
A Language for Manipulating ArraysArunprasad P. Marathe and Kenneth SalemDepartment of Computer ScienceUniversity of WaterlooWaterloo, Ontario N2L 3G1Canadafapmarath,kmsalemg@uwaterloo.caAbstractThis paper describes the Array ManipulationLanguage (AML), an algebra for multidimen-sional array data. AML is generic, in the sensethat it can be customized to support a widevariety of domain-speci�c operations on ar-rays. AML expressions can be treated declara-tively and subjected to rewrite optimizations.To illustrate this, several rewrite rules thatexploit the structural properties of the AMLoperations are presented. Some techniquesfor e�cient evaluation of AML expressions arealso discussed.1 IntroductionIt has become widely recognized that database sys-tems should support non-traditional data types, suchas sequences, images, and video. Object-relationaldatabase systems currently support such data throughuser-de�ned data types and their associated methods.These methods can be applied to selected data, or canbe used in selection or join conditions. For example,suppose that 16-bit gray-scale images have been de-�ned as a database type and that two methods are de-�ned for this type: f is a thresholding function whichreplaces each pixel value above a speci�ed thresholdvalue with the threshold, and g is a clipping functionPermission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 23rd VLDB ConferenceAthens, Greece, 1997

which removes the part of an image that lies outsideof a speci�ed clip region. Expressions such asselect g(f(x; threshold); clipregion)from <relation>where <condition>can be used to retrieve clipped, thresholded versionsof image attribute x from the speci�ed relation.Ideally, non-relational expressions such as the oneappearing in the select clause above would betreated declaratively and optimized. For example,f(g(x; clipregion); threshold) generates the same re-sult as the original expression. The latter form maybe less costly to evaluate, since only the clip region,rather than the entire image, needs to be thresholded.Currently, most object-relational systems do not per-form such optimizations, although there is certainlyinterest in doing so [10, 12]. Such optimizations areimportant because objects may be large, and theirmethods may be expensive to evaluate. In fact, thecost of a non-relational subexpression in a relationalquery may easily dominate the cost of evaluating thequery.To optimize such expressions, they must be writtenin some language. In this paper, we propose a sim-ple language for multidimensional array data, calledthe Array Manipulation Language (AML). AML is analgebra in the sense that the relational algebra is analgebra. Its operators operate on arrays and generatearrays.Arrays are an important class of data. Obviously,raster images are two-dimensional arrays, and can bemanipulated by the AML operators. Arrays of threeor more dimensions are also very commonly found inscienti�c data sets. For example, multi-spectral satel-lite images can be treated as arrays with two spatialand one spectral dimension. Video data can also bethought of in terms of multi-dimensional arrays. OnePage 1

indication of the importance of array data in the scien-ti�c community is the proliferation of �le-based datamanagement packages, such as CDF [9], NetCDF [11]and HDF [14], that support array data. These �le-based packages arose to �ll a data-management vac-uum that existed because of the inability of olderdatabase management systems to handle bulky arraydata.In this paper, we de�ne an array data model and asmall set of AML operators based on this model. Oneof the AML operators is apply, which applies a user-de�ned function to an array in a particular way. AMLis generic and customizable in the sense that its ap-ply operator can work with any user-de�ned function.Because there are so many possible array operations,many of which are domain-speci�c, any general pur-pose array language should have some facility for ex-tension or customization. Thus, this is an importantfeature of AML.We also show that AML expressions can be treateddeclaratively, and subjected to rewrite-based optimiza-tions. To illustrate the possibilities, we de�ne severaluseful rewrite rules. These rules are very general, inthe sense that they exploit only the structure of ar-rays, and \structural" properties of the AML opera-tors, including apply. For example, if y = f(x), weutilize the knowledge that a certain part of array yis computed using data from certain part of array x,but we do not care about the computation itself; therules treat it as a black box. The advantage of thisapproach is that a single rule can apply to any func-tion with the same \structural" properties as f . Ofcourse, this does not preclude rewrite rules that uti-lize knowledge of the computation being performed,but such rules are speci�c to a particular function orclass of functions.In Section 6 we discuss some of the issues that arisein evaluating AML expressions. These issues includepipelining of AML operators, limiting memory usage,and reducing the costs associated with materializingintermediate results. These are important issues be-cause arrays may be very large.2 An Illustrative ExampleThe simple array database illustrated in Fig. 1 willbe used as a running example throughout the remain-der of the paper. The database includes several typesof two-dimensional arrays describing air temperature.The dimensions of these arrays can be thought of aslongitude (dimension zero), and latitude (dimensionone). There are two arrays per day, one describingnighttime temperatures, the other describing daytimetemperatures.For each day/night pair of arrays, a daily tempera-

