers in response to a query is a
nuisance.

The principal reason for duplication on the Web is the systematic replication of content across distinct hosts,
a phenomenon known as “mirroring” (These notions are defined more precisely below.) It is estimated that at
least 10% of the hosts on the WWW are mirrored [3, 11]. The aim of this paper is to present and evaluate
algorithms for detecting mirroring on the WWW in an information retrieval framework.

Our definition of mirroring is as follows:

Two hostsA andB are mirrors iff for every document onA there is ahighly similardocument on
B with the same path, and vice versa.

Highly similar is a subjective measure. We made this notion precise by adopting the resemblance distance
described in [6, 5] that experimentally computes a number between 0 and 1 as a measure of similarity. Other
edit distance measures can be substituted.

Reliable algorithms for finding host mirrors can improve web-based information access in several ways:

� Knowledge of replication can save search engines crawling and index space overhead.

� Recent web IR techniques analyze the linkage between pages in the web graph to rank document (e.g.,
PageRank [12], CLEVER [8, 7, 10], and Topic Distillation [4]) The independence assumption between
subsections of the web graph is violated by mirroring and can perturb the outcome of such link based
computations.

� Knowledge of alternate mirrors can help compensate for “broken links” on the WWW.

� Caches on the web can exploit knowledge of redundancy to increase their effective coverage.

The algorithms described in this paper use only the URLs of pages on the web and in some cases the
hyperinkage between them (also called “connectivity”). In particular we do not require web page content,
unlike the technique of Cho, Shivakumar and Garcia-Molina [9].

Our input corresponds to a graph in which the nodes are web pages and edges are hyperlinks. We require
neither the set of nodes, nor edges to be complete. In particular a given host can be represented partially, with
paths that differ from those sampled from its mirrors. Such incompleteness is typical of the graphs computable
from web crawls or proxy usage logs.

In this paper we discuss and evaluate four classes of algorithms for finding mirrored hosts on the Web. Each
algorithm produced a ranked list of distinct host pairs, each pair representing a possible mirroring relationship.
The validity of each mirroring relationship was then judged in an automated way. This was done by fetching
from the web a subset of pages from each host and testing to see if the other host had a page with an identical
path with highly similar content. The host pair was considered valid iff all of 40 such tests succeeded. We then
used the classic IR measures of precision and recall to graph the results. The best approach we found was a
combination of 5 algorithms, which on our test data achieved a precision of 0.57 for a recall of 0.86 considering
100,000 result host pairs.

Section 2 presents a brief description of our algorithms. The evaluation methodology and performance of
algorithms is summarized in section 3. Section 4 discusses related work. For more details see our full paper [1].

2 Ranking Algorithms
In our experiments the input was a subset of an approximately 179 million URL crawl by AltaVista. We chose
a subset of 140.6 million URLs that represented hosts with at least 100 pages in our input, corresponding to
233,035 hosts. The URL strings and hyperlinkage required 11.2 Gigabytes uncompressed.

22

Only mirroring relations between host pairs drawn from this set were determined.
We used four classes of algorithms to compute a ranked list of host pairs representing potential mirrors.

These are summarized below (see full paper for details and rationale [1]:

2.1 IP Address Based (AlgorithmsIP3 and IP4)
These algorithms list hosts that have identical or highly similar IP addresses. Identical or highly similar IP
addresses are indicative of 2 hosts on the same server or subnet - which can imply mirroring. However, when
many hosts resolve to the same IP address it is indicative of virtual hosting by an internet service provider, which
hosts many distinct web sites.

These considerations led us to two algorithms:

� Algorithm IP4: We cluster hosts with the same IP address. With a bias against virtual hosting, we process
clusters in the increasing order of siz ande enumerate up to 200 host pairs from each cluster

� Algorithm IP3: Same as the above case but we instead cluster based solely on the first three octets of the
IP address and list at most 5 pairs per cluster.

2.2 URL String Based (Algorithmshosts, paths, prefixand shingles)
In this class of algorithms we detect similarity between either the hostnames or the path structure (which usually
refects the directory structure) of the hosts being compared. In each algorithm a set of features (or “terms”) is
selected from each host. Term vector matching [14] is used to compute the likelihood that a pair of hosts are
mirrors based on weights of terms in common. Based on the type of term used we get four algorithms, each with
a weighting scheme. Only terms occurring in fewer than100 documents were considered.

These are summarized below:

� Hostname Matching (Algorithmhosts): Substrings of the hostname by breaking only at periods (’.’) are
terms. The weight of termt is log(len(t))

1+log(df(t)) wheredf(t) is the number of documents with the term, and
len(t) is the number of ’.’ separated segments.

� Full Path Matching (Algorithmpaths): Entire paths of URLs are used as terms. The weight of termt is
1 + log(maxdf

df(t)), wheremaxdf is the maximum value ofdf(t) over allt.

� Prefix Matching (Algorithmprefix): Prefixes of the path that either end in a ’/’ or terminate the path
are terms. The weighing is as inpath, except, to remedy the bias against small hosts we multiply by

1
0:1+0:15(log(n1)+log(n2))

, wheren1 andn2 represent the number of URL strings in the input from each of
the two hosts.

� Positional Word Bigram Matching (Algorithmshingles): The path is broken into a list of tokens by treating
’/’ and ’.’ as breaks. Pairs of tokens in sequence with ordinal position are used as terms. Non-alphabetical
character sequences are stemmed to ’*’. E.g., the pathconferences/sigweb/web2001/xyz will
have<2:sigweb 3:web*> as a term. The same weighting as inprefix is used.

2.3 URL String and Connectivity Based (Algorithm conn)
The identification of mirrors can be aided by the use of connectivity information. We extend the URL string
basedpathsalgorithm (which selects host pairs with many common paths), with a connectivity based filtering
stage.

Given a host pair< host1; host2 > from the output ofpathswe test if0:9 of the union of their outlinks are
common to both. An approximate measure is used because some outlinks may be missing in the input. Paths
that qualify are said to be “equivalent”. After testing20 common paths, if0:75 of the paths are found to be
equivalent then the host pair is allowed to remain in the ranking. Otherwise, it is eliminated.

2.4 Host Connectivity-Based (Algorithmshconn1and hconn2)
In this class of algorithms similarity between hosts is computed based on the similarity between the sets of other
hosts they connect to.

23

5000 10000 15000 20000 25000

Rank

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

hosts
IP3
IP4
conn
hconn1
hconn2
paths
prefix
shingles

Figure 1: Precision atrank for the algorithms

Again, term vector matching is used to compute host similarity. The terms in this case are hosts. Specifically,
hostt is a term in hostx’s vector if there exists at least one hyperlink from a page onx to a page ont. We denote
the total number of such links byf(t; x). For efficiency we keep only10 log P (x) terms with the highest value
of f(t; x), whereP (x) is the number of URLs sampled from the hostx. The weight of each term however is a
function ofin(t), which is computed by summingf(t; y) for all hostsy that containt in their term vector.

Algorithm hconn1weights termt proportional to1=in(t), varying in the range[15 � � � 1]. Algorithm hconn2
further multiplies by a factor1 + log(maxin

in(t)) wheremaxin is the maximum value of thein function over all
terms.

3 Evaluation
3.1 Methodology
As mentioned before each algorithm outputs a ranked set of host pairs. We evaluate whether a given host pair
is indeed a mirror using an automated technique, and we call this acorrecthost pair. This allows us to use the
standard information retrieval notion of precision and recall to compare algorithms.

� We defineprecision at rankk to be the fraction of correct host pairs given within the firstk host pairs.

� We definerecall at rankk to be the number of correct host pairs found within the firstk host pairs divided
byR, whereR is the total number of distinct correct host pairs.

We computed these numbers as follows: Since some of our algorithms returned several million host pairs,
human evaluation for mirroring was impossible. Hence to decide if a host pair was “correct” we sampled 20
random paths from each host and tested for the presence of a highly similar document on the other host. If all
40 tests succeeded the host pair was considered correct.

We evaluated the up to 30,000 host pairs from each ranking in this manner. Figure 1 graphs precision vs
rank up to rank 25,000. The best algorithms wereIP4, prefix, shinglesandconn. We found thatIP3 rapidly
deteriorated in precision, andhostswas too naive. Connectivity analysis inconn improvedpathssignificantly,
but did not help as much with host connectivity (hconn1andhconn2). Hconn1andhconn2tended to pairs hosts
on the same topic rather than mirrors.

The total pool of mirrors consisted of 41,388 host pairs at rank 25,000. The best single algorithmIP4 was
able to find only 53.9% of the known mirrors. Further, looking at the overlap between the pairs found indicated
that algorithms in different classes were finding complementary sets of mirrors. Hence, we introduced a new
algorithm combinedwhich merged the top 100,000 results from the output of five different algorithmsIP4,
prefix, hconn2, pathsandhostnames. The host pairs in the resulting union were sorted in the decreasing order of

24

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

hosts
IP3
IP4
hconn1
hconn2
paths
prefix
shingles
conn
combined

Figure 2: Precision vs Recall

the number of algorithms that found them. Ties between host pairs were resolved in favor of the host pair with
the lowest rank in any of the five algorithms.

Figure 2 shows a precision vs recall plot. For this graph we considered the top 100,000 results from each
ranking. Host pairs not seen previously were considered correct if and only if they appeared in the transitive
closure of the set of known correct host pairs - which we took to be the universe of correct host pairs.

We found thatIP4’s precision drops after a recall of 0.5. With increasing cluster size IP address matching
becomes progressively less reliable.Prefix is the best of the individual algorithms, achieving a precision of 0.49
for a recall of 0.8 (shinglesperforms similarly). Connseems potentially better but since we were unable to
run the connectivity filtering on the output ofpathsbeyond rank 30,000, it was incompletely evaluated. The
combined algorithmcombinedhad the best performance overall. In all there were 66,337 distinct correct host
pairs in our set, andcombinedfound 57,000 of them at rank 100,000 (precision=0.57, recall=0.86).

