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Abstract—In this paper, we study the problem of learning
a regular model from a number of sequences, each of which
contains events in a time unit. Assuming some regularity in such
sequences, we determine what events should be deemed irregular
in their contexts. We perform an in-depth analysis of the model
we build, and propose two optimization techniques, one of which
is also of independent interest in solving a new problem named
the Group Counting problem. Our comprehensive experiments
on real and hybrid datasets show that the model we build is very
effective in characterizing regularities and identifying irregular
events. One of our optimizations improves model building speed
by more than an order of magnitude, and the other significantly
saves space consumption.

I. INTRODUCTION

We live in “interesting times”. For computing, this is true
in that we are inundated with data, and computing power is
ever increasing. Much of this data has to do with ubiquitous
computing — data given by sensors that detect various at-
tributes of the state of the world, e.g., GPS (for locations),
temperature and light sensors, accelerometers and gyroscopes
(for movements and orientations), among many others that
even come with smartphones today. Continuous sensing creates
relational sequence data where one of the attributes is time,
along with any number of other attributes. Each tuple in the
sequence describes the state at an instant of time, which often
implies the event, activity, or action that is occurring. Certain
events and activities often have some patterns within a time
unit (typically a day or the duration of a process), and the
same pattern is repeated periodically over many time units.
It is useful to find out the model of such regularity, and to
identify irregular or unusual events when they happen. Let us
look at some examples.

Example 1: On March 24, 2015, the copilot Lubitz crashed
Germanwings Flight 4U9525 in the French Alps, killing all
150 people on board. Data shows that in the flight into
Barcelona prior to the doomed flight, Lubitz practiced a
controlled descent, where he toyed with the plane’s settings,
programming it for sharp descent multiple times [1]. The
“selected altitude” of the flight changed repeatedly, including
several times being set as low as 100 feet above the ground.
Lubitz also put the engines on idle, which gives the plane the
ability to quickly descend. It is highly unusual for a pilot to do
these. The airline company technically could have known about
Lubitz’ apparent rehearsal on this previous flight, but only if it
had looked at the flight data in the short period while the plane
was unloading and loading passengers in Barcelona. There
are various sensors in a modern airplane to record operations
and settings of the pilot. Suppose a “regular” model for a
single flight (which is the time unit mentioned above) had
been built, irregular and unusual events during this flight (i.e.,

going up and down with the selected altitude) would have been
automatically detected, and the tragedy in the subsequent flight
could have been prevented.

Example 2: Elderly people (or persons with autism) who
live alone often lead a dangerous life. If they fall down on
the floor, or pass out in the bathroom, no one may notice it
for a long time. It would be useful to continuously sense the
location, movement, and other signals from the person, and
have a software program automatically monitor the situation.
These people’s normal daily activities are usually simple, upon
which a regular model may be built (the time unit here is
one day) and abnormal events may be detected as soon as
they happen. Many lives could be saved from such continuous
automatic monitoring.

Example 3: Consider a person who lives a normal life
with established and habitual daily activities, such as going to
office for work, having meetings with some group of people,
dining in a certain set of restaurants, entertaining at a number
of places, and so on. Variations are possible, say, between
workdays and weekends. Automatic recognizing and logging
“irregular” events are often of interest. For instance, if a
meeting takes place with someone who I do not usually interact
with or at a place I do not typically visit, it may be useful to
have this logged. Or if anything significant happens, I may look
back to see if any recent irregular events might have caused
this outcome.

Event detection and activity recognition have been well-
studied in the ubiquitous computing and artificial intelligence
communities (e.g., [2]). In the above motivating applications,
each tuple at a time instant may have an event/activity label
indicating the event or action that is happening. Each time
unit — e.g., a flight in the pilot example or a day in the latter
two examples — has a sequence of tuples, and we may have
a number of such sequences, from which a regular model is
to be learned. Using this regular model, irregular events are
further identified. Outlier/anomaly detection has been studied
for sequence data (cf. a survey [3]), temporal data (cf. a survey
[4]), and in more general contexts (cf. a survey [5]). However,
previous work is designed for different problems and is very
different from ours. We discuss it in detail in Sec. VIII (related
work) and Sec. VII (experiments).

Our Contributions. We begin with formally stating the
problem, and proposing to cluster events into an event hi-
erarchy tree. This abstracts events into higher level com-
monalities, which we call generalized events, to build into
the regular model. In this way, even though specific events
may differ, variations can be permitted, and the higher level
common characteristics of the events are recognized in the
model. Then we first study how to build a regular model.
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Our algorithm performs message passing progressively and
builds the regular model at the same time. This framework is
easily parallelizable. The resulting model characterizes events
and their contexts. Next we devise a method that returns the
regularity score of each event in a sequence, based on the
model. Our experiments show that our model is very effective
in identifying irregular events.

We further perform an in-depth analysis of property of the
model graph. We adaptively estimate the probability of creating
a new edge into the model graph during the model building
process, based on a novel two function recursive approach,
also incorporating runtime information obtained from actual
data. This results in an optimization that we can stop the
model building algorithm early when the new edge probability
is very small. Our experiments show that this optimization
is very effective. The performance improvement is dramatic,
often over an order of magnitude. Moreover, there is virtually
no loss in accuracy. The precision is 1, and the recall is 0.99
or higher for edges in the model graph.

Another optimization is to reduce memory consumption.
We first abstract out a general problem called the Group
Counting Problem, which is of independent interest. It is a
generalization of the commonly known set membership prob-
lem in computer science. We devise a low memory footprint
approximate solution named blended bitmap set (BBS). Our
experiments show that with BBS our regular model building
uses significantly less memory (e.g., one eighth) without losing
much accuracy and model power. Finally, we carry out a
comprehensive experimental study to examine our regular
model properties, effectiveness in finding irregular events, and
the efficiency of our algorithms. Our contributions can be
summarized as follows:

• We identify and formulate an interesting problem with
practical significance (Sec. II).

• We propose an algorithmic framework based on mes-
sage passing and event hierarchies to build a regular
model, which can be easily parallelized (Sec. III).

• We propose a method that returns the regularity of
all events in a sequence, which is shown to be very
effective in experiments (Sec. IV).

• We perform two optimizations: one is to estimate
a statistic dynamically at runtime and can stop the
execution early, while the other is a new compact ap-
proximate data structure to significantly save memory
consumption (Sec. V, VI).

• We perform a systematic experimental study to eval-
uate our approaches (Sec. VII).

II. PROBLEM STATEMENT AND PREPROCESSING

A. Problem Statement

We are given a set of event sequences S = {s1, s2, . . . , sm}
as input, where each sequence si(1 ≤ i ≤ m) consists of a
list of events within the duration of a time unit. Thus, the time
units are repeated, and each time unit is a time interval, such as
a day or the duration of a flight. The whole set S spans m time
units. The events in si are denoted as si[1],si[2], . . . Note that
si’s may be of different lengths. Each event si[j] is a tuple
with a number of attributes including a timestamp attribute,
which is monotonically increasing within each sequence si.

Fig. 1: Illustrating the event hierarchy tree created by Cobweb.