daily arrayA

B

C

D

daily low-res array
dim. 1

dim. 0

daytime array

nighttime array

Figure 1: Arrays in an Example Databaseture array is de�ned by taking the average of the day-time and nighttime temperature at each point. Wealso de�ne a reduced-resolution version of the dailyarray, obtained by dividing the daily array into non-overlapping 4 � 4 chunks, and replacing each chunkwith a single value, the average of the values withinthe chunk.Using the AML operations to be de�ned in Sec-tion 4, a daily array (C) can be de�ned in terms of anighttime array (A) and a daytime array (B) asC = apply(merge2(A;B; 10); f; (1; 1; 2))where f is a user-de�ned function that maps two ar-ray values to a single average value and (1; 1; 2) is a\shape" that helps determine how f is to be applied.The \10" is a bit pattern that indicates that the mergeis to be performed by interleaving one slab of A fol-lowed by one slab of B. In e�ect, merge operatortakes the nighttime and daytime arrays and stacksthem one atop the other (in dimension 2, as indicatedby the subscript of merge) to produce a single three-dimensional array. The apply operator then applies fto each 1�1�2 sub-array to produce the average tem-perature values. Each such value becomes one elementof the resulting daily array C.Similarly, the low-resolution array (D) can be de-�ned in terms of C asD = tiled apply(C; g; (4; 4))where g is a function that will be used to map 4�4 sub-arrays of C to a single value, namely the average of thesixteen values in the 4�4 array. The tiled apply op-eration breaks C into non-overlapping 4�4 sub-arraysand applies g to each to produce one of the values inD. The tiled apply operation is actually de�ned asa special case of the more general AML apply opera-tion. Page 2

The primary purpose of this simple example is toillustrate the behavior of the AML operations. In gen-eral, an almost limitless variety of array transforma-tions can be imagined. For example, we might havechosen a more sophisticated lossy compression tech-nique, such as JPEG [15], with which to de�ne the re-duced resolution version of the daily array. The AMLapply operator makes it easy to do this.AML describes logical relationships among arrays.Fig. 1 can be seen as a sort of schema. In particu-lar, the daily array can be seen as a view de�ned interms of the daytime and nighttime arrays. The viewde�nition is the AML expression, given above, whichmaps the daytime and nighttime arrays to the dailyarray. Similarly, the low-resolution array is a view ofthe daily array. We have said nothing, at least at thispoint, about the physical representations of these ar-rays. It may be that the daily array is physically storedby laying out its values in a �le in row-major order, orit may be stored in some more compact, compressedform. Alternatively, it may not be materialized at all,as it can be derived when necessary from the corre-sponding daytime and nighttime arrays.3 Data Model and TerminologyThroughout this paper we will use a vector arrow, asin ~x, to denote in�nite vectors of integers. The usualnotation ~x[i] will refer to the element with index i.Expressions involving operations on vectors, such as~z = b~x=~yc refer to element-by-element application ofthe operation, i.e., ~z[i] = b~x[i]=~y[i]c.An array has a shape and a domain. We will con-sider arrays to have an in�nite number of dimensions,numbered from zero. Each array dimension is indexedby the non-negative integers, i.e., indexing starts atzero. A shape is an in�nite vector of non-negativeintegers which de�nes the array's length in each di-mension. When it is necessary to write a particu-lar shape, the shape's elements will be parenthesized.All elements not listed explicitly are assumed to beones. Thus, the shapes (1; 1; 2) and (4; 4) that wereused in the examples in Section 2 denote the in�nitevectors (1; 1; 2; 1; 1;1; � � �) and (4; 4; 1; 1; 1; � � �), respec-tively. The domain of an array is a set of possiblevalues, one of which is present at each indexed pointwithin the array.De�nition 3.1 An array A consists of a shape ~A, adomain DA, and a mapping MA. The ith element of~A represents the length of the array in dimension i. Avector ~x is de�ned to be in array A i� 0 � x[i] < ~A[i]for all i � 0. The mapping, MA maps each vector~x in A to an element of the array's domain, DA. Wewill use the standard array notation A[~x] to denote thedomain value to which ~x is mapped.