4 Related Work
The problem of computing mirrored host pairs on the WWW was introduced in [3]. They use a more generalized
definition of mirroring, which includespartial mirroring as well. They tested a single algorithm corresponding
to a weighted combination of ourhostsandshinglesalgorithms, but did not investigate the use of IP addresses
or connectivity in finding mirrors. Since we were interested in a comparative study of algorithms we extended
their validation scheme to include the pooling of validated results from various algorithms, and also the use of
transitive inferences to expedite validation.

At first sight the problem of finding mirrors seems like it could be cast as a clustering problem in which
each host is represented by the contents of the documents it contains. There has been considerable prior work in
document clustering (see e.g. [16, 13]). As mentioned earlier, owing to the scale of the Web comparing the full
contents of hosts is neither feasible, nor (as we believe) necessarily more useful than comparing URL strings
and connectivity. See also [17] for a discussion on the applicability of clustering algorithms to the WWW.

Connectivity information has been applied to the problem of improving precision of WWW search re-
sults [12, 8, 7, 10, 4]. The graph model used by these methods is perturbed by duplicate pages. We believe
our hconn* andconnalgorithms represent the first attempt to use connectivity information to finding mirrors.
Furthermore, these two algorithms can be easily integrated within the methods cited above to alleviate the above

25

perturbation problem.
The “bottom up” approach taken by Cho et al in [9] requires content analysis and is more compute intensive.

Also, it requires all URLs to have been crawled within a small window of time. Our techniques can operate
solely with URL structure, which tends to be more stable. The two approaches have yet to be compared.

5 Conclusion
Finding mirrors on the WWW is an information retrieval problem of interest to the search engine and web
caching communities. In this paper we evaluated 4 classes of algorithms for ranking potential mirrored host
pairs, namely: (i) IP address based approaches, (ii) URL string comparison techniques, (iii) host connectivity
based approaches, and (iv) an approach that compares connectivity of documents with shared paths. These were
evaluated on a collection of 140 million URLs (on 230,000 hosts) and associated connectivity information.IP4
andprefixwere our best single algorithms. We concluded that single approaches are limited in terms of recall.
Our best approach is one which combines 5 algorithms and achieves a precision of 0.57 for a recall of 0.86
considering the top 100,000 results.

References
[1] K. Bharat, A. Broder, J. Dean, M. Henzinger. A Comparison of Tehcniques to Find Mirrored Hosts on the WWW.

Journal of the American Society for Information Science (JASIS)(To Appear, Nov 2000.)
[2] Google Inc. Google Launches World’s Largest Search Engine Press Release, June 26, 2000. URL:

http://www.google.com/pressrel/pressrelease26.html
[3] K. Bharat and A. Z. Broder. Mirror, mirror on the web: A study of host pairs with replicated content. InProceedings

of the Eighth International World Wide Web Conference, May 1999.
[4] K. Bharat and M. Henzinger. Improved algorithms for topic distillation in hyperlinked environments. InProceedings

of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98),
pages 111–104, 1998.

[5] A. Z. Broder. Filtering near-duplicate documents. InProceedings of FUN 98, 1998.
[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the Web. InSixth International

World Wide Web Conference, pages 391–404, Santa Clara, California, April 1997.
[7] S. Chakrabarti, B. Dom, D. Gibson, S. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Experiments in topic

distillation. InSIGIR’98 Workshop on Hypertext Information Retrieval for the Web, 1998.
[8] S. Chakrabarti, B. Dom, R. P., S. Rajagopalan, D. Gibson, and J. Kleinberg. Automatic resource compilation by

analyzing hyperlink structure and associated text. InProceedings of the Seventh International World Wide Web
Conference, pages 65–74.

[9] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding Replicated Web Collections. InACM SIGMOD 2000, pages
355–366.

[10] J. Kleinberg. Authoritative sources in a hyperlinked environment. InProceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 668–677, January 1998.

[11] E. T. O’Neill, P. D. McClain, and B. F. Lavoie. A methodology for sampling the world wide web. Technical report,
OCLC Annual Review of Research, 1997.

[12] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine InProceedings of the Seventh
International World Wide Web Conference, pages 107-117, 1998.

[13] E. Rasmussen. Clustering algorithms. In W. Frakes and R. Baeza-Yates, editors,Information Retrieval, pages 419–
42, 1992.

[14] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.Information Processing and
Management, 24(5):513–523, 1988.

[15] N. Shivakumar and H. Garc´ıa-Molina. Finding near-replicas of documents on the web. InProceedings of Workshop
on Web Databases (WebDB’98), March 1998.

[16] P. Willet. Recent trends in hierarchical document clustering: a critical review.Information Processing and Manage-
ment, 24(5):577–597, 1988.

[17] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. InProceedings of the 21st Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98), pages 46–53,
1998.

26

Automatically Extracting Structure from Free Text Addresses

Vinayak R. Borkar Kaustubh Deshmukh Sunita Sarawagi
Indian Institute of Technology, Bombay

sunita@it.iitb.ernet.in

Abstract

In this paper we present a novel way to automatically elementize postal addresses seen as a plain text
string into atomic structured elements like ”City” and ”Street name”. This is an essential step in all
warehouse data cleaning activities. In spite of the practical importance of the problem and the technical
challenges it offers, research effort on the topic has been limited. Existing commercial approaches are
based on hand-tuned, rule-based approaches that are brittle and require extensive manual effort when
moved to a different postal system. We present a Hidden Markov Model based approach that can work
with just about any address domain when seeded with a small training data set. Experiments on real-life
datasets yield accuracy of 89% on a heterogeneous nationwide database of Indian postal addresses and
99.6% on US addresses that tend to be more templatized.

1 Introduction
Address elementization [7] is the process of extracting structured elements like “Street name”, “Company” and
“City name” from an address record occurring as a free text string. For example consider the following address.
18100 New Hamshire Ave. Silver Spring, MD 20861 . This address can be elementized as:
House Number : 18100, Street : New Hamshire Ave., City : Silver Spring, State :

MD, Zip : 20861.

Address Elementatization is one of the key steps in the warehouse data cleaning process. Large customer-
oriented organizations like banks, telephone companies and universities store millions of addresses. In the
original form, these addresses have little explicit structure. Often for the same person, there are different address
records stored in different databases. During warehouse construction, it is necessary to put all these addresses
in a standard canonical format where all the different fields are identified and duplicates removed. An address
record broken into its structured fields not only enables better querying, it also provides a more robust way of
doing deduplication and householding — a process that identifies all addresses belonging to the same household.
Previous approaches of deduplication without elementization relied on hand tuned rules to define similarity
treating the address as a text string [6, 9].

Existing commercial approaches [5] rely on hand-coded rule-based methods coupled with a database of
cities, states and zip codes. This solution is not practical and general because postal addresses in different parts
of the world have drastically different structures. In some countries zip codes are five digit numbers whereas in
others they are allowed to have strings. The problem is more challenging in older countries like India because
most street names do not follow a uniform building numbering scheme, the reliance on ad hoc descriptive

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

27

landmarks is common, city names keep changing, state abbreviations are not standardized, spelling mistakes are
rampant and zip codes optional. Further each region has evolved its own style of writing addresses that differs
significantly from those of the other region. Consider for instance the following two valid addresses from two
different Indian cities:
7D-Brijdham 16-B Bangur Nagar Goregaon (West) Bombay 400 090
13 Shopping Centre Kota (Raj) 324 007
The first address consists of seven elements: house number:‘7D’ , building name:‘Brijdham’ , building
number: ‘16-B’ , colony name:‘Bangur Nagar’ , area:‘Goregaon (West)’ , city: ‘Bombay’ and
zip code: ‘400 090’ . The second address consists of the following five elements: house number:‘13’ ,
Colony name:Shopping centre , city: ‘Kota‘ , State:(Raj) and zip code:‘324 007’ . In the first
address, ‘East’ was enclosed in parentheses and depicted direction while in the second the string ‘Raj’ within
parentheses is the name of a geographical State. This element is missing in the first address. Whereas, in the
second address building name, colony name and area elements are missing.

We propose an automated method for elementizing addresses based on Hidden Markov Models [12] (HMM).
Hidden Markov Modeling is a powerful statistical machine learning technique that can handle new data robustly,
is computationally efficient and easy for humans to interpret and tweak. The last property makes this technique
particularly suitable for the address tagging problem.

An HMM combines information about multiple different aspects of the record in segmenting it. One source
is the characteristic words in each element, for example the word “street” appears in road-names. A second
source is the limited partial ordering between its elements. Often the first element is a house number, then a
possible building name and so on and the last few elements are zip code and state-name. A third source is the
typical number of words in each element. For example, state names usually have one or two words whereas
road names are longer. Finally, the HMM simultaneously extracts each element from the address to optimize
some global objective function. This is in contrast to existing rule learners used in traditional information
tasks [4, 10, 8, 1, 11] that treat each element in isolation.

2 Our Approach
The input to the address elementization problem is a fixed set ofE tags of the form “House number”, “Road
name” and “City” and a collection ofT example addresses that have been segmented into one or more of these
tags. We do not assume any fixed ordering between the elements nor are all elements required to be present in
all addresses. The output of the training phase is a model that when presented with a address record segments it
into one or more of its constituent elements.

2.1 Hidden Markov Models
A Hidden Markov Model(HMM) is a probabilistic finite state automaton [12, 13] where each state probabilisti-
cally outputs a symbol from a dictionary. Each state transition in the automaton is associated with a probability
value. This probability is independent of the output generated by the current state or the next state, and also of
the time at which this state is reached. Mathematically a HMM is completely described by two parameters,m
andn and two probability distributionsA andB. The description of these parameters is as follows.

� n, the number of states in the model.

� m, the number of distinct observation symbols, the discrete dictionary size.

� The state transition probability distributionA = aij whereaij is the probability of transiting from statei
to statej.