Given S, the first aspect of our problem is to obtain a
model M that characterizes the regularity of the sequences in
S. Most, if not all, sequences in S share this same model.
We call it a regular model. The second aspect of our problem
is to return a function R, such that given the regular model
M and any sequence s (regardless of whether s ∈ S), one
can obtain the regularity score of any event in s, denoted as
R(s, j,M) for the jth event in s. Moreover, one can obtain the
regularity score of the sequence s, denoted as R(s,M). Such
regularity scores are between 0 and 1, with 1 being the most
regular and 0 the least. Note that, in the problem statement,
we intentionally do not restrict the form of the regular model
or the score function, in order to make the possible solutions
flexible.

B. Preprocessing Events

For building a regular model, we propose to preprocess
the events in the data into an event hierarchy tree T. The
idea is that a (new) generalized higher-level event incorporates
multiple more specific events, hence allowing us to model
variations of the same general event. For example, the events
“drinking coffee” and “drinking tea” can be generalized to a
higher level event “drinking beverage”, even though “drinking
beverage” is not an event in the original sequence set S (while
“drinking coffee” and “drinking tea” are). Similarly, suppose
a person sometimes has lunch at restaurant A, sometimes at
restaurant B. Then the events “lunch at restaurant A” and
“lunch at restaurant B” can be generalized into a higher level
event “lunch at a restaurant”, or even further, just “having
lunch”. All original events in S appear as leaves of the event
tree T, while internal nodes of T are higher-level events. Thus,
if different sequences in S show variations of a general event,
their commonality can still be modeled, knowing the event
hierarchy T. An event in that context that does not belong to
the more general event can be an irregular event.

We merely propose the general strategy of clustering events
into an event hierarchy T. There can be multiple ways to
implement this strategy. In fact, if nothing is done, all the
original events in S can be deemed a “flat” tree, as leaves under
a single root node. Hence, our subsequent algorithm framework
is always applicable to any event data. Such clustering is
based on the attributes in an event. We use a technique called
conceptual clustering [6] in machine learning. Given a set
of events (or object descriptions in general), it produces a
classification scheme over the events based on their attributes.
Specifically, we use the Cobweb algorithm provided as part
of the commonly used Weka machine learning tools [7]. Fig.
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1 shows a snippet of the event tree produced by Cobweb on
one of our test datasets. After this conceptual clustering, each
sequence si in S corresponds to a sequence of leaf nodes of
T. Each of these leaf nodes e belongs to more general event
types that are e’s ancestors in T.

III. BUILDING A REGULAR MODEL

In this section, we propose an approach to solve the first
aspect of the problem stated in Section II-A, namely to build
a regular model. This takes as input a set of event sequences
S and the event hierarchy tree T discussed in Section II-B.
Intuitively, the general idea is that an event e is “regular” if it
“fits in” its “context”, in terms of what other events are before
and after it. If this context is common for e to be in, then e is
regular. However, one has to keep in mind that the relevant
surrounding events in the context may not be immediately
preceding or succeeding e, as some random events could occur
in between.

Our algorithm is based on “message passing”. Each event
(in each sequence of S) initiates a message to its right neighbor
event. These messages propagate one step at a time to the
receiver’s right neighbor. During this progressive propagation,
each event pair (message initiator, receiver) is added to a
counter maintained for each event pair. When the counter for
an event pair is above a threshold, this event pair is added
as an edge in a graph, which we will eventually return as
the regular model. The event pairs we keep track of include
general event types as well, i.e., the internal nodes of T. Thus,
the model tolerates variations of events belonging to a general
type, although an edge over a more general event type carries
less weight when we compute the “regularity score” in Section
IV.

Another point is that the regular model that we return is
concise. During the message propagation, we do not add an
edge from event e1 to event e2 to the model graph if there
already exists a path from e1 to e2 in the model graph (which
means each edge in this path takes fewer message passing
steps). Thus, if there is a common event sequence a → b →
c, then we only have two edges a → b and b → c in the
model graph, but not a→ c. Besides efficiency, another reason
for doing this is that, in considering an event e’s “context”,
we would prefer events closer to e, even though we do allow
interleaving irrelevant events.

For a node v in T , we define the level of v, denoted as
l(v), to be the maximum number of edges to traverse from
v to a leaf that is a descendant of v (i.e., in v’s subtree).
Thus, all leaves have a level of 0. We show the algorithm
in BUILDREGULARMODEL.

In line 1, we initialize a model graph, where the vertices
are just the nodes of T, and the edges are to be determined in
this algorithm. In line 2, we start an “agent” for each distinct
leaf event. These agents will be responsible for sending and
receiving messages. In lines 3-4, we use the keyword “in
parallel” to emphasize the fact that each loop can be executed
independently in parallel. Indeed, our message passing algo-
rithmic framework is highly parallelizable. For event s[i] in
sequence s, we denote its agent as a[i]. In line 5, a[i + 1] is
the agent for the event’s right neighbor.

Algorithm 1: BUILDREGULARMODEL (S,T)

Input: S: a set of m event sequences,
T: an event hierarchy tree
Output: a regular model M

1 G←(V,E) where V is nodes of T and E is to be determined
2 set of agents A← leaves of T
3 for each s ∈ S in parallel do
4 for each event s[i] ∈ s in parallel do
5 agent a[i] initiates a message and sends to a[i+ 1]

6 R(u, v)← 0, ∀u, v ∈ V, u 6= v
7 R(v, v)← 1, ∀v ∈ V
8 for each time step t do
9 for each agent a in parallel do

10 if a receives a message msg then
11 a0 ← msg’s initiator
12 for each v1 ∈ ancestors (a0), v2 ∈ ancestors(a)

do
13 if R(v1, v2) = 1 then
14 continue
15 set the bit in bm(v1, v2) for a’s sequence
16 if |bm(v1, v2)| > τ ·m then
17 E ← E

⋃
(v1, v2)

18 l← max(l(v1), l(v2))
19 for each x ∈ V do
20 for each y ∈ V do
21 if max(l(x), l(y)) ≥ l and
22 R(x, v1) = R(v2, y) = 1 then
23 R(x, y)← 1

24 for each s ∈ S in parallel do
25 for each event s[i] ∈ s in parallel do
26 agent a[i] propagates its message to a[i+ 1]

27 return G as regular model M

In lines 6-7, the binary matrix R(u, v) is to keep track of
“reachability” from vertex u to vertex v in the model graph G
so far. More precisely, R(u, v) = 1 if there exists a path from u
to v where every vertex on this path has a level no greater than
max(l(u), l(v)). This is exactly the condition under which we
do not create a new edge from u to v. Note that if there is a
vertex on this path with a level greater than those of both u
and v, it is still beneficial to add a direct edge from u to v,
since it does not go through a more general event (which is a
stronger relationship). Lines 6-7 are to initialize R such that a
vertex is only reachable to itself.