x [0]

x [1]

a subarray of

A at x

a slab along
dimension 0 (1)

dim. 0dim. 1

array AFigure 2: Sub-arrays and SlabsDe�nition 3.2 The dimensionality of array A, writ-ten dim(A), is the smallest i such that ~A[j] = 1 for allj � i. If there is no such i, then dim(A) is unde�ned.De�nition 3.3 The size of array A, written jAj, isQ1i=0 ~A[i].We will restrict ourselves to arrays of �nite size. How-ever, it will sometimes be convenient for us to think ofarrays as having in�nite length in all dimensions. Forthis purpose, we de�ne A[~x] = NULL for all points~x that are not in A, where NULL is some value notfound in DAAn array having a length of zero in one or more di-mensions is called a null array. Such arrays have zerosize and since there are no points in a null array, itis considered to have the value NULL at every point.We will also need a notion of sub-array. A sub-arrayis simply an array that is wholly contained within an-other, as shown in Fig. 2. We will identify the positionof the sub-array within the containing array by the po-sition of its smallest point, as shown in the �gure.De�nition 3.4 Let A and B be arrays, and let ~x be avector in A. Array B is called a subarray of A at ~x i�DB = DA, and for every point ~y in B, B[~y] = A[~x+~y].Finally, we de�ne informally the notion of a slab of anarray along dimension i. A slab is simply a slice of unitwidth through an array along the speci�ed dimension.This is also illustrated in Fig. 2.4 The Array Manipulation LanguageThe Array Manipulation Language (AML) consists ofthree operators which manipulate arrays. Each oper-ator takes one or more arrays as arguments and pro-duces an array as result. subsample is a unary opera-tor which can delete data, i.e., the size of the result ofsubsampling an array A is never larger than A. mergeis a binary operator which combines two arrays de�nedPage 3

over the same domain. apply applies a function to anarray, in a manner to be described below, to producea new array.Neither subsample nor merge changes the valuesfound in its operands, i.e., every value found in theresult of these operations can be found in an operand.The third operator, apply, may generate new valuesas a result of applying the function.4.1 An Introduction to Bit PatternsAll of the AML operators take bit patterns as param-eters. A bit pattern is an in�nite binary vector. As forother vectors, indexing of bit patterns starts at zero.The ith element of a pattern P is denoted by ~P [i].When the context makes it clear that ~P is a pattern,we will drop the explicit vector notation and simplywrite P or P [i].We will be interested only in those patterns thatconsist of an in�nite number of repetitions of some�nite vector, and we will use that �nite vector to rep-resent the entire pattern. For example, we may writeP = 1010 to mean P = 1010101010 � � �. Note thatthere is more than one �nite representation of anysuch bit pattern. For example, Q = 10 represents thesame pattern as P . We will sometimes use a regular-expression-like notation to describe patterns. For ex-ample 0i1j0k, for positive integers i; j and k, repre-sents a pattern in which j 1's are sandwiched betweeni 0's on the left and k 0's on the right. The bit-wisecomplement of a pattern P , obtained by replacing P 'sones with zeros and vice versa, will be written P .There are two pattern functions, index and count,that we will make heavy use of.De�nition 4.1 If P is a bit pattern (P 6= 0) and k apositive integer, index(P; k) is the index of the k-th 1in P . By de�nition, if k = 0 or P = 0, index(P; k) =0.De�nition 4.2 If P is a bit pattern and k a non-negative integer, count(P; k) is the number of ones inthe �rst k + 1 positions of P , i.e., from P [0] to P [k],inclusive.Both functions are monotonically non-decreasingin k. It should be obvious that for any k � 1,count(P; index(P; k)) = k, unless P = 0.4.2 The subsample OperatorThe subsample operator takes an array, a dimensionnumber and a pattern as parameters and produces anarray. The dimension number will normally be writtenas a subscript and subsample will be abbreviated assub, as in B = subi(A;P)

10 20 30 40 50

01

00

11 21 31 41 51

02 12 22 32 42 52

00 10 20 30 40 50

02 12 22 32 42 52

40 50

41 51

42 52

00 20 40

01 21 41

02 22 42

B = SUB (A, 10)

B = SUB (A, 10)

B = SUB (A, 000011)