� The observation symbol probability distribution,B = bj(k), wherebj(k)is the probability of emitting the
kth dictionary symbol in statej

We have shown a typical Hidden Markov Model used for Address Elementization in Figure 1. In this figure,
the value ofn is 10. The edge labels depict the state transition probabilities (A Matrix).

28

0.40
0.67

0.05

0.75

0.13

0.21Building Name
0.47

State

0.50

Pincode

House No. Road

Start

City

End

0.92

0.12 0.35

0.22

0.10 0.28

0.20

0.08

0.35

0.10

0.25

0.12

0.05

0.35

Area

0.3

0.320.2

0.38

0.33

0.2

0.15

Landmark 0.45

Figure 1: Structure of a typical naive HMM

2.2 HMMs for Address Elementization
This basic HMM model needs to be augmented for segmenting free text into the constituent elements. Let
E be the total number of elements. Each state of the HMM is marked with exactly one of theseE elements,
although more than one state could be marked with the same element. The training data consists of a sequence of
element-symbol pairs — for each pairhe; si the symbols can only be emitted from a state marked with element
e.

The training process consists of two main tasks. The first task is choosing the structure of the HMM, that is,
the number of states in the HMM and edges amongst states. In general, it is difficult to get the optimal number
of states in the HMM. We will describe our approach in Section 2.3. The second task is learning the transition
and output probabilities of the dictionary symbols. The dictionary consists of all words, digits and delimiters
appearing the training data. In [2] we present further refinements on the dictionary where we introduce the
concept of a taxonomy on the symbols (words, numbers, delimiters) appearing in the training sequence and
show how to generalize the dictionary of each HMM state to a level that provides highest accuracy.

Training the HMM The goal during training is finding theA andB matrices such that the probability of the
HMM generating these training sequences is maximized. Each training sequence makes transitions from the
start state to the end state through a series of intermediate states. When the transitions made by each sequence
is known, transition probabilities can be calculated using aMaximum Likelihoodapproach. The probability of
transition from statei to statej is computed as,

aij =
Number of transitions from statei to statej

Total number of transitions out of statei
(1)

The emission probabilities are computed similarly. The probability of emitting symbolk in statej is computed
as,

bjk =
Number of times thek-th symbol was emitted at statej

Total number of symbols emitted at statej
(2)

Using the HMM for testing Given an output symbol sequenceO = o1; o2; : : : ; ok, we want to associate each
symbol with an element. Since each state in the HMM is associated with exactly one element, we associate each
symbol with the state that emitted the symbol. Hence we need to find a path of lengthk from the start state to the
end state, such that theith symboloi is emitted by theith state in the path. In general, an output sequence can
be generated through multiple paths each having some probability. We assume theViterbi approximationand
say that the path having the highest probability is the path which generated the given output sequence. Given
n states and a sequence of lengthk, there can beO(kn) possible paths that can generate the given sequence.
This exponential complexity in finding the most probable path is cut down toO(kn2) by the famous dynamic
programming-basedViterbi Algorithm[13].

29

2.3 Learning the structure of the HMM
We impose a nested hierarchical model on the structure of the HMM. An outer HMM captures the sequencing
relationship amongst elements treating each element as a single state. Each element’s state is expanded to an
inner HMM that captures its internal structure.

Accordingly, training of the HMM is done in two stages. In the first stage we learn the outer HMM. In this
stage, the training data is treated as a sequence of elements ignoring all details of the length of each element and
the tokens it contains. These sequences are used to train the outer HMM. In the second stage, the inner HMMs
are learnt using the procedure described next.

Start End

Figure 2: A four length Parallel Path structure

In general, the number of tokens in each element is variable. We handle such variability automatically by
choosing a parallel path structure (Figure 2) for each nested HMMs. In the Figure, the start and end states are
dummy nodes to mark the two end points of a tag. They do not output any token. All records of length one
will pass through the first path, length two will go through the second path and so on. The last path captures all
records with four or more tokens.

We next describe how the structure of the HMM in terms of the number of paths and the position of the
state with the self loop is chosen from the training data. Initially, we create as many paths as the number of
distinct token counts. This might create some paths that have few training examples leading to a poorly trained
dictionary. We merge such paths to its neighboring path as follows. Suppose ak state path needs to be merged
with a k � 1 state path to produce a single merged path. In thek-path,k � 1 of its state will be merged with
those of the(k � 1)-path. We need to decide which of thek states will not be merged. We try out all possible
k choices of this state and choose the one that gives the gives best result on a separate validation dataset. Such
merging of paths is continued until a merge does not cause any improvement in accuracy.

3 Results
We measured the efficacy of the proposed techniques on real-life address datasets. We consider three different
address sources:
US addresses:A set of 740 US addresses downloaded from an internet directory partitioned into 6 elements as
shown in Table 4.
Student address: 2388 home addresses of students in the author’s university campus partitioned into 16
elements as described in Figure 6.
Company address: 769 addresses of customers of a major national bank in a large Asian metropolitan broken
into 6 elements as shown in Table 5.

In each case one-third of the data was used for training and the remaining two-thirds used for testing. We
obtained accuracies of 99.6%,89.3% and 83% on the US, student and company dataset respectively. The non-
US addresses have a much higher complexity compared to the US addresses. In Table 7 we show the accuracy
partitioned into precision and recall values for individual elements. The table shows that there is a wide variance
on the precision of each tag. Fortunately, the tags on which accuracy is low also happen to be the less important
tags and occur infrequently in both the training and test instances.

We compared the performance of our approach with a rule learner, Rapier [3]. Rapier is a bottom-up induc-

30

Element Tokens Precision Recall
present (%) (%)

House No. 427 99.3 99.765
Po Box 10 57.142 40.0
Road Name 1268 99.449 99.763
City 611 100.0 99.509
State 490 100.0 100.0
Zip code 490 100.0 100.0
Overall 3296 99.605 99.605

Table 4: US addresses

Element Tokens Precision Recall
present (%) (%)

Care Of 278 90.604 48.561
House Address 2145 77.343 88.484
Road Name 1646 78.153 73.025
Area 808 91.7 83.415
City 527 99.81 100.0
Zip Code 519 100.0 100.0
Overall 5923 83.656 83.656

Table 5: Company addresses

Element Tokens Precision Recall
present (%) (%)

Care Of 281 98.091 91.459
Department 99 100.0 20.202
Designation 98 45.098 23.469
House No. 3306 95.681 90.471
Bldg. Name 1702 73.204 77.849
Society 3012 76.554 85.856
Road Name 2454 84.815 88.997
Landmark 443 88.338 68.397
Area 2364 93.277 89.805
P O 231 86.473 77.489
City 1785 96.561 97.535
Village 40 100.0 13.333
District 138 93.333 81.159
State 231 96.38 92.207
Country 20 100.0 45.0
Zip code 3042 99.967 99.934
Overall 19246 88.901 88.901

Table 6: Student addresses

Table 7: Precision and recall values for different datasets shown broken down into the constituent elements.

tive learning system for finding information extraction rules. It has been tested on several domains and found to
be competitive. It extracts each tag in isolation of the rest. The accuracy of Rapier was found to be considerably
lower than our approach. Rapier leaves many tokens untagged by not assigning them to any of the elements.
Thus it has low recall — 98%, 50%, 60% on the US, Student and Company datasets respectively. However,
the precision of Rapier was found to be competitive to our method. The overall accuracy is acceptable only
for US addresses where the address format is regular enough to be amenable to rule-based processing. For the
complicated sixteen-element Student dataset such rule-based processing could not successfully tag all elements.

The size of the training data is an important concern in all extraction tasks that require manual effort in
tagging the instances. In most such information extraction problems, untagged data is plentiful but tagged data
to serve as training records is scarce and requires human effort. We therefore study the amount of training effort
needed to achieve peak performance in our approach. The results show that HMMs are fast learners. For US
addresses (Figure 3), just 50 addresses achieved the peak accuracy of 99.5% on 690 test instances and just 10
addresses yielded an accuracy of 91%. For the Student dataset (Figure 4) with 150 training addresses we get
85% accuracy on 2238 addresses and with 300 addresses reach 89% accuracy on the remaining 2088 addresses.
Further increasing the training size only slightly boosts the accuracy. A similar trend was observed for the
Company dataset.

4 Conclusion
Address elementization is a key step of the warehouse data cleaning process and consequently of great practical
importance. Surprisingly, research effort on the topic has been limited in spite of the many technical challenges
that arise because of the multitudes of ways in which addresses are written. Existing commercial approaches rely
on hand-coded rule-based systems that are hard to set up and evolve. In this paper we presented an automated
approach for elementizing postal addresses using the powerful technique of Hidden Markov Modeling. We
developed practical methods of choosing the best structure of the HMM and ways of incorporating a partial

31

0 200 400 600

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

Figure 3: US addresses

0 200 400 600

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

Figure 4: Student Addresses

0 200 400 600

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

Figure 5: Company Addresses

Figure 6: Effect of training data size on accuracy for different datasets

hierarchical database into the HMM. Experiments on real-life address datasets yield very encouraging results.
Given the encouraging experimental results and the intuitive, human-interpretable nature of the model we believe
that the HMM approach is an excellent choice for the address elementization problem.

We are further refining our approach by adding support for automated feature selection, incorporating a
partial database and reducing amount of training data needed by active learning. Other future work on the
topic include correcting and allowing for spelling mistakes in the data and automatically segmenting a large
heterogeneous training dataset into subsets to be trained on separate HMMs.

References
[1] Brad Aldelberg. Nodose: A tool for semi-automatically extracting structured and semistructured data from text

documents. InSIGMOD, 1998.

[2] Vinayak R. Borkar, Kaustubh Deshmukh, and Sunita Sarawagi. Automatic text segmentation for extracting structured
records. Submitted for publication, 2000.

[3] Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match rules for information extraction.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 328–334, July 1999.

[4] Arturo Crespo, Jan Jannink, Erich Neuhold, Michael Rys, and Rudi Studer. A survey of semi-automatic extraction
and transformation. http://www-db.stanford.edu/ crespo/publications/.