At each time step (line 8), the receiver agent receives
the message from the sender agent. We call it a time step
here, which simply means the propagation of one hop of the
messages. Line 11 gets the original initiator of the message
(the event/agent) who creates the message in the beginning
(i.e., line 5). In line 12, we iterate through each ancestor of
a0 and each ancestor of a in the input event tree T, where a0

and a correspond to leaves of the tree. If there is a path from
v1 to v2 (lines 13-14), then we do not bother to create a new
edge. Otherwise, in line 15, we “increment the counter” for
this event pair v1, v2. However, this is not a simple counter,
as each sequence in S can only be counted once. That is, we
keep track of, out of the m sequences in total, how many have
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encountered the event pair (v1, v2) in the message passing so
far. Therefore, we use a bitmap bm(v1, v2) of m bits (one bit
for each sequence) as the “counter” for this event pair. In line
16, |bm(v1, v2)| denotes the number of 1’s in this bitmap. If
it is above a threshold (fraction τ ), we add this event pair as
an edge into E of the model graph.

Lines 18-23 are to maintain the reachability matrix R.
Since we have just added an edge (v1, v2) into the graph,
we want to find all vertex pairs (x, y) that are changed in
R. Clearly, if there is already a path (x, v1) and a path (v2, y)
indicated in R (line 22), there now exists a path (x, y) due to
the addition of edge (v1, v2). There is an additional condition
that x and y must not both be at levels lower than l in T (line
21); this is required by the definition of R(x, y) being 1, as
discussed earlier.

Lines 24-26 simply propagate each message to the right,
preparing for the next time step (back to the loop in line 8).
The loop in line 8 ends when there are no more messages to
process, i.e., all messages have propagated through the right
ends of the sequences. When that happens, the graph G is
returned as the regular model M (line 27).

Example 4: Let us look at a simple example to have a
more concrete idea of how the algorithm proceeds. Suppose
S has three sequences s1, s2, and s3 all being “abc”. That
is, there are three leaf events a, b, and c. For simplicity, let
us assume the tree T is flat and we do not consider internal
nodes for now. Let the threshold parameter τ = 2/3 (line
16). We show how we obtain the final model, in which there
are two edges (a, b) and (b, c). In line 5, each sequence will
have two messages a → b and b → c. In lines 6-7, R is a
3-by-3 matrix where only the diagonal entries are 1. In line
10, agent for event b receives a message from the agent for
event a. The bitmap bm(a, b) in line 15 has three bits, one for
each sequence. All three bits of bm(a, b) are set to 1 since
all three sequences encounter this event pair message. In line
16, it is above the threshold 2; hence the edge (a, b) is added
to the edge set E of the model graph (line 17). Lines 18-23
will set the entry (a, b) in R to be 1. In the same manner, the
other message b → c in this round will create an edge (b, c)
in the model graph, and set the reachability entry R(b, c) to
be 1. Since both R(a, b) and R(b, c) are 1, lines 19-23 will
set R(a, c) to be 1 as well. Now lines 24-26 propagate the
message initiated by a and received by b to its right neighbor
c, for all three sequences. Then in the next time step (loop
at line 8), c receives this message originally initiated by a.
Thus, we are considering the event pair (a, c). However, line
13 finds that R(a, c) = 1; therefore (a, c) will not be added as
an edge in the model graph. At this point, all messages have
propagated to the right end of the sequences, and the graph G
containing two edges (a, b) and (b, c) is returned as the model.

We can see that the message passing framework in BUIL-
DREGULARMODEL can be easily parallelized. Except for the
serial time steps in line 8, all the execution steps within each
time step are highly parallelizable. A few comments are in
place. First, we have to understand the complexity that the
“preceding” and “succeeding” relevant events in the context
might not immediately precede or follow the event in question.
There can be irrelevant or irregular events in between. This
is one source of “noise”. Second, we allow another type of
variation that events may agree on a more general type in the

hierarchy of T, if not the most specific event type (i.e., leaf
level of T). However, different penalty weights may be inflicted
depending on the application. For example, variations on the
duration of an event may be significant for some applications,
such as in the living-alone elder people example (Example 2),
where a long stay in the bathroom is irregular and must be
alerted. Edge weights in the model graph will be discussed in
Section IV when we compute regularity scores.

IV. REGULARITY SCORE AND IRREGULAR EVENTS

Given a regular model M found in Section III, we now
address the second aspect of the problem, i.e., to give a
function/procedure that returns a regularity score R(s, j,M)
for event s[j], as well as the regularity R(s,M) of the whole
sequence s. The procedure we give is a novel “ping” message
based algorithm that computes the regularity scores of all
events in a sequence (at the same time), as well as the
regularity score of the whole sequence.

The basic idea is that we let each event agent a[i] in s
initiate a ping message and send it to its right neighbor a[i+1],
which in turn propagates the message to its right neighbor, and
so on. Then we see if we can match such an (initiator,receiver)
pair to an edge e in M. Intuitively, a match to an edge with
endpoints lower in T is a better match, as the events are more
specific. Thus, there is a multiplicative discount factor γ(0 <
γ ≤ 1) for each level increment of one of the endpoins of e
in T (γ may further be customized for particular nodes in T,
but we omit such details).

Informally, an irregular event is an event whose ping
receives no response (in terms of matching an edge in M),
or who does not respond to anyone else’ pings. This means
that the event is “strange” in its context in the sequence.

Line 3 initializes two arrays pre[i] and post[i] that indicate
the regularity of s[i] with respect to the events before and after
s[i], respectively. As in BUILDREGULARMODEL, we iterate
through each pair of event (message initiator and receiver, lines
5-7), and check if this event pair is an edge in the regular model
(line 10). If it is, we get the weight of this edge (line 11). As
discussed earlier, the weight w is based on a discount factor
γ(0 < γ ≤ 1) that signifies the importance of an upper level
edge. If both v0 and v are leaves (i.e., level 0), then w is 1. If
a model has fewer leaf level edges but more edges on higher
level events, γ can be set higher to give more weight to such
edges. We will get to this issue in the experiment section.

Lines 12-15 update the pre[·] value of the receiver and
the post[·] value of the message initiator if we get a higher
weight. In lines 16-17, the messages are passed on to the right
neighbors. In the end, the regularity score r[i] of each event
s[i] is the product of its pre[·] score and post[·] score (line 19),
and the regularity score of the whole sequence is the average
of the individual events’ scores (line 20).