0

0

1
array A

dimension 1

dimension 0Figure 3: Examples of the subsample Operationwhere A is an array, P is pattern, and i is the dimen-sion number.The subsample operator divides A into slabs alongdimension i, and then keeps or discards slabs based onthe pattern P . If P [k] = 1, then slab k is kept andincluded in B, otherwise it is not. The slabs that arekept are concatenated to produce the result B. Severalapplications of the subsample operator are illustratedin Fig. 3.Formally, if B = subi(A;P), then B is de�ned asfollows:� DB = DA� if ~A[i] > 0, then ~B[i] = count(P; ~A[i] � 1), else~B[i] = 0.� for all j � 0 except j = i, ~B[j] = ~A[j]� for all points ~x in B, B[: : : ; ~x[i � 1]; ~x[i]; ~x[i +1]; : : :] = A[: : : ; ~x[i � 1]; index(P;~x[i] + 1); ~x[i +1]; : : :].Note that subsampling a null array results in a nullarray, regardless of the dimension number or the sub-sampling pattern. Also, if P = 0, then ~B[i] = 0 andB is a null array.4.3 The merge OperatorThe merge operator takes two arrays, a dimensionnumber, a pattern, and a default value as parameters.It merges the two arrays to produce its result. Aswas done for subsample, the dimension number willnormally be written as a subscript, as inC = mergei(A;B; P; �)where A and B are arrays, P is the pattern, and �is the default value. The explicit reference to � willPage 4

a10 a20 a30

a01

a00

a11 a21 a31

b00 b10

b01 b11

a00

a01 a21

a30

a00 a10 b00 b10 a20

a01 a11 b01 b11 a21 a31

a30

δ

δ

a00 a10 a20

a01 a11 a21 a31

b00 b10

b01 b11

δ δ

δ δ

δδ

δδ

δ δ

δ δ

array A

array B

C = MERGE (A, B, 110,)

C = MERGE (A, B, 110,)

0

0

1

C = MERGE (A, B, 1100101,)

a10 b00 a20 a30 b10

b11a11 b01 a31

δ

δ

δ

dimension 0

dimension 1Figure 4: Examples of the merge Operationoften be dropped if the default is not important. Theoperation is de�ned only if DA = DB and � 2 DA.Conceptually, merge divides both A and B intoslabs along dimension i. The result is produced byinterleaving slabs from the two arrays according to thepattern P . Each one in P corresponds to a slab fromthe �rst array (A), and each zero to a slab from thesecond (B). For example, if P = 1001, then along thei-th dimension, one slab from array A, two slabs fromarray B and then a slab from array A are taken andconcatenated in that order. This process is repeateduntil all slabs from both A and B have been used.(Recall that P = 1001 denotes the in�nite pattern100110011001 � � �.)Fig. 4 illustrates the merge operation. The exam-ples show that the default value � may be used for tworeasons. One is that the slabs from one array may beexhausted while slabs remain in the other. This is thecase in the second example in Fig. 4. Another reasonis an array shape mismatch in some dimension otherthan the merge dimension. In case of such a mismatch,the shorter array is expanded using default values un-til its length matches that of the longer array. This isillustrated in the third example in Fig. 4.It is convenient to formally de�ne merge in twosteps. The �rst generates an array C 0 by interleavingslabs from A and B, as described above. Because ofshape mismatches between A and B, however, or be-cause of the particular pattern P , some values in C 0may be NULL. The second step eliminates this prob-lem by transforming any such NULL values to thedefault value �. The result of this �nal step is indeedan array, and is the result of the merge operation.The intermediate array, C 0, is de�ned as follows:

� DC0 = DA [fNULLg� ~C0[i] = max(index(P; ~A[i]); index(P; ~B[i])) + 1� for all j � 0 except j = i, ~C 0[j] = max(~A[j]; ~B[j])� for all points ~x in C 0:{ if P [~x[i]] = 1, then C 0[: : : ; ~x[i� 1]; ~x[i]; ~x[i+1]; : : :] = A[: : : ; ~x[i � 1]; count(P;~x[i]) �1; ~x[i+ 1]; : : :],{ otherwise C 0[: : : ; ~x[i� 1]; ~x[i]; ~x[i + 1]; : : :] =B[: : : ; ~x[i� 1]; count(P;~x[i])� 1; ~x[i+1]; : : :]We then obtain C by removing any NULL values in-side of C 0: DC = DC0 �fNULLg; for all i � 0, ~C[i] =~C 0[i]; and for all points ~x in C, if C 0[~x] = NULL thenC[~x] = �, otherwise C[~x] = C 0[~x].4.4 The apply OperationThe apply operator applies a function to an array toproduce a new array. In its most general form, it iswritten asB = apply(A; f; ~Df ; ~Rf ; P0; P1; : : : ; Pd�1)where f is the function to be applied, A is the arrayto apply it to, ~Df and ~Rf are shapes, the Pi's arepatterns, and d = dim(A). The parameters ~Df and~Rf are called the domain shape and the range shape.We will often use a special case of apply, writtenB = apply(A; f; ~Df ; ~Rf)for which we assume that Pi = 1 for all 0 � i < d. Inaddition, either the range shape or both shapes may beleft unspeci�ed when apply is written. These shapesdefault to (1; 1; 1; � � �) if they are not speci�ed.A simple way to de�ne apply is to insist that fmap from arrays of A's shape and domain to arrays ofB's shape and domain. The operator would then sim-ply compute B = f(A). However, many common ar-ray functions have some structural locality: the valuefound at a particular point in B depends only on thevalues at certain points in A, not on the values at allpoints in A. For example, if f is a smoothing func-tion that maps each point in A to the average of thatpoint and its neighbors, then to determine the valueat some point in B, we need only look at that pointand its neighbors in A. Such information can be veryvaluable for optimizing the execution of an expressioninvolving the array operators.The apply operation is de�ned so that this kind ofstructural relationship can be made explicit when itexists. The apply operator requires that f be de�nedto map sub-arrays of A of shape ~Df to sub-arrays ofPage 5

array A

0 1 2 3 4

0

1

2

3

dimension 1

dimension 0

0 1 2 3

0

1

f(A, (2,2))

f(A, (2,0))

f(A, (1,0))

f(A, (1,2))

B = APPLY(A, f, (2,2), (2,1), 0110, 10)

P PDf Rf 0 1Figure 5: An Illustration of the apply OperationB of shape ~Rf . We will use the notation f(A;~x) torefer to the result of applying f to the sub-array of Aof shape ~Df at ~x. Thus, f(A;~x) is an array of shape~Rf .The apply operator applies f to certain sub-arraysof A, and concatenates the results to generate B. Thisprocess is illustrated in Fig. 5. The pattern Pi can bethought of as selecting slabs in dimension i, with theselected slabs corresponding to the ones in the pattern.The function f is applied at a point ~x only if that pointfalls in selected slabs in all d dimensions of the array,i.e., only if Pi[~x[i]] = 1 for all 0 � i < dim(A). In the�gure, the patterns select two slabs in each dimension,leading to a total of four applications of the functionf . Several features of the application of f should benoted. First, while the selected sub-arrays may over-lap in A, the results of applying the function do notoverlap in the resulting array B. Second, the arrange-ment of resulting sub-arrays in B preserves the spatialarrangement of the selected sub-arrays in A. Finally,the sub-arrays to which f is applied must be entirelycontained within A. In the example in Fig. 5, thismeans that even if the point ~x = (3; 3) was selectedby the patterns, f(A;~x) would not be evaluated, sincethat subarray lies partially outside of A.If B = apply(A; f; ~Df ; ~Rf ; P0; : : : ; Pdim(A)�1), andf is a function that maps from arrays of shape ~Df overdomainDA to arrays of shape ~Rf over domain Drange,then B is formally de�ned as follows:� DB = Drange� for all i � 0,{ if ~A[i] < ~Df [i] or Pi = 0, then ~B[i] = 0{ otherwise ~B[i] = count(Pi; ~A[i]� ~Df [i])� ~Rf [i]