[5] Helena Galhardas.http://caravel.inria.fr/ galharda/cleaning.html.

[6] Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large databases. InProceedings of the
ACM SIGMOD, 1995.

[7] Ralph Kimball. Dealing with dirty data. Intelligent Enterprise, September 1996.
http://www.intelligententerprise.com/.

[8] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper induction for information extraction. InProceedings of
IJCAI, 1997.

[9] Alvaro E. Monge and Charles P. Elkan. The field matching problem: Algorithms and applications. InProceedings of
the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996.

[10] Ion Muslea. Extraction patterns for information extraction tasks: A survey. InThe AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999.

[11] Ion Muslea, Steve Minton, and Craig A. Knoblock. A hierarchical approach to wrapper induction. InProceedings of
the Third International Conference on Autonomous Agents, Seattle, WA, 1999.

[12] Lawrence Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. InPro-
ceedings of the IEEE, 77(2), 1989.

[13] Lawrence Rabiner and Biing-Hwang Juang.Fundamentals of Speech Recognition, chapter 6. Prentice-Hall, 1993.

32

Accurately and Reliably Extracting Data from the Web:
A Machine Learning Approach

Craig A. Knoblock
University of Southern California

and Fetch Technologies

Kristina Lerman
University of Southern California

Steven Minton
Fetch Technologies

Ion Muslea
University of Southern California

Abstract

A critical problem in developing information agents for the Web is accessing data that is formatted
for human use. We have developed a set of tools for extracting data from web sites and transforming it
into a structured data format, such as XML. The resulting data can then be used to build new applications
without having to deal with unstructured data. The advantages of our wrapping technology over previous
work are the the ability to learn highly accurate extraction rules, to verify the wrapper to ensure that the
correct data continues to be extracted, and to automatically adapt to changes in the sites from which the
data is being extracted.

1 Introduction
There is a tremendous amount of information available on the Web, but much of this information is not in a form
that can be easily used by other applications. There are hopes that XML will solve this problem, but XML is
not yet in widespread use and even in the best case it will only address the problem within application domains
where the interested parties can agree on the XML schema definitions. Previous work on wrapper generation
in both academic research [4, 6, 8] and commercial products (such as OnDisplay’s eContent) have primarily
focused on the ability to rapidly create wrappers. The previous work makes no attempt to ensure the accuracy
of the wrappers over the entire set of pages of a site and provides no capability to detect failures and repair the
wrappers when the underlying sources change.

We have developed the technology for rapidly building wrappers for accurately and reliably extracting data
from semistructured sources. Figure 1 graphically illustrates the entire lifecycle of a wrapper. As shown in the
Figure, the wrapper induction system takes a set of web pages labeled with examples of the data to be extracted.
The user provides the initial set of labeled examples and the system can suggest additional pages for the user
to label in order to build wrappers that are very accurate. The output of the wrapper induction system is a set
of extraction rules that describe how to locate the desired information on a Web page. After the system creates
a wrapper, the wrapper verification system uses the functioning wrapper to learn patterns that describe the data
being extracted. If a change is detected, the system can automatically repair a wrapper by using the same patterns

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

33

Web
���e�

W����e�
	
��
�� �

����e�

Labeled
�eb�	a
e�

W����e�
�e����
��� �

��� ���� �

�e���be��
�

� �	

�
��a��ed
da�a

��a�
e
de�e��ed

W����e�

�a
e���� �be�

labeled

Figure 1:The Lifecycle of a Wrapper

Figure 2:Two Sample Restaurant Documents From the Zagat Guide.

to locate examples on the changed pages and re-running the wrapper induction system. The details of this entire
process are described in the remainder of this paper.

2 Learning Extraction Rules
A wrapper is a piece of software that enables a semistructured Web source to be queried as if it were a database.
These are sources where there is no explicit structure or schema, but there is an implicit underlying structure
(for example, consider the two documents in Figure 2). Even text sources, such as email messages, have some
structure in the heading that can be exploited to extract the date, sender, addressee, title, and body of the mes-
sages. Other sources, such as online catalogs, have a very regular structure that can be exploited to extract the
data automatically.

One of the critical problems in building a wrapper is defining a set of extraction rules that precisely define
how to locate the information on the page. For any given item to be extracted from a page, one needs an
extraction rule to locate both the beginning and end of that item. Since, in our framework, each document
consists of a sequence of tokens (e.g., words, numbers, HTML tags, etc), this is equivalent to finding the first

34

and last tokens of an item. The hard part of this problem is constructing a set of extraction rules that work for
all of the pages in the source.

A key idea underlying our work is that the extraction rules are based on “landmarks” (i.e., groups of con-
secutive tokens) that enable a wrapper to locate the start and end of the item within the page. For example,
let us consider the three restaurant descriptionsE1, E2, andE3 presented in Figure 3. In order to identify the
beginning of the address, we can use the rule

E1: ...Cuisine:<i>Seafood</i><p>Address:<i> 12 Pico St. </i><p>Phone:<i>...
E2: ...Cuisine:<i>Thai </i><p>Address:<i> 512 Oak Blvd.</i><p>Phone:<i>...
E3: ...Cuisine:<i>Burgers</i><p>Address:<i> 416 Main St. </i><p>Phone:<i>...
E4: ...Cuisine:<i>Pizza</i><p>Address: 97 Adams Blvd. <p>Phone:<i>...

Figure 3:Four sample restaurant documents.

R1 = SkipTo(Address) SkipTo(<i >)

which has the following meaning: start from the beginning of the document and skip every token until you find
a landmark consisting of the wordAddress , and then, again, ignore everything until you find the landmark
<i >. R1 is called astart rulebecause it identifies the beginning of the address. One can write a similarend rule
that finds the end of the address; for sake of simplicity, we restrict our discussion here to start rules.

Note thatR1 is by no means the only way to identfy the beginning of the address. For instance, the rules

R2 = SkipTo(Address : <i>)

R3 = SkipTo(Cuisine : <i>) SkipTo(Address : <i>)

R4 = SkipTo(Cuisine : <i> _ Capitalized_ </i> <p> Address : <i>)

can be also used as start rules.R2 uses the 3-token landmark that immediately precedes the beginning of the
address in examplesE1, E2, andE3, while R3 relies on two 3-token landmarks. Finally,R4 is defined based on
a 9-token landmark that uses the wildcard_Capitalized_, which is a placeholder for any capitalized alphabetic
string (other examples of useful wildcards are_Number_, _AllCaps_, _HtmlTag_, etc).

To deal with variations in the format of the documents, our extraction rules allow the use ofdisjunctions.
For example, let us assume that the addresses that are within one mile from your location appear in bold (see
exampleE4 in Figure 3), while the other ones are displayed as italic (e.g.,E1, E2, andE3). We can extract all
the names based on the disjunctive start rule

either SkipTo(Address :)

or SkipTo(Address) SkipTo(<i >)

Disjunctive rules areordered listsof individual disjuncts (i.e., decision lists). Applying a disjunctive rule is a
straightforward process: the wrapper successively applies each disjunct in the list until it finds the first one that
matches. Even though in our simplified examples one could have used the nondisjunctive rule

SkipTo(Address : _ HtmlTag_),

there are many real world sources that cannot be wrapped without using disjuncts.
We have developedSTALKER [11], a hierarchical wrapper induction algorithm that learns extraction rules

based on examples labeled by the user. We have a graphical user interface that allows a user to mark up several
pages on a site, and the system then generates a set of extraction rules that accurately extract the required
information. Our approach uses a greedy-covering inductive learning algorithm, which incrementally builds the
extraction rules from the examples.

35

In contrast to other approaches [4, 6, 8], a key feature ofSTALKER is that it is able to efficiently generate
extraction rules from a small number of examples: it rarely requires more than 10 examples, and in many cases
two examples are sufficient. The ability to generalize from such a small number of examples has a two-fold
explanation. First, in most of the cases, the pages in a source are generated based on a fixed template that
may have only a few variations. AsSTALKER tries to learn landmarks that are part of this template, it follows
that for templates with little or no variations a handful of examples usually will be sufficient to induce reliable
landmarks.

Second,STALKER exploits thehierarchicalstructure of the source to constrain the learning problem. More
precisely, based on the schema of the data to be extracted, weautomaticallydecompose one difficult problem
(i.e., extract all items of interest) into a series of simpler ones. For instance, instead of using one complex rule
that extracts all restaurant names, addresses and phone numbers from a page, we take a hierarchical approach.
First we apply a rule that extracts the whole list of restaurants; then we use another rule to break the list into
tuples that correspond to individual restaurants; finally, from each such tuple we extract the name, address, and
phone number of the corresponding restaurant. Our hierarchical approach also has the advantage of being able
to extract data from pages that contain complicated formatting layouts (e.g., lists embedded in other lists) that
previous approaches could not handle (see [11] for details).

STALKER is a sequential covering algorithm that, given the training examplesE, tries to learn a minimal
number ofperfect disjunctsthat coverall examples inE. By definition, a perfect disjunct is a rule that covers
at least one training example and on any example the rule matches it produces the correct result.STALKER first
creates an initial set of candidate-rulesC and then repeatedly applies the following three steps until it generates
a perfect disjunct:

- select most promising candidate fromC

- refine that candidate

- add the resulting refinements toC

OnceSTALKER obtains a perfect disjunctP , it removes fromE all examples on whichP is correct, and the
whole process is repeated until there are no more training examples inE. STALKER uses two types of refine-
ments: landmark refinementsand topology refinements. The former makes the rule more specific by adding a
token to one of the existing landmarks, while the latter adds a new 1-token landmark to the rule.