Since w, pre[·], and post[·] values are all between 0
and 1, the regularity scores are between 0 and 1 too. The
lower the score, the more irregular the event (or sequence)
is. This algorithm essentially does what we can do given the
information of a set of sequences S: checking if the event
in question has a context that is common in S (through its
model M). We find in the experiments (Section VII) that this
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Algorithm 2: COMPUTEREGULARITY (s,M)

Input: s: an event sequence,
M: regular event model
Output: regularity r[i] of each event s[i], and regularity r of s

1 for each event s[i] ∈ s in parallel do
2 agent a[i] initiates a message and sends to a[i+ 1]
3 initialize pre[i] and post[i] to 0

4 for each time step t do
5 for each agent a[i] in parallel do
6 if a[i] receives a message msg then
7 a[j]← msg’s initiator
8 for each v0 ∈ ancestors (a[j]),
9 v ∈ ancestors(a[i]) do

10 if (v0, v) ∈M then
11 w ← γl(v0)+l(v)

12 if w > pre[i] then
13 pre[i]← w

14 if w > post[j] then
15 post[j]← w

16 for each letter s[i] ∈ s in parallel do
17 agent a[i] propagates its message to a[i+ 1]

18 for each event s[i] ∈ s in parallel do
19 r ← pre[i] · post[i]

20 r ←
∑|s|

i=1 r[i]

|s|

metric is very effective in identifying irregular events within
a sequence, even though the sequence itself is overall regular
(having a high regularity score). Note that an event at the very
beginning (or very end, resp.) of a sequence may have the
pre[·] score (or post[·] score, resp.) being 0, which gives a
low regularity score. However, we can quickly find such an
event at the border of a sequence and only look at its post[·]
score (or pre[·] score, resp.) that truly indicates its regularity.

As another remark, consider the scenario that an event e
is missing from a sequence. What impact does it have on the
regularity scores of other events in this sequence? Informally,
it depends on how “important” this event e is to other events
(with respect to the regular model M). If M is “linear” around
e, like the one shown in Fig. 2(a), missing e would only affect
d’s post[·] score and f ’s pre[·] score — hence only d and f ’s
regularity scores. If, on the other hand, M is like in Fig. 2(b),
where e’s incoming neighbor d has multiple outgoing edges,
and e’s outgoing neighbor f has multiple incoming edges,
then the regularity scores of these other events would not be
significantly changed by the absence of e.

V. ANALYSIS AND OPTIMIZATION

Intuitively, during the BUILDREGULARMODEL algorithm,
as a message propagates a long way, the chance that it will
form new edges in G becomes very small. This is because it
is more likely to have a “path” between two farther nodes as
the number of possible paths increases. Hence, when the edge
probability becomes low enough, we may stop the lengthy
message propagation process. We now rigorously analyze this
idea.

From an agent that initiates a message, let pn denote the

Fig. 2: Illustrating the impact of a missing event “e” from a
sequence. (a) A regular model where missing e will only make
events d and f irregular. (b) A regular model where missing e
will not have a significant impact on the regularity scores of
other events in the sequence.

probability that there exists an edge to an event n time steps
later (i.e., an edge that spans n hops), and let qn denote the
probability that there exists a path to an event n time steps
later. We devise a novel two function (pn and qn) recursive
approach to solve pn and qn simultaneously.

We further define fn as the probability that an event s[i] in
S and an event s[i+ n] is a frequent pair in S, i.e., the event
order s[i] followed by s[i+n] appears in more than τ sequences
in S. fn can be estimated as the empirical probability as
BUILDREGULARMODEL is run and messages are propagated
incrementally.

We then have:

pn = fn · (1−
n−1∑
i=1

piqn−i) (1)

qn =
n∑
i=1

piqn−i (2)

In Equation (1), there is an edge to a vertex n hops away
(pn) if and only if the pair is frequent (fn) and there is no path
with multiple edges between the two nodes (1−

∑n−1
i=1 piqn−i).

The case of multiple-edge path is subdivided according to the
number of hops of the first edge in the path (i.e., pi), and
the remaining path (qn−i). Similarly, in Equation (2), the case
of existing a path of n hops is subdivided according to the
number of hops of the first edge in the path (i.e., pi). The
boundary conditions are q0 = 1 and p1 = f1.

It is not hard to see that, by applying Equations (2) and
(1) alternately, we can iteratively obtain all qi’s and pi’s up to
qn and pn (i.e., in the order q1, p2, q2, p3, and so on). We can
stop the process, as well as the algorithm, when pn is small
enough (i.e., when n is big enough).

A few remarks are in place. The above analysis serves
both as understanding of the model graph property (i.e., how
likely an edge crosses over n events in the sequence), and as
a performance optimization in that we can stop the algorithm
early when pn is small enough (i.e., the model is stable).

Secondly, we choose to empirically measure fn and an-
alytically derive pn because fn is much easier (in terms of
accuracy) to be measured empirically (as a single frequency
number for the whole set of sequences S). This is because
typically pn � fn when n is large, as evidenced by Equation
(1) showing pn < fn and shown empirically. It is well
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known that a very small probability number pn (when n is
large) is extremely difficult to estimate empirically (requiring
a very large sample size) [8]. Furthermore, the frequency
measurement fn is increasingly more accurate as time step
progresses (n increases) since more event pairs have been seen
so far as the basis for determining if the frequency threshold
τ ·m is reached.

Our experiments in Section VII show that (1) pn converges
quickly to close to 0 (Fig. 14), (2) the performance improve-
ment with early stop is dramatic, often more than an order
of magnitude (Fig. 15), and (3) there is hardly any loss on
accuracy, with precision 1 and recall 0.99 or higher (Fig. 16).
The details are in Section VII. Thus, this optimization should
always be performed.

The final remark is that this is a dynamic analysis and
estimation on the fly based on statistics collected at execution
time. It is impossible to do this statically, as the result depends
on the actual data.

VI. FURTHER ENHANCEMENT

Recall that, in the BUILDREGULARMODEL algorithm, we
need to maintain a bitmap for each ordered pair (u, v) in
S, which may be very space consuming when the number
of events is large. Consider this general problem that is of
independent interest:

Group Counting Problem: There are a large num-
ber of elements, and a set of m groups. There
are continuous, possibly duplicate input pairs of
(element, group) information. Use a succinct data
structure to store this information. A query is of the
following form: given an element, return an estimate
of how many groups this element belongs to, and
possibly which groups.

When m = 1, this problem is exactly the commonly known set
membership problem, and can be approximately solved by a
hash table, or in particular, a Bloom filter [9]. Thus, the Group
Counting problem is a generalization of the set membership
problem.

The Group Counting problem is part of BUILDREGULAR-
MODEL for counting the frequency of event pairs (lines 15-16
of BUILDREGULARMODEL). Specifically, each distinct event
pair (v1, v2) is an element, and each sequence in S is a group
(hence there are m groups). Given an event pair element, we
need to query how many groups (sequences) it is in (and
compare this number with τ ·m). Therefore, we discuss our
space-efficient approximate solution to the Group Counting
problem.

We devise a novel approximation technique, which we
call a blended bitmap set (BBS), to solve this problem. A
BBS consists of k rows and w columns of bitmaps, while
each bitmap has m bits. The choice of k and w is based on
memory constraint and will be discussed shortly. We choose
k hash functions hi(1 ≤ i ≤ k) randomly from a universal
hash function family [10]. Each hi corresponds to a row of w
bitmaps. Fig. 3 shows an example BBS structure.