For instance, let us assume that based on the four examples in Figure 3, we want to learn a start rule for
the address.STALKER proceeds as follows. First, it selects an example, sayE4, to guide the search. Second, it
generates a set ofinitial candidates, which are rules that consist of a single 1-token landmark; these landmarks
are chosen so that they match the token thatimmediately precedesthe beginning of the address in the guiding
example. In our case we have two initial candidates:

R5 = SkipTo()

R6 = SkipTo(_HtmlTag_)

As the token appears only inE4, R5 does not match within the other three examples. On the other hand,R6
matches in all four examples, even though it matchestoo early(R6 stops as soon as it encounters anHTML tag,
which happens in all four examplesbeforethe beginning of the address). BecauseR6 has a better generalization
potential,STALKER selectsR6 for further refinements.

While refiningR6, STALKER creates, among others, the new candidatesR7, R8, R9, andR10shown below.
The first two are obtained via landmark refinements (i.e., a token is added to the landmark inR6), while the other
two rules are created by topology refinements (i.e., a new landmark is added toR6). As R10works correctly on
all four examples,STALKER stops the learning process and returnsR10.

R7 = SkipTo(: _HtmlTag_)

R8 = SkipTo(_Punctuation_ _HtmlTag_)

R9 = SkipTo(:) SkipTo(_HtmlTag_)

36

R10 = SkipTo(Address) SkipTo(_HtmlTag_)

By usingSTALKER, we were able to successfully wrap information sources that could not be wrapped with
existing approaches (see [11] for details). In an empirical evaluation on 28 sources proposed in [8],STALKER

had to learn 206 extraction rules. We learned 182perfectrules (100% accurate), and another 18 rules that had
an accuracy of at least 90%. In other words, only 3% of the learned rules were less that 90% accurate .

3 Identifying Highly Informative Examples
STALKER can do significantly better on the hard tasks (i.e., the ones for which it failed to learn perfect rules) if
instead ofrandom examples, the system is provided with carefully selected examples. Specifically, the most
informative examples illustrate exceptional cases. However, it is unrealistic to assume that a user is willing and
has the skills to browse a large number of documents in order to identify a sufficient set of examples to learn
perfect extraction rules. This is a general problem that none of the existing tools address, regardless of whether
they use machine learning.

To solve this problem we have developed anactive learningapproach that analyzes the set of unlabeled
examples to automatically select examples for the user to label. Our approach, calledco-testing[10], exploits
the fact that there are often multiple ways of extracting the same information [1]. In the case of wrapper learning,
the system can learn two different types of rules:forward andbackwardrules. All the rules presented above
areforward rules: they start at the beginning of the document and go towards the end. By contrast, abackward
rule starts at the end of the page and goes towards its beginning. For example, one can find the beginning of the
addresses in Figure 3 by using one of the following backward rules:

R11 = BackTo(Phone) BackTo(_Number_)

R12 = BackTo(Phone : <i>) BackTo(_Number_)

The main idea behind co-testing is straightforward: after the user labels one or two examples, the system
learnsbotha forward and a backward rule. Then it runsbothrules on a given set of unlabeled pages. Whenever
the rules disagree on an example, the system considers that as an example for the user to label next. The intuition
behind our approach is the following: if both rules are 100% accurate, oneverypage they must identifythe same
token as the beginning of the address. Furthermore, as the two rules are learned based on different sets of tokens
(i.e., the sequences of tokens that precede and follow the beginning of the address, respectively), they are highly
unlikely to make the exact same mistakes. Whenever the two rules disagree, at least one of them must be
wrong, and by asking the user to label that particular example, we obtain a highly informative training example.
Co-testing makes it possible to generate accurate extraction rules with a very small number of labeled examples.

To illustrate how co-testing works, consider again the examples in Figure 3. Since most of the restaurants in
a city arenot located within a 1-mile radius of one’s location, it follows that most of the documents in the source
will be similar toE1, E2, andE3 (i.e., addresses shown in italic), while just a few examples will be similar to
E4 (i.e., addresses shown in bold). Consequently, it is unlikely that an address in bold will be present in a small,
randomly chosen, initial training set. Let us now assume that the initial training set consists ofE1 andE2, while
E3 andE4 arenot labeled. Based on these examples, we learn the rules

Fwd-R1 = SkipTo(Address) SkipTo(<i >)

Bwd-R1 = BackTo(Phone) BackTo(_Number_)

Both rules correctly identify the beginning of the address for all restaurants that are more than one mile away,
and, consequently, they will agree on all of them (e.g.,E3). On the other hand,Fwd-R1 works incorrectly for
examples likeE4, where it stops at the beginning of the phone number. AsBwd-R1 is correct onE4, the two
rules disagree on this example, and the user is asked to label it.

To our knowledge, there is no other wrapper induction algorithm that has the capability of identifying the
most informative examples. In the related field of information extraction, where one wants to extract data from

37

free text documents, researchers proposed such algorithms [13, 12], but they cannot be applied in a straightfor-
ward manner to existing wrapper induction algorithms.

We applied co-testing on the 24 tasks on whichSTALKER fails to learn perfect rules based on 10 random
examples. To keep the comparison fair, co-testing started with one random example and made up to 9 queries.
The results were excellent: the average accuracy over all tasks improved from 85.7% to 94.2% (error rate reduced
by 59.5%). Furthermore, 10 of the learned rules were 100% accurate, while another 11 rules were at least 90%
accurate. In these experiments as well as in other related tests [10] applying co-testing leads to a significant
improvement in accuracy without having to label more training data.

4 Verifying the Extracted Data
Another problem that has been largely ignored in past work on extracting data from web sites is that sites
change and they change often. Kushmerick [7] addressed the wrapper verification problem by monitoring a
set of generic features, such as the density of numeric characters within a field, but this approach only detects
certain types of changes. In contrast, we address this problem by applying machine learning techniques to learn
a set of patterns that describe the information that is being extracted from each of the relevant fields. Since
the information for even a single field can vary considerably, the system learns the statistical distribution of
the patterns for each field. Wrappers can be verified by comparing the patterns of data returned to the learned
statistical distribution. When a significant difference is found, an operator can be notified or we can automatically
launch the wrapper repair process, which is described in the next section.

The learned patterns represent the structure, or format, of the field as a sequence of words and wildcards [9].
Wildcards represent syntactic categories to which words belong — alphabetic, numeric, capitalized, etc. —
and allow for multi-level generalization. For complex fields, and for purposes of information extraction, it is
sufficient to use only the starting and ending patterns as the description of the data field. For example, a set of
street addresses —12 Pico St., 512 Oak Blvd., 416 Main St. and97 Adams Blvd. — all start with a pattern
(_Number_ _Capitalized_) and end with(Blvd.) or (St.). We refer to the starting and ending patterns together
as thedata prototypeof the field.

The problem of learning a description of a field (class) from a set of labeled examples can be posed in
two related ways: as a classification or a conservation task. If negative examples are present, the classification
algorithm learns adiscriminatingdescription. When only positive examples are available, the conservation task
learns acharacteristicdescription,i.e. one that describes many of the positive examples but is highly unlikely
to describe a randomly generated example. Because an appropriate set of negative examples not available in
our case, we chose to frame the learning problem as a conservation task. The algorithm we developed, called
DataPro [9], finds all statistically significant starting and ending patterns in a set of positive examples of the
field. A pattern is said to be significant if it occurs more frequently than would be expected by chance if the
tokens were generated randomly and independently of one another. Our approach is similar to work on grammar
induction [2, 5], but our pattern language is better suited to capturing the regularities in small data fields (as
opposed to languages).

The algorithm operates by build building a prefix tree, where each node corresponds to a token whose
position in the sequence is given by the node’s depth in the tree. Every path through the tree starting at the root
node is a significant pattern found by the algorithm.

The algorithm grows the tree incrementally. Adding a child to a node corresponds to extending the node’s
pattern by a single token. Thus, each child represents a different way to specialize the pattern. For example,
when learning city names, the node corresponding to “New” might have three children, corresponding to the
patterns “New Haven”, “New York” and “New_Capitalized_”. A child node is judged to be significant with
respect to its parent node if the number of occurrences of the child pattern is sufficiently large, given the number
of occurrences of the parent pattern and the baseline probability of the token used to extend the parent pattern.
A pruning step insures that each child node is also significant given its more specific siblings. For example, if

38

there are 10 occurrence of “New Haven”, and 12 occurrences of “New York”, and both of these are judged to
be significant, then “New_Capitalized_” will be retained only if there are significantly more than 22 examples
that match “New_Capitalized_”. Similarly, once the entire tree has been expanded, the algorithm includes a
pattern extraction step that traverses the tree, checking whether the pattern “New” is still significant given the
more specific patterns “New York”, “New Haven” and “New_Capitalized_”. In other words, DataPro decides
whether the examples described by “New” but not by any of the longer sequences can be explained by the null
hypothesis.

The patterns learned by DataPro lend themselves to the data validation task and, specifically, to wrapper
verification. A set of queries is used to retrieve HTML pages from which the wrapper extracts some training
examples. The learning algorithm finds the patterns that describe the common beginnings and endings of each
field of the training examples. In the verification phase, the wrapper generates a test set of examples from
pages retrieved using the same or similar set of queries. If the patterns describe statistically the same (at a
given significance level) proportion of the test examples as the training examples, the wrapper is judged to be
extracting correctly; otherwise, it is judged to have failed.

Once we have learned the patterns, which represent our expectations about the format of data, we can then
configure the wrappers to verify the extracted data before the data is sent, immediately after the results are sent,
or on some regular frequency. The most appropriate verification method depends on the particular application
and the tradeoff between response time and data accuracy.

We monitored 27 wrappers (representing 23 distinct Web sources) over a period of several months. For
each wrapper, the results of 15-30 queries were stored periodically. All new results were compared with the last
correct wrapper output (training examples). A manual check of the results revealed 37 wrapper changes out of
the total 443 comparisons. The verification algorithm correctly discovered 35 of these changes. The algorithm
incorrectly decided that the wrapper has changed in 40 cases. We are currently working to reduce the high rate
of false positives.