The basic idea is as follows. Whenever an element-group
pair (e, g) arrives (meaning element e is in group g), we apply

Fig. 3: Illustrating a BBS structure where k = 3, w = 5, and
m = 4. That is, there are 3 hash functions (one for each row),
each hash function have 5 possible values (thus 5 columns),
and there is a bitmap of 4 bits at each cell (for 4 groups). An
empty cell indicates its bitmap is all 0’s now.

each of the k hash functions hi to e and get the hash value be
hi(e). We take logw bits from hi(e), which corresponds to a
column (say, column j) in the ith row. Then we set the group
information (group g) in the bitmap of cell (i, j), denoted as
bm[i, j]. However, we do not directly set bit g of bm[i, j].
Instead, we apply a random permutation permi over the m bits,
where permi is also determined by hi(e) (by taking a few bits
from it). Suppose bit g maps to bit g′ with this permutation.
Then we set bit g′ of bm[i, j]. This is done for each of the k
hash functions (k rows).

The query/lookup function on a BBS also first applies each
of the k hash functions and locates cell (i, j) and bm[i, j] in
the same way. Then it applies the reverse of the permutation
perm−1

i on bm[i, j] (for each 1 ≤ i ≤ k). This gets the
original bitmaps back. Then we do a bitwise AND over the
k recovered bitmaps to estimate the group membership and
group count. The bit permutations in BBS operations are for
balancing the collision probabilities at each bit position (robust
to group size skewness) to accurately estimate group counts,
which is detailed later. We show these two algorithms below.

Algorithm 3: BBS-SETELEMENTGROUP(bbs, e, g)

Input: bbs: a blended bitmap set,
e : element,
g : group id
Output: updated bbs, group size sum sum0

1 for each i← 1 . . . k do
2 ri ← hi(e)
3 use bits from ri to determine column id j ∈ 1 . . . w
4 use bits from ri to determine a random permutation

permi

5 g′ ← permi(g)
6 if bit g′ of the bitmap bm[i, j] in cell c[i, j] = 0 then
7 set that bit to 1

8 if line 7 is performed at least once then
9 sum0 ← sum0 + 1

BBS-SETELEMENTGROUP is exactly as discussed above.
The ri in line 2 is the (random) hash value from the ith hash
function. One detail we have not discussed is the permutation
permi in line 4. A fully uniformly random permutation over
m bits requires logm! bits to describe. This is too many bits to
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take from ri. Moreover, doing permi and perm−1
i would be

rather costly. As mentioned earlier, the goal of permutation is
to have an accurate estimation of group count (detailed later).
We must balance between feasibility and accuracy. Thus, we
partition a bitmap into a constant number b of blocks, and
permute the blocks uniformly at random. This only requires
log b! bits from ri, and is much more efficient. There are
standard algorithms to do the random permutation of b blocks,
such as the Knuth shuffle [11] with a cost O(b).

Line 5 is to apply this permutation function to bit position
g, and g′ is the position it is permuted to (along with its
block). We set that bit (line 7). Lines 8-9 are to maintain
a counter sum0, which is the total (estimated) number of
distinct elements currently in the BBS — it can be an under-
estimate due to collisions. This will be used in BBS-LOOKUP
for adjusting the group count estimate.

Algorithm 4: BBS-LOOKUP(bbs, e, sum0)

Input: bbs: a blended bitmap set,
e : element,
sum0: current group size sum
Output: bitmap of groups e is in, and estimated group count

1 gm← bitmap of all 1’s // group membership of e
2 for each i← 1 . . . k do
3 ri ← hi(e)
4 use bits from ri to determine column id j ∈ 1 . . . w
5 use bits from ri to determine a random permutation

permi

6 bm′ ← perm−1
i (bm[i, j])

7 gm← gm&bm′

8 c0 ← sum0/m
9 if c0 has changed significantly from previous call then

10 i← 0; p0 ← 0
11 repeat
12 pi+1 ← [1− (1− 1

w
)

c0
1−pi ]k

13 i← i+ 1
14 until pi converges; let the converged value be p

15 x← number of 1’s in gm
16 return gm and x−mp

1−p

Line 1 of BBS-LOOKUP initializes a bitmap gm to be all
1’s for its m bits. Lines 2-4 are as before to apply each of the k
hash functions and get to cell (i, j) of BBS. Then line 6 applies
the reverse permutation to bm[i, j], i.e., the reverse operations
of the b block permutation for BBS-SETELEMENTGROUP. Let
the recovered bitmap be bm′ (line 6). Note that only the same
element e will use the same permi as it is determined by bits
of hi(e). Line 7 is the bitwise AND operation. Thus, after the
loop, gm ends up being the bitwise AND of the k original
bitmaps (before permutation) corresponding to e. Clearly, the
bits corresponding to all the groups that element e is in must
be 1 in gm.

At this point, although gm contains the estimated group
membership of element e, the total group count can be an
overestimate due to collisions on other bits.

Theorem 1: After the loop in lines 2-7 of BBS-LOOKUP,
any bit in gm that should be 0 (for a group that e is not in)
has an estimated false positive probability of [1− (1− 1

w )c]k,
where c is the average group size.
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Fig. 4: The convergence of the pi series

Proof: Element e maps to k cells in BBS (one in each
row) due to the hash functions. For this bit in gm (let it be
bit x) to be a false positive, it must have been set to 1 in the
bitmaps of all these k cells. Let us consider these k cells one at
a time, say cell (i, j). In order for bit x of bm[i, j] to be 1, there
are two conditions: (1) with a random permutation determined
by its hash value, another elements group ID landed on bit
x; and (2) that element’s hi hash value happens to go to j.
The probability of (2) is 1

w , and due to random permutation,
in expectation, c distinct elements satisfy (1), where c is the
average group size stated in the theorem, i.e., the average
number of distinct elements in each group. Therefore, the
probability that at least one of such collisions happens in cell
(i, j) is 1 − (1 − 1

w )c. For bit x to be a false positive, this
needs to be true for all k cells, giving the probability stated in
the theorem.

In line 8 of BBS-LOOKUP, c0 is an under-estimate of the
average group size c due to collisions (false positives).

Theorem 2: The pi series in the loop at lines 10-14 will
converge. Moreover, the converged value p is an unbiased
estimate of the bit false positive probability in gm, and x−mp

1−p
is an unbiased estimate of the number of groups that e is in.

Proof: First, we claim that the pi series in line 12
monotonically increases. We prove this by induction on i.
In the base case, when i = 0, clearly pi+1 > pi since
p1 = [1−(1− 1

w )c0 ]k > 0 = p0. For the induction step, suppose
pi > pi−1 is true. Then we show that pi+1 > pi. This is true
because [1 − (1 − 1

w )
c0

1−x ]k increases when x increases from
pi−1 to pi. Since the pi series monotonically increases, and
since it has an upper bound 1, from the Monotone Convergence
Theorem [12], it must converge. Furthermore, since c0

1−p is an
unbiased estimate of c, the converged value p must also be
an unbiased estimate of the bit false positive probability from
Theorem 1. Finally, if the true total number of groups that e
is in is y, then x = y + (m− y)p in expectation, which gives
y = x−mp

1−p as an unbiased estimation.

Fig. 4 plots the convergence of the pi series with (arbitrary)
parameters k = 3, w = 500, and c0 = 300. Finally, let us
discuss the optimal choice of parameters k and w. Suppose
we are given a space budget. Since each cell of BBS contains
a bitmap of the same size, it is equivalent to having an upper
bound on k · w. Let this limit be k · w = M .

Theorem 3: Given the constraint k · w = M , the choice
of k and w that minimizes the bit false positive probability in
Theorem 1 is k = M

c ln 2 and w = c
ln 2 .
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Fig. 5: A snippet (subgraph) of the regular model learned.

Proof: From Theorem 1, the false positive probability is
[1−(1− 1

w )c]k ∼= (1−e− c
w )k. To minimize it, we use Lagrange

multipliers [13] and define a function

Λ(k,w, λ) = (1− e− c
w )k + λ(kw −M)

where we use the constraint that kw = M . We then solve the
equation system ∂Λ

∂k = 0, ∂Λ
∂w = 0, and ∂Λ

∂λ = 0, which gives
k = M

c ln 2 and w = c
ln 2 as in the theorem.

Note that c is variant as new (element, group) pairs are
inserted. Thus, there is no optimal fixed choice throughout the
process. In our problem, we estimate the maximum number of
event pairs separately for each sequence (e.g., by sampling),
and make the parameter choice optimal for the time when BBS
nearly reaches its maximum element count.

VII. EXPERIMENTS

In this section, we perform a systematic evaluation of
our work using two real world datasets and a hybrid dataset
(combining user input data with simulation tools). We study the
effectiveness and efficiency of our framework and approach.
Specifically, we answer the following questions:
• How effective is our regular model? In particular, what

are some properties of the model graphs such as vertex
degrees? Do the models make sense?

• What irregular events can we find? If we “inject” some
irregular events, can they be found using the model?
How does it compare with previous work?

• The model building algorithm based on message
passing is easily parallelizable. Can we verify this
observation even in the most commonplace comput-
ing environment — multicore computers as for most
laptops and desktops today?

• Recall that we estimate the new-edge probability in
a model graph by an analysis based on a dynamic
measurement on the fly. What does this probability
series look like in practice? Is it effective in early
stopping w.r.t. performance improvement and model
accuracy?

• How effective is the BBS optimization in the tradeoff
between memory consumption and model accuracy?

A. Datasets and Setup

We use the following real-world and hybrid datasets to
perform the empirical study:

Smart house data. This dataset originates from the work
of Tapia et al. [14], downloaded from [15]. Between 77 and 84
sensor data collection boards equipped with reed switch sen-
sors were installed in two single-person apartments collecting
data about human activity for two weeks. The sensors were
installed in everyday objects such as drawers, refrigerators,
containers, etc. to record opening-closing events (activation de-
activation events) as the subject carried out everyday activities.
Activities associated with the sensor signals are labeled in the
data.

Hybrid data. This is based on the research work on human
activity recognition [16]. The dataset is called hybrid in that it
is designed to combine user input data on daily activities and
sensor signals with simulation tools for flexibility. We use it
to test our algorithms on data with various parameters.

GPS data. This GPS trajectory dataset was collected in
Microsoft Research’s Geolife project over five years [17], [18].
A GPS trajectory is represented by a sequence of timestamped
points, each of which contains the information of latitude,
longitude, height, speed and heading direction. This dataset
contains 17,621 trajectories with a total distance of 1,292,951
kilometers and a total duration of 50,176 hours. These trajecto-
ries were recorded by different GPS loggers and GPS-phones.
This dataset is 1.6 GB.

We implement all the algorithms in the paper — both a
serial version and a multi-threaded version — in Oracle Java
1.8.0 45. In addition, we download the Machine Learning
software Weka [7] to use its Cobweb conceptual clustering im-
plementation for obtaining event hierarchies. All experiments
are performed on a machine with an Intel Core i7 2860QM
(Quad-Core) 2.50 GHz processor and an 8GB memory.

In an excellent survey on anomaly detection for sequences
[3], Chandola et al. categorize all previous work into solving
three problems. Even though it is not specifically designed for
event sequences as in our solution, potentially applicable to our
problem is their Category 2, i.e., detecting short subsequences
in a long sequence T that are anomalous w.r.t. the rest of
T (the other two categories are finding whole sequences that
are anomalous w.r.t. a sequence database, and determining
if a given query pattern in a sequence is anomalous w.r.t.
its expected frequency, resp.). To apply it to our problem,
a concatenation of the sequences over all time units is T ,
and the detected short subsequences are irregular events. We
implement the t-STIDE based algorithm described in [3] for
Category 2 problems, which is also an overall best algorithm
as found in the experimental study by Chandola et al. [19].
We compare with this work on the effectiveness in finding
irregular events.

B. Experimental Results

We build a regular model for each dataset. The regular
models of the smart house data and the hybrid data indicate
the inherent regularity in daily activity sequences. For GPS
data, there is a concentration area at latitude range [39.90725,
40.05447] and longitude range [116.31632, 116.51534] (an
area in Beijing near Microsoft Research Asia). We divide this
rectangle into a 32× 32 grid, where each of the 1024 areas is
about 0.27km2, and is treated as a discrete location. Thus, our
model signifies the regularity in the location and movement
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Fig 6: Vertex degrees (Hybrid) Fig 7: Vertex degrees (GPS) Fig 8: Irregular events (SH) Fig 9: Irregular events (Hybrid)

daily event sequence of a user. From these regular models, we
can identify irregular events.

Models and Finding Irregular Events. We first examine
the effectiveness of our models. All the regular models for the
three datasets indicate the event context and order information
as described in Section III. Varieties and generalizations of
events are also encoded in the model through event hierarchies.
Let us take a look at an example snippet of a model.

Fig. 5 shows a subgraph of the model learned from the
hybrid data (similar to the smart house data). As discussed
earlier, the model graph shows the preceding and succeeding
context of events allowing possible interleaving events between
two events connected by an edge. Moreover, the model is
succinct. For instance, there is no edge between “getting up”
and “applying makeup”, since a path getting up → brushing
teeth → applying makeup is already formed when the “mes-
sage” from “getting up” reaches “applying makeup” in the
BUILDREGULARMODEL algorithm.

For clarity, we only show some “leaf to leaf” edges in Fig.
5. Our regular model also includes event vertices at various
levels of the event hierarchy produced by conceptual clustering
(Cobweb). Hence there are also edges between vertices of
higher levels. For example, in the model of Fig. 5, leaf nodes
“making tea” and “making coffee” have a parent node in the
event hierarchy, indicating the generalization relationship. Let
us label this parent node “making beverage”. There is an edge
from “applying makeup” to “making beverage” which is not
shown in Fig. 5. However, there is no edge from “applying
makeup” to “making coffee”, since the person mostly drinks
tea in the morning. The edge from leaf to a higher level
node allows variation and generalization of events, and there
is some“penalty” in this generalization when computing the
regularity score in COMPUTEREGULARITY (line 10). If the
person one day makes coffee instead of tea, “making beverage”
will receive a smaller regularity score — unusual but not
completely impossible.