5 Automatically Repairing Wrappers
Most changes to Web sites are largely syntactic and are often minor formatting changes or slight reorganizations
of a page. Since the content of the fields tend to remain the same, we exploit the patterns learned for verifying
the extracted results to locate correct examples of the data field on new pages. Once the required information has
been located, the pages are automatically re-labeled and the labeled examples are re-run through the inductive
learning process to produce the correct rules for this site.

Specifically, the wrapper reinduction algorithm takes a set of training examples and a set of pages from
the same source and uses machine learning techniques to identify examples of the data field on new pages.
First, it learns the starting and ending patterns that describe each field of the training examples. Next, each
new page is scanned to identify all text segments that begin with one of the starting patterns and end with one
of the ending patterns. Those segments, which we call candidates, that are significantly longer or shorter than
the training examples are eliminated from the set, often still leaving hundreds of candidates per page. The
candidates are then clustered to identify subgroups that share common features. The features used in clustering
are the candidate’s relative position on the page, adjacent landmarks, and whether it is visible to the user. Each
group is then given a score based on how similar it is to the training examples. We expect the highest ranked
group to contain the correct examples of the data field.

Figure 4 shows a actual example of a change to Amazon’s site and how our system automatically adapts to
the change. The top frame shows an example of the original site, the extraction rule for a book title, and the
extracted results from the example page. The middle frame shows the source and the incorrectly extracted result
after the title’s font and color were changed. And the bottom frame shows the result of the automatic reinduction
process with the corrected rule for extracting the title.

We evaluated the algorithm by using it to extract data from Web pages for which correct output is known.

39

Figure 4:An Example of the Reinduction Process

The output of the extraction algorithm is a ranked list of clusters for every data field being extracted. Each
cluster is checked manually, and it is judged to be correct if it contains only the complete instances of the field,
which appear in the correct context on the page. For example, if extracting a city of an address, we only want to
extract those city names that are part of an address.

We ran the extraction algorithm for 21 distinct Web sources, attempting to extract 77 data fields from all
the sources. In 62 cases the top ranked cluster contained correct complete instances of the data field. In eight
cases the correct cluster was ranker lower, while in six cases no candidates were identified on the pages. The
most closely related work is that of Cohen [3], which uses an information retrieval approach to relocating the
information on a page. The approach was not evaluated on actual changes to Web pages, so it is difficult to
assess whether this approach would work in practice.

6 Discussion
Our work addresses the complete wrapper creation problem, which includes:

� building wrappers by example,

� ensuring that the wrappers accurately extract data across an entire collection of pages,

� verifying a wrapper to avoid failures when a site changes,

40

� and automatically repair wrappers in response to changes in layout or format.

Our main technical contribution is in the use of machine learning to accomplish all of these tasks. Essentially,
our approach takes advantage of the fact that web pages have a high degree of regular structure. By analyzing
the regular structure of example pages, our wrapper induction process can detect landmarks that enable us to
extract desired fields. After we developed an initial wrapper induction process we realized that the accuracy of
the induction method can be improved by simultaneously learning “forward” and “backward” extraction rules to
identify exception cases. Again, what makes this possible is the regularities on a page that enable us to identify
landmarks both before a field and after a field.

Our approach to automatically detecting wrapper breakages and repairing them capitalizes on the regular
structure of the extracted fields themselves. Once a wrapper has been initially created, we can use it to obtain
numerous examples of the fields. This enables us to profile the information in the fields and obtain structural
descriptions that we can use during monitoring and repair. Essentially this is a bootstrapping approach. Given
the initial examples provided by the user, we first learn a wrapper. Then we use this wrapper to obtain many more
examples which we then analyze in much greater depth. Thus by leveraging a few human-provided examples,
we end up with a highly scalable system for wrapper creation and maintenance.

Acknowledgements
The research reported here was supported in part by the Rome Laboratory of the Air Force Systems Command and the
Defense Advanced Research Projects Agency (DARPA) under contract number F30602-98-2-0109, in part by the United
States Air Force under contract number F49620-98-1-0046, and in part by the Integrated Media Systems Center, a National
Science Foundation Engineering Research Center, under Cooperative Agreement No. EEC-9529152. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of any of the above organizations or any person connected with
them.

References
[1] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. InProc. of the 1988 Conference

on Computational Learning Theory, pages 92–100, 1998.
[2] R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state merging method. InLecture

Notes In Computer Science, page 862, 1994.
[3] W. Cohen. Recognizing structure in web pages using similarity queries. InProc. of the 16th National Conference on

Artificial Intelligence AAAI-1999, pages 59–66, 1999.
[4] D. Freitag and N. Kushmerick. Boosted wrapper induction. InProc. of the 17th National Conference on Artificial

Intelligence AAAI-2000, pages 577–583, 2000.
[5] T. Goan, N. Benson, and O. Etzioni. A grammar inference algorithm for the world wide web. InProc. of the AAAI

Spring Symposium on Machine Learning in Information Access, 1996.
[6] C. Hsu and M. Dung. Generating finite-state transducers for semi-structured data extraction from the web.Journal

of Information Systems, 23(8):521–538, 1998.
[7] N. Kushmerick. Regression testing for wrapper maintenance. InProc. of the 16th National Conference on Artificial

Intelligence AAAI-1999, pages 74–79, 1999.
[8] N. Kushmerick. Wrapper induction: efficiency and expressiveness.Artificial Intelligence Journal, 118(1-2):15–68,

2000.
[9] K. Lerman and S. Minton. Learning the common structure of data. InProc. of the 17th National Conference on

Artificial Intelligence AAAI-2000, pages 609–614, 2000.
[10] I. Muslea, S. Minton, and C. Knoblock. Co-testing: Selective sampling with redundant views. InProc. of the 17th

National Conference on Artificial Intelligence AAAI-2000, pages 621–626, 2000.
[11] I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for semistructured information sources.

Journal of Autonomous Agents and Multi-Agent Systems, 2001. (to appear).
[12] S. Soderland. Learning extraction rules for semi-structured and free text.Machine Learning, 34:233–272, 1999.
[13] C. Thompson, M. Califf, and R. Mooney. Active learning for natural language parsing and information extraction.

In Proc. of the 16th International Conference on Machine Learning ICML-99, pages 406–414, 1999.

41

ARKTOS: A Tool For Data Cleaning and Transformation in Data
Warehouse Environments

Panos Vassiliadis Zografoula Vagena Spiros Skiadopoulos Nikos Karayannidis
Timos Sellis

Knowledge and Database Systems Laboratory
Dept. of Electrical and Computer Engineering

National Technical University of Athens
fpvassil, zvagena, spiros, nikos, timosg@dbnet.ece.ntua.gr

Abstract

Extraction-Transformation-Loading (ETL) and Data Cleaning tools are pieces of software responsible
for the extraction of data from several sources, their cleaning, customization and insertion into a data
warehouse. To deal with the complexity and efficiency of the transformation and cleaning tasks we have
developed a tool, namelyARKTOS, capable of modeling and executing practical scenarios, by providing
explicit primitives for the capturing of common tasks.ARKTOS provides three ways to describe such
a scenario, including a graphical point-and-click front end and two declarative languages: XADL (an
XML variant), which is more verbose and easy to read and SADL (an SQL-like language) which has a
quite compact syntax and is, thus, easier for authoring.

1 Introduction
A data warehouse is a heterogeneous environment where data must be integrated both at the schema and at
the instance level [CGL+98]. Practice has shown that neither the accumulation nor the storage process of the
information seem to be completely credible. Errors in databases have been reported to be up to 10% range and
even higher in a variety of applications [WRK95]. [WSF95] report that more than $2 billion of U.S. federal
loan money had been lost because of poor data quality at a single agency; manufacturing companies spent over
25% of their sales on wasteful practices. The number came up to 40% for service companies. Clearly, as a
decision support information system, a data warehouse must provide high level quality of data and service. In
various vertical markets (e.g., the public sector) data quality is not an option but a strict requirement for the
proper operation of the data warehouse. Thus, data quality problems seem to introduce even more complexity
and computational burden to the loading of the data warehouse.

To deal with the complexity of the data warehouse loading process, specialized tools are already available
in the market, under the general titleExtraction-Transformation-Loading(ETL) tools [Evo00, Ard00, Dat00].
ETL as well asData Cleaningtools are pieces of software responsible for the extraction of data from several
sources, their cleaning, customization and insertion into a data warehouse.

A study for Merrill Lynch [ST98] reports some very interesting facts about the situation in the area of ETL
and Data Cleaning tools, by the end of 1998. These tools cover a labor-intensive and complex part of the data
warehouse processes, which is estimated to cost at least one third of effort and expenses in the budget of the data

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

42

warehouse. [Dem97] mentions that this number can rise up to 80% of the development time in a data warehouse
project. Still, due to the complexity and the long learning curve of these tools [ST98], many organizations prefer
to turn to in-house development to perform ETL and data cleaning tasks. The major problems with data cleaning
tools are complexity and price. Moreover, due to the nature of the IT departments, which are constrained in time
and budget, tools for off-line tasks like data cleaning are pushed aside from the list of products to purchase.

Several commercial tools exist in the market [Evo00, Ard00, Dat00]; a detailed list can be found in [LGI00].
Research efforts include the AJAX prototype developed at INRIA [GFSS00, GFSS99]. A discussion of the
research literature on data quality is found in [WSF95]. Finally, a description of our personal engagement in
practical aspects of ETL and cleaning in data warehouses can be found in [Vas00]. In the sequel, we will not
discriminate between the tasks of ETL and Data Cleaning and adopt the name ETL for both kinds of activities.

In order to pursue research in the field of data transformation and cleaning, we have developed a tool, namely
ARKTOS, to achieve the following goals:

� graphical and declarative facilities for the definition of data warehouse transformation and cleaning tasks;

� measurement of the quality of data through specific quality factors;

� optimized execution of complex sequences of transformation and cleaning tasks.

In the rest of this paper we will present the basic ideas behind the implementation and functionality of
ARKTOS as well as the declarative languages for the specification of transformation and cleaning scenarios.