To have a better understanding of the model graph property,
we measure various types of node degrees — the average leaf
to leaf degree, leaf to any node, and any node to any node
degrees. Fig. 6 shows the result of these statistics for the model
of the hybrid dataset, for various threshold parameter τ values
in BUILDREGULARMODEL. We can see that the average leaf-
leaf degree ranges between 4 and 0, and decreases as τ
increases. This is because as the frequency threshold increases,
fewer event pairs are qualified for edges. The average leaf to
any node (marked leaf-all in Fig. 6) and the average all-all

degrees are higher as they are for more general event types.
An interesting phenomenon here is that, when τ decreases in
the low value range, the average node degrees may actually
decrease. This is because, when τ is smaller, paths between
two nodes tend to be formed earlier, preventing the creation
of an edge between these two (more distant) nodes. Hence the
curve is not necessarily monotonic.

The result on the smart house dataset is very similar and
is omitted. We show the result for the GPS dataset in Fig.
7. While the trend is roughly similar, the leaf-leaf degree
is lower when τ is above 0.4 for the GPS data than for
the hybrid data. This indicates that the user behavior is less
regular at the leaf level, which corresponds to fine-granularity
of location (0.27km2 grids). The behavior is more regular
when the location grids are coarser, at higher levels of the event
hierarchy. Such edges are useful too, and the weights (in line
10 of COMPUTEREGULARITY) can be adjusted to penalize
higher level edges less. Any leaf-leaf edge has a weight 1,
and the weight is multiplied by a discount factor γ ≤ 1 when
an endpoint of the edge increases a level in the hierarchy. By
default, we use γ = 0.5 for the first two datasets and γ = 0.8
for the GPS dataset.

We next examine the ability of our regular model in finding
irregular events. For each dataset, we can find a number of
unusual events — activities or places visited. We show a few
of them here. Fig. 8 lists a few from the smart house data.
The first group of two bars in Fig. 8 is the regularity scores
of a sequence and an irregular event e1 therein, respectively.
This irregular event e1 is “Preparing lunch”, and its context
contains “going to work” both in the morning (before e1) and
in the afternoon (after e1). We find that in this dataset the
user rarely prepares lunch at home if there are events “going
to work” both in the morning and afternoon (presumably the
user usually eats lunch at work). The regularity score of e1 is
around 0.2, much lower than the score of the whole sequence
(around 0.8).

To test the model’s ability in locating irregular events, we
also inject two events e2 and e3 which have unusual contexts
in the dataset. e2 is“watching TV” and the context is in the
morning, while e3 is “preparing snack” and the context is
at night. We insert e2 and e3 into two random sequences
respectively, build the model, and report the regularity scores.
The second group of two bars in Fig. 8 show the scores of the
sequence and e2, and the third group similarly for e3.

Fig. 9 shows the result for the hybrid dataset. The first
group of two bars is for an existing event e1 “making tea”,
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and the context does not have “heating water” anywhere
before it (but the sequence is merely “shower”, “applying
makeup”, “making tea”, followed by“making breakfast”). In
the dataset, however, making tea almost always has heating
water somewhere in front of it. The second group of two bars
is for another existing event e2 “having breakfast”, but there
is no “making breakfast” prior to it, which gives e2 a low
regularity score. The third group of two bars is for an injected
event, where we change an existing event “making tea” to
a new event e3 “making coffee”. As discussed earlier, this
user rarely makes coffee in the morning, but both leaf nodes
generalize to the parent event node “making beverage”. The
regularity score of the original “making tea” is 1, while the
new e3 “making coffee” only has a score of 0.25, which is
slightly higher than e1 and e2 due to the match of edges over
the parent node “making beverage”.

Then we examine the effectiveness of using the t-STIDE
algorithm in previous work for Category 2 problem [3], as
discussed at the end of Sec. VII-A. We set the window-size
parameter k to be 8, as found optimal in [19]. Fig. 10 shows
the result with the smarthouse data for the same three irregular
events as in Fig. 8, and Fig. 11 with the hybrid data for the
same events in Fig. 9. Unlike our approach, this line of work
shows the anomaly score—the higher the score is (closer to
1), the more anomalous it is. For each irregular event, we
show three bars, with the first being the average anomaly
score over all sequences, the second being the average of the
sequence where the event is in, and the third being the anomaly
score of the event itself. We can see that this algorithm is
completely ineffective in locating the three irregular events
in smarthouse data; all bars show anomaly scores close to 1.
For hybrid data (Fig. 11), it is better with event 1, but the
sequence average is still close to e1’s score, indicating a great
number of false positives inside the sequence. The detection
result is completely wrong with e2, as its anomaly score is
even lower than the sequence average. The result for e3 is fine
after changing “making tea” to “making coffee”; however, we
find that before the change, when e3 is “making tea”, its score
is still close to 1, which is erroneous as it should not be an
anomaly. When we change the parameter k to smaller values,
all scores decrease, but it is still very ineffective in isolating
the target irregular events.

The reason is that the previous approaches are mostly
designed for time series data with its discretized version [3].
They do not work well for our problem because relevant
context events, which mostly depend on time, can be rather far
away in terms of the number of other events in between. The
other events in between may also be in any order (especially

with the smarthouse data). This causes a serious problem
for previous work. Our approach based on message passing
and graph edges is much more robust to such noisy event
sequences, since messages will be able to reach the relevant
context events.

Performance and Optimizations. In the next set of ex-
periments, we examine the efficiency of the algorithm for
building regular models. We have observed that our message
passing algorithmic framework in BUILDREGULARMODEL
can be easily parallelized. This is indeed the case in our
implementation. We can easily write a multi-threaded program
that runs on the most commonplace hardware — multicore
processors. Our experimental machine has four cores. We show
the execution time results on the GPS dataset over various
threshold τ values in Fig. 12. As τ increases, execution time
decreases. This is because a greater τ implies that fewer
event pairs are qualified as edges in the model graph, and
hence the bookkeeping work as well as “reachability” check
in BUILDREGULARMODEL is reduced. Furthermore, we can
see that the multi-threaded version achieves nearly four times
speedup over the serial version under the quad-core machine,
verifying the parallelizability of the algorithm.

In Fig. 13, likewise, we show the execution time result for
the hybrid dataset, varying the period over which a regular
model is learned. The period ranges from 45 days to 730
days (typically it is not desirable to learn a model over too
long a period, as model changes over time, and should be
re-learned). There is a very interesting phenomenon here: as
period increases, the speedup achieved by the multi-threaded
version is much more than 4 times (its execution time still
increases with the period, but much slower). This is because,
as the number of events to be processed is large, the multi-
threaded version starts from many positions in the sequences,
and finds edges and paths in the model graph much earlier than
the serial version. This has positive feedback (“the rich gets
richer”), in that such edges and paths will prune much work
on those event pairs immediately. Certainly in principle a more
careful implementation of the serial version may improve its
performance to be only 4 times worse than the multi-threaded
version; the point is that such an implementation may involve
heavy tuning and is hard to do.

We next empirically verify our analysis in Section V of the
probability of a new edge as message passing progresses over
time. The optimization here is that the algorithm can stop early
when this estimated probability on the fly is small enough.
The only statistics we need to collect during BUILDREGU-
LARMODEL is fn for time step n, the empirical probability
that an event pair encountered at this time step is frequent
(above threshold τ ). Then our algorithm in Section V will
estimate the probability of a new edge at this time step. We plot
this probability series over time steps in Fig. 14, for all three
datasets. After a short initial instability, the probability of new
edge quickly converges to almost 0 within 5 to 8 time steps
for all three datasets. The initial instability is due to inaccurate
estimate of fn in the beginning, as the number of total event
pairs encountered is still small. Since fn is more accurate over
time, the confidence of our estimation of the probability of new
edge also increases over time. Fig. 14 informs us that the early
stop optimization should be very effective, as the model should
usually be very stable within a limited number of time steps.
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Fig 16: Accuracy of early stop Fig 17: BBS optimization Fig 18: Accuracy of BBS optim. Fig 19: Group count adjustment

This is indeed verified in our next two figures, on performance
and accuracy (of the resulting model), respectively.

Using the 90 days hybrid dataset, varying the average daily
sequence length, in Fig. 15, we show the execution times with
and without the early stop optimization (i.e., stop when the
probability of new edge is below 0.01), marked as “early stop”
and “hanging on” in the figure, respectively. We can see that
the performance improves tremendously (easily more than an
order of magnitude), especially for longer sequences, since
stopping after a small number of time steps saves more work.

We then examine the accuracy of the resulting model after
this optimization, shown in Fig. 16 for all three datasets.
We show the precision and recall of the edges in the model
graph with the optimization, compared to the one without
optimization. Precision is defined as the fraction of edges in
the model under optimization that are also in the one without
optimization, while recall is the other way around. We can
see that in all three datasets, the model under optimization is
almost identical to the original one. In particular, the precisions
are all 1.0, and the recalls are 0.99 or higher. Precision is
always 1.0 is exactly expected, because the execution with
early stop optimization is identical to the original one before
stopping, and hence all the edges it gets in the model are also
in the original model. In summary, this set of experiments
(Figures 14-16) gives us more confidence that the early stop
optimization should always be used.

In the final set of experiments, we examine the BBS opti-
mization. We first show the performance result in Fig. 17 for
the hybrid dataset over a period of 365 days, measuring both
execution times (left plot) and memory consumption (right
plot), where we explicitly set the memory constraint of the
BBS version to be about 1/8 of the original execution (which
accordingly determines the optimal parameters of BBS). While
significantly saving memory space, one tradeoff of the BBS

optimization is the slight increase of execution time, as shown
in the left plot. In both plots, the left bar is with BBS
optimization and the right bar is without. The slight increase
in execution time is due to applying a constant number of
universal hashing and block random permutation during BBS
operations.

In Fig. 18, we show the accuracy of the resulting model
in terms of precision and recall (defined in the same way as
for the early stop optimization). We can see that the precision
and recall are typically around 0.9 or more, indicating that the
obtained model is quite accurate. We verify that they can still
be used to find the irregular events discussed earlier.

Finally, we evaluate and verify the necessity of the group
count adjustment in lines 8-16 of BBS-LOOKUP, rather than
simply returning line 15 as the count estimate. In Fig. 19, we
show the precision and recall changes without this adjustment
for all three datasets, where SH (smart house), Hy (hybrid), and
GPS stands for the three datasets, while “p” and “r” stands for
precision and recall, respectively. In each group of two bars,
the left one is the original BBS, and the right one is without the
count adjustment. This experiment shows that the adjustment
is needed for better accuracy. Overall, BBS optimization is
useful in computing environments where memory is more of
a concern.

Summary of Results. The empirical study in this sec-
tion is enlightening. The experiments give us more concrete
understanding of the regular models we find, as well as
their graph properties (node degrees). The regularity scores
combined with the models are very effective and informative
in finding irregular events and sequences. The model building
algorithm using message passing framework is efficient and
can be easily parallelized. Our analysis and dynamic estimation
of probability of new edge on the fly are very effective —
the resulting early stop optimization should always be used.
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Finally, the BBS optimization is effective and useful when
reducing memory consumption is a concern.

VIII. RELATED WORK

Outlier/anomaly detection has been studied for sequence
data (cf. a survey [3]), temporal data (cf. a survey [4]), and in
more general contexts (cf. a survey [5]). Most related to our
work is the one for sequence data [3], in which Chandola et
al. categorize all previous work into solving three problems.
Closest to our work in the second category, i.e., detecting short
subsequences in a long sequence T that are anomalous w.r.t.
the rest of T , while the other two categories are finding whole
sequences that are anomalous w.r.t. a sequence database, and
determining if a given known query pattern in a sequence is
anomalous w.r.t. its expected frequency. Since our main goal is
to find irregular events and we can concatenate the sequences
across all time units into one (huge) sequence, previous work
in this category (detecting anomalous subsequences) could
potentially be used in the problem we study. However, as
shown in Section VII, it does not work well because relevant
context events, which mostly depend on time, can be rather far
away in terms of the number of other events in between. The
other events in between may also be in any order. This causes
a serious problem for previous work. Our approach based on
message passing and graph edges is much more robust to such
noisy event sequences, since messages will be able to reach
the relevant context events.

Matsubara et al. [20] study the problem of segmentation
and regime detection in correlated time series occurring at the
same time. One example they give is to detect the dancing steps
from multiple signals of a dance. We are not concerned with
segmentation and regime detection, as we only have known
time units in our problem (and applications). Event detection
and activity recognition in general has been studied in the
ubiquitous computing and artificial intelligence communities
(e.g., [2]). This line of work, however, is not concerned with
building a regular model over activities/events from multiple
time units and identifying irregular events. Our work is built
on top of such event detection work, as we build our regular
model (as well as event hierarchy) on top of discrete events.

Complex event processing has been extensively studied
in the data management literature (e.g., [21] as a survey). It
focuses on detecting the occurrence of a particular complex
event pattern, but not about finding a regular model or irregular
events. Previous work on Bloom filters [9] and count min
sketches [22] bear some similarity with our blended bitmap
set (BBS) technique. However, BBS is a non-trivial extension
to solve the Group Counting problem that we identify. For
example, a count min sketch only has counters at each cell of
the hash table, while we need to use bitmaps to represent a
potentially large number of groups. Moreover, we use random
permutations to overcome the skewness of group sizes, and dy-
namically estimate the average group size and collision prob-
ability to adjust group counts. Finally, Beedkar and Gemulla
[23] study frequent sequence mining under item hierarchies.
This is related to our event hierarchy concept. However, they
study the classic frequent itemset mining problem under item
hierarchies. Thus, it is a different problem and they have no
intention to learn a regular model from sequences over many
time units or to find irregular events.

IX. CONCLUSIONS

In this paper, we study a novel problem with practical
significance. We propose an algorithmic method based on
easily parallelizable message passing framework to build a
regular model graph, as well as a method to compute regularity
scores. One of our optimizations is to dynamically estimate
new edge probability based on runtime statistics and speeds up
model building often by over an order of magnitude, while the
other significantly saves space consumption. Our systematic
experimental study verifies the effectiveness and efficiency of
our approaches.
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