2 Model and Functionality of ARKTOS

ARKTOS is based on a simple metamodel to achieve the desired functionality. The main process type of the
model is the entityActivity. An activity is an atomic unit of work and a discrete step in the chain of data
processing. Since activities in a data warehouse context are supposed to process data in a data flow, each activity
is linked toInput andOutput tables of one or more databases. An SQL statement gives thelogical, declarative
description of the work performed by each activity (without obligatorily being identical to the actual,physical
code that performs the execution of the activity). AScenariois a set of processes to be executed all together.
A scenario can be considered as the outcome of a design process, where the designer tailors the set of activities
that will populate the data warehouse. Each activity is accompanied by anError Type and aPolicy. Since
data are expected to encounter quality problems, we assume that several activities should be dedicated to the
elimination of these problems (e.g., the violation of the primary or the foreign key constraint). The error type of
an activity identifies the problem the process is concerned with. The policy, on the other hand, signifies the way
the offending data should be treated. Around each activity, severalQuality Factorscan be defined. The quality
factors are measurements performed to characterize the quality of the underlying information. For the moment,
quality factors in ARKTOS are implemented through the use of SQL queries. ARKTOS is also enriched with a
set of “template” generic entities that correspond to the most popular data cleaning tasks (like primary or foreign
key violations) and policies (like deleting offending rows, reporting offending rows to a file or table).

Connectivity. ARKTOS uses JDBC to perform its connections to the underlying data stores.
Transformation and cleaning primitives. ARKTOS offers a rich variety of primitive operations to support

the ETL process. More specifically, the cleaning primitives include: (a)Primary key violation, (b) Reference
violation, (c) NULL value existence, (d) Uniqueness violationand (e)Domain mismatch. Moreover, the tool
offers PropagationandTransformationprimitive operations. The propagation primitive simply pushes data to
the next layer of storage. The transformation primitive transforms the data to the desired format, according to
some pattern (which can be either built-in or user-defined). For example, a transformation primitive can be used
to transform a date field from dd/mm/yy to dd/mm/yyyy format. These primitives are customized by the user
(graphically or declaratively). The customization includes the specification of input and output (if necessary)
data stores, contingency policy and quality factors. For example, in the current version of ARKTOS, the format
transformation functions are performed programmatically using a freely available Java Package [ORO00] that
simulates the functionality of Perl regular expressions.

43

Contingency policy. Once a primitive filter is defined in the context of a scenario, it is possible that some
rows fulfill its criteria at runtime. For example, a particular row might violate the foreign key constraint for one
of its attributes. For each such filter, the user is able to specify a policy for the treatment of the violating rows.
For the moment, the policies supported by ARKTOS are: (a)Ignore(i.e., do not react to the error and let the row
pass), (b)Delete(from the source data store), (c)Report to a contingency fileand (d)Report to a contingency
table. It is possible that the user is requested to supply some additional parameters (for example, the name of
the file where the rows should be reported, or the format to which the values should be changed).

Trace Management. The physical properties of the execution of the ARKTOS scenarios are captured by
detailed log information kept for this reason. Thestatus, initialization, commitor abort information for each
execution of an activity is traced.

Scheduling. ARKTOS uses a freely available Java package [Bra99] to schedule the execution of scenarios
that have already been created and saved by the user. To perform this task, the user has to specify, in the correct
order, the name(s) of the files where the appropriate scenarios reside. Each of the scenarios participating in a
schedule can be executed either once, at a specific time point, or on the basis of a specified repetition frequency
(e.g., every Monday, or every 23rd day of each month, at 11:30 am).

3 Declarative Languages for ETL Processes
As we have already pointed out, that the major obstacles the ETL tools have to overcome are the issues of
user-friendliness and complexity. To this end, ARKTOS offers two possible ways for the definition of activities:
graphicallyanddeclaratively. The graphical definition is supported from a palette with all the possible activities
currently provided by ARKTOS. The user composes the scenario from these primitives, links them in a serial list
and resolves any pending issues of their definition. In the rest of this section we will focus on the declarative
definition of data warehouse processes in the ARKTOS environment.

There is a classical problem with declarative languages and formal specifications: the languages which are
easy to read are hard to write and vice-versa. To overcome the problem we resort to two declarative definition
languages:

� XADL (XML-based Activity Definition Language), an XML language for data warehouse processes, on
the basis of a well-defined DTD;

� SADL (Simple Activity Definition Language), a declarative definition language motivated from the SQL
paradigm.

The former language is rather verbose and complex to write; yet it is more comprehensible. The latter is
more compact and resembles SQL; thus it is suitable mostly for the trained designer. We next give an informal
presentation of the two languages, by using a motivating example (Figure 1) based on the former TPC-D standard
(now TPC-H and TPC-R) [Tra00].

1. Push data from table LINEITEM of source database S to table LINEITEM of the DW database.
2. Perform a referential integrity violation checking for the foreign key of table LINEITEM in database DW,

which is referencing table ORDER. Delete violating rows.
3. Perform a primary key violation check to the table LINEITEM. Report violating rows to a file.

Figure 1: Description of the scenario of the motivating example

3.1 XADL (XML-based Activity Definition Language)
In Figure 2 we illustrate a subset of the XADL definition for the scenario of the motivating example. Lines 67-
102 describe a simple activity. First, in Lines 68-85 the structure of the input table is given. Lines 86-92 describe
the error type (i.e., the functionality) of the activity which involves foreign key constraint violations. The target
column and table are specifically described. Lines 93-95 deal with the policy followed for the identified records
and declare that in this case, we simply delete them. The quality factors of the activity are described in Lines

44

96-101. Each quality factor is characterized by the SQL query that computes its value and the report file where
this value will be stored. The only quality factor in Figure 2 is the absolute number of violating rows and
is characterized by the SQL query of Line 97. For any valid scenario that we load in ARKTOS, its XADL
description can be automatically generated by the tool.

1. <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
...
67. <transformtype>
68. <input_table table_name="lineitem" database_url="jdbc:informix-sqli:

//kythira.dbnet.ece.ntua.gr:1500/dbs3:informixserver=ol_milos_tcp">
69. <column> l_orderkey </column>
70. <column> l_partkey </column>
...
85. </input_table>
86. <errortype>
87. <reference_violation>
88. <target_column_name> l_orderkey </target_column_name>
89. <referenced_table_name> Informix.tpcd.tpcd.tpcd.order </referenced_table_name>
90. <referenced_column_name> o_orderkey </referenced_column_name>
91. </reference_violation>
92. </errortype>
93. <policy> <delete/> </policy>
94. <quality_factor qf_name=No_of_reference_violations qf_report_file="H:\path\scenario3.txt">
95. <sql_query> select l_orderkey from lineitem t1 where not exists

(select o_orderkey from order t2 where t1.l_orderkey = t2.o_orderkey)
</sql_query>

96. </quality_factor>
97. </transformtype>
...
140. </scenario>

Figure 2: XADL definition of the scenario of the motivating example, as exported by ARKTOS

3.2 SADL (Simple Activity Definition Language)
The SADL language is composed of four definition statements: theCREATE SCENARIO, CREATE CON-
NECTION, CREATE ACTIVITYandCREATE QUALITY FACTORstatements. ACREATE CONNECTION
statement specifies the details of each database connection. ACREATE ACTIVITY statement specifies an
activity and aCREATE QUALITY FACTORstatement specifies a quality factor for a particular activity. The
CREATE SCENARIOstatement ties all the elements of a scenario together. In Figure 3 we depict the syntax of
these four statements.

CREATE SCENARIO <scenario_name> CREATE QUALITY FACTOR <qf_name> WITH ACTIVITY <activity_name>
WITH CONNECTIONS <con_1,...,con_m> REPORT TO <file_name>
ACTIVITIES <act_1,...,act_n> SEMANTICS <SQL query>

CREATE CONNECTION <connection_name> CREATE ACTIVITY <activity_name> WITH TYPE <error_type>
WITH DATABASE <url> ALIAS <db_alias> POLICY <policy_type>
[USER <user_name> PASSWORD <password>] [OUTPUT <output_name>(<attr_1,...,attr_m>)]
DRIVER <class_name> SEMANTICS <SQL query>

Figure 3: The syntax of SADL for theCREATE SCENARIO,CONNECTION,ACTIVITY ,QUALITY FACTOR
statements

Connections and activities are the first-class citizens within the context of a scenario. Thus, to declare a
CREATE SCENARIOstatement one has simply to provide the names of the respective connections and the
activities of the scenario. The definition of a connection, through theCREATE CONNECTIONstatement is
equally simple: the database URL and the class name of the respective driver are required. Since the database
URL is quite big in size for the user to write down, anALIAS clause is introduced. All table names are required
to be in the form<table name>@<database alias> to distinguish between synonym tables in different
databases. The username and password are optional (in order to avoid storing them in the file).CREATE
QUALITY FACTORis also a simple statement: one has to specify the activity in the context of which a quality
factor is defined, the report to which the value of the quality factor will be saved and the semantics of the quality
factor, expressed by an SQL statement (in practice any SQL statement that the database driver and JDBC can
support).

45

The CREATE ACTIVITYstatement is somewhat more complex. One has to specify first the functional-
ity of the activity in theTYPEclause. The<error type> placeholder can take values from the setfPUSH,
UNIQUESS VIOLATION,NULL EXISTENCE,DOMAIN MISMATCH,PRIMARY KEY VIOLATION,REF-
ERENCE VIOLATION, FORMAT MISMATCHg. The POLICY clause determines the treatment of the rows
affected by the activity. The<policy type> belongs to the setfIGNORE, DELETE, REPORT TO FILE,
REPORT TO TABLEg. TheOUTPUTclause specifies the target table or file (if there exists one). If a table is
to be populated, all the relevant attributes are specified too. The order of the attributes is important (it must be
in one-to-one correspondence with the attributes of the input tables as specified in the SQL query, which will be
described later). TheSEMANTICSclause is filled with an arbitrary SQL query. Several issues should be noted
for this clause:

� the order of the attributes in theOUTPUTclause should be in accordance with the order of the attributes
in theSELECTclause of the SQL query;

� the input tables are described in theFROMclause of the SQL statement;

� the order of the activities in theCREATE SCENARIOstatement is important, because it denotes the flow
of the activities.

Primitive Operation SQL statement SEMANTICS clause shortcuts
UNIQUENESS SELECT * FROM <table> <table>.<attribute>
VIOLATION GROUP BY <attribute>

HAVING COUNT(*) > 1
NULL EXISTENCE SELECT * FROM <table> <table>.<attribute>

WHERE <attribute> IS NULL
DOMAIN MISMATCH� SELECT * FROM <table> <table>.<attribute>

WHERE <attribute> NOT IN <domain specification> NOT IN <domain specification>
PRIMARY KEY SELECT * FROM <table> <table>.(<attribute 1,

VIOLATION GROUP BY (<attribute 1,...,attribute n>) ..., attribute n>)
HAVING COUNT(*) > 1

REFERENCE SELECT * FROM <table> <table>.<attribute>
VIOLATION WHERE <attribute> NOT IN NOT IN

(SELECT <target attribute) FROM <target table>) <target table>.<target attribute>
FORMAT MISMATCH�� SELECT APPLY(<reg exp>,<attribute>) TARGET APPLY(<reg exp>,<attribute>)

FROM <table> SOURCE APPLY(<regexp>,<attribute>)
WHERE APPLY(<regexp>,<attribute>)

PUSH Arbitrary SQL query Arbitrary SQL query
� works for intervals of numbers and strings

�� where<reg exp> is PERL regular expression acting as a formatting function

Figure 4: The SADL specification for the basic primitives offered by ARKTOS.

There are standardCREATE ACTIVITY statements for all the primitives (i.e., the specialized activities)
offered by ARKTOS. In Figure 4 we list them along with syntactic sugar shortcuts which make the life of the
designer much easier (remember that the type of the operation is given in theTYPE clause of theCREATE
ACTIVITY statement). Note again that in XADL and SADL we refer only to the logical semantics of the
activities and not to the way they are actually executed within the DBMS, which is hard-coded in the subclasses
of the ARKTOS architecture.

Figure 5 expresses our motivating example in SADL. In Lines 1-4 we define our scenario, which consists
of three activities. The order of the activities appearing in the figure is in descending execution priority. The
connection characteristics for connecting to the data warehouse are declared in Lines 6-9. An example of the
SADL description of an activity can be seen in Lines 11-16 for the reference violation checking activity. Finally,
in Lines 18-22 we give the declaration of a quality factor, which reports to a file the number of foreign key
violating rows.

4 Conclusions and Future Work
In this paper, we have presented ARKTOS, a tool we have developed for modeling and executing practical data
management scenarios by providing explicit primitives for the capturing of common tasks (like data cleaning,
scheduling and data transformations). Within ARKTOS, we provide three ways to describe such a scenario: a

46

1. CREATE SCENARIO Scenario3 WITH
2. CONNECTIONS S3,DW
3. ACTIVITIES Push_lnitem, Fk_lnitem, Pk_lnitem
4. ...
5. CREATE CONNECTION DW WITH
6. DATABASE "jdbc:informix-sqli://kythira.dbnet.ece.ntua.gr:1500/

dbdw:informixserver=ol_milos_tcp" ALIAS DBDW
7. DRIVER "com.informix.jdbc.IfxDriver"
8. ...
9. CREATE ACTIVITY Fk_lnitem WITH
10. TYPE REFERENCE VIOLATION
11. POLICY DELETE
12. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

(select o_orderkey from order@DBDW t2 where t1.l_orderkey=t2.o_orderkey)"
13. ...
14. CREATE QUALITY FACTOR "# of reference violations" WITH
15. ACTIVITY fk_lnitem
16. REPORT TO "H:\path\scenario3.txt"
17. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

(select o_orderkey from order@DBDW t2 where t1.l_orderkey = t2.o_orderkey)"

Figure 5: Part of scenario 3 expressed in SADL
graphical point-and-click front end and two declarative languages. The first one, XADL (an XML variant) is
oriented towards an easily understood description of a scenario. The second one, SADL is tailored to support
the declarative definition of the ETL scenario in an SQL-like style.

In the future we plan to add more functionality to ARKTOS, in order to provide the users with richer trans-
formation primitives. Several research issues remain open, such as (a) the development of an impact analyzer,
based on the results of [VQVJ00], showing how changes in the definition of a table or an activity affect other
tables or activities in the data warehouse; (b) the linkage to a metadata repository, and specifically ConceptBase
[JGJ+95], in order to exploit its enhanced query facilities, and (c) the construction of an optimizer to attain
improved efficiency during the execution of composite scenarios.

References
[Ard00] Ardent Software. DataStage Suite, 2000. See also www.ardentsoftware.com.
[Bra99] Branch Cut Software. JTask: Java Task Scheduler, 1999. Available at www.branchcut.com/jTask.
[CGL+98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information integration: Conceptual

modeling and reasoning support. InProceedings of CoopIS’98, pages 280–291, 1998.
[Dat00] DataMirror Corporation. Transformation Server, 2000. See also www.datamirror.com.
[Dem97] M. Demarest. The politics of data warehousing, 1997. Available at

www.hevanet.com/demarest/marc/dwpol.html.
[Evo00] Evolutionary Technologies International. ETI*EXTRACT, 2000. See also www.eti.com.
[GFSS99] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An extensible framework for data cleaning. Technical

Report RR-3742, INRIA, 1999.
[GFSS00] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: An Extensible Data Cleaning Tool. InProceedings

of ACM SIGMOD-2000, June 2000.
[JGJ+95] M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt, and S. Eherer. ConceptBase - a deductive objectbase for

meta data management.Intelligent Information Systems, 4(2), 1995.
[LGI00] LGI Systems Inc. The Data Warehousing Information Center, 2000. See also www.dwinfocenter.org.
[ORO00] ORO Inc. PerlTools 1.2, 2000. Available at www.savarese.org/oro.
[ST98] C. Shilakes and J. Tylman. Enterprise Information Portals. Enterprise Software Team, November 1998. Available

at www.sagemaker.com/company/downloads/eip/indepth.pdf.
[Tra00] Transaction Processing Performance Council. TPC-H and TPC-R, 2000. Available at www.tpc.org.
[Vas00] P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences and observations of a researcher.

In Proceedings of DMDW’2000, June 2000.
[VQVJ00] P. Vassiliadis, C. Quix, Y. Vassiliou, and M. Jarke. A Model for Data Warehouse Operational Processes. In

Proceedings of CAiSE’00, June 2000.
[WRK95] R.Y. Wang, M.P. Reddy, and H.B. Kon. Towards Quality Data: An attribute-based Approach.Decision Support

Systems, 13, 1995.
[WSF95] R.Y. Wang, V.C. Storey, and C.P. Firth. A Framework for Analysis of Data Quality Research.IEEE Transactions

on Knowledge and Data Engineering, 7(4), 1995.

47

48

The 17th International
Conference on Data Engineering

April 2–6, 2001
Heidelberg, Germany

The 17th International Conference on Data Engineering
(ICDE 2001) will be held in a beautiful old town –
Heidelberg. This is at the center of Germany’s most
active high-tech region where you find world
renowned companies, numerous software startups,
many world-class research centers such as the ABB
Research Center, the Deutsche Telekom Research
and Development Center, the European Media
Laboratory, the European Molecular Biology
Laboratory, the Fraunhofer Gesellschaft Institute for
Graphical Data Processing, the German Center for
Cancer Research, the GMD National Center for
Information Technology, the Computer Science
Research Center, the Karlsruhe Research Center,
and a number of universities with strong database
research groups (amongst others Darmstadt
University of Technology, International University in
Germany, University of Karlsruhe, University of
Mannheim and not far away the University of
Stuttgart). Such combination of strong industry,
ground breaking research institutions, economic
prosperity, and a beautiful host town provide an ideal
environment for a conference on Data Engineering.

With tutorials, panels and industrial program.

Website & Registration at
http://www.congress-online.de/ICDE2001

Early Registration until the 2nd of March 2001

in the Heart of Europe
Topics Include:
XML, METADATA, and SEMISTRUCTURED DATA

DATABASE ENGINES & ENGINEERING

QUERY PROCESSING

DATA WAREHOUSES, DATA MINING, AND KNOWLEDGE
DISCOVERY

ADVANCED IS MIDDLEWARE

SCIENTIFIC AND ENGINEERING DATABASES

EXTREME DATABASES

E-COMMERCE and E-SERVICES

WORKFLOW and PROCESS-ORIENTED SYSTEMS

EMERGING TRENDS

SYSTEM APPLICATIONS AND EXPERIENCE

Sponsored by the
IEEE Computer Society

Financial Support: Special support for travel expenses and con-
ference fees will be available for participants from Eastern Europe.

Conference Officers
General Chairs:
Andreas Reuter European Media Laboratory and

International University in Germany
David Lomet Microsoft Research, USA
Program Co-chairs:
Alex Buchmann University of Darmstadt, Germany
Dimitrios Georgakopoulos Telcordia Technologies, USA
Panel Program Chair:
Erich Neuhold GMD-IPSI, Germany
Tutorial Program Chair:
Guido Moerkotte University of Mannheim, Germany
Eric Simon INRIA, France
Industrial Program Co-chairs:
Peter Lockemann University of Karlsruhe, Germany
Tamer Ozsu University of Alberta, Canada
Steering committee liaison:
Erich Neuhold GMD-IPSI, Germany
Marek Rusinkiewicz MCC, USA
Organizing Chair:
Isabel Rojas European Media Laboratory,

Germany
Demos & Exhibits:
Wolfgang Becker International University in Germany
Andreas Eberhart
Local Arrangements:
Bärbel Mack European Media Laboratory,
Claudia Spahn Germany
Public Relations:
Peter Saueressig European Media Laboratory,

Germany

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