� for all ~x in B, B[~x] = f(A; ~y)[~x MOD ~Rf], where~y[i] = index(Pi; b~x[i]= ~Rf [i]c + 1) for all 0 � i <dim(A)If ~Df [i] > ~A[i] for some i � 0, then the de�nitionabove implies that B will be a null array.4.5 Additional OperationsIn this section, we show a few useful special cases ofthe AML operators, and give them names.concat: The concat operator concatenates twoarrays along some dimension. Concatenation can bede�ned using merge as follows:concati(A;B; �) � mergei(A;B; 1 ~A[i]0~B[i]; �)Since merge requires A and B to have a common do-main, so does concat. Note that if A and B havelength mismatches in dimensions other than i, the ar-ray with the shorter length will be extended using thedefault value �.clip: clip clips an image along a speci�ed dimen-sion, keeping only those slabs within a clip region de-�ned by parameters x and y, where 0 � x � y � ~A[i].It can be implemented using subsample as follows:clipi(A; x; y) � subi(A; 0x1y�x0 ~A[i]�y)tiled apply: Often, we will wish to apply a func-tion to all non-overlapping sub-arrays of a particularshape. In the example in Section 2, this is the casewhen the low-resolution daily array (D) is being com-puted from the daily array (C). Since this type offunction application is quite common, we can de�nethe tiled apply operator to support it. Assumingthat A has dimensionality d, the de�nition is as fol-lows:tiled apply(A; f; ~Df ; ~Rf) � apply(A; f; ~Df ; ~Rf ; P)where P denotes the patterns10 ~Df [0]�1; 10 ~Df [1]�1; � � � ; 10 ~Df [d�1]�1.4.6 More on Patterns and ShapesWe allow patterns and shapes appearing in AML ex-pressions to be de�ned in terms of the array argumentsof their AML operators. As an example, consider theexpression apply(A; f; (~A[0]; 1)), in which f is appliedto each row of A. Aliases (as in SQL) can be used inAML expressions when necessary to de�ne names forunnamed intermediate arrays. In the AML expressionapply(sub1(B;P) A; f; (~A[0]; 1)) the alias A is usedto refer to the result of the inner sub operation sothat the apply's shape argument can be de�ned. Thescope of such an alias is the AML operator in whichPage 6

it is de�ned. In the case of the apply operator, itis also possible to refer to the domain shape and therange shape in the operator's patterns. An example ofthis can be seen in the de�nition of the tiled applyoperation in Section 4.5.The shape of the result of an AML operation canalways be determined (without actually evaluating theoperator) if the shapes of its array arguments areknown. By induction we can show that the shape ofthe result of an arbitrary AML expression can be de-termined once the shapes of its \terminal" arrays areknown. This property is useful when AML expressionsare being evaluated, since it implies that the space re-quired to implement an AML operation can be deter-mined in advance.5 Rewrite RulesIn many cases it will be possible to rewrite AML ex-pressions into one or more equivalent forms. Often,one form will have a more e�cient implementationthan another, so rewriting is useful for query optimiza-tion. In this section, we present several rewrite rulesfor AML expressions. Many such rules are possibleand this presentation is not intended to be compre-hensive. Instead, we hope to demonstrate by examplesthat useful rewrite rules do exist.The �rst rule shows that two successive subsam-ples along the same dimension can be combined intoa single subsample.Theorem 5.1 subi(subi(A;P); Q) = subi(A;R)where R[j] = P [j] ^ Q[count(P; j)� 1] for all j � 0.Example 5.1Applying the above rewrite rule to the ex-pression sub0(sub0(A; 1000); 10), we get R =1000000010000000 � � �. So the expression gets simpli-�ed to sub0(A; 10000000). 2The next rule shows that we can push sub throughmerge. Heuristically, this should be bene�cial be-cause the merge operation will be able to operate onsmaller subsampled images.Theorem 5.2 subi(mergei(A;B; P); Q) =mergei(subi(A;R); subi(B; S); T)where for all j � 0, R[j] = Q[index(P; j + 1)], S[j] =Q[index(P; j + 1)], and T [j] = P [index(Q; j + 1)].Example 5.2Applying the above theorem to the expressionsub0(merge0(A;B; 10); 101) yields R = 110, S = 011and T = 1100. So the transformed expression ismerge0(sub0(A; 110); sub0(B; 011); 1100). From pat-terns R and S we see that about one-third of arrays A

and B can be removed before they are merged, poten-tially speeding up the merging step. 2Example 5.3An interesting situation arises in the following exam-ple. Rewriting subi(mergei(A;B; 0100); 100010) us-ing Theorem 5.2 yields R = 0; S = 100110010 andT = 0. So an equivalent form for the expression ismergei(subi(A; 0); subi(B; 100110010); 0):Since merge with a pattern of 0 results in its secondargument, the above expression can be transformed tosubi(B; 100110010). From the original expression, itis not immediately apparent that the whole of arrayA gets subsampled out but the equivalent expressionmakes this obvious. 2The ability to push subsampling through functionapplication is also potentially very valuable. To sim-plify our presentation, we consider a restricted versionof a rewrite rule that accomplishes this.Theorem 5.3 If ~Rf [i] = ~Df [i] = 1, Pi = 1, andd = dim(A), thensubi(apply(A; f; ~Df ; ~Rf ; P0; : : : ; Pd�1); Q) =apply(subi(A;Q); f; ~Df ; ~Rf ; P0; : : : ; Pd�1).Example 5.4Recall from Section 2 that the daily temperature arrayC was de�ned asC = apply(merge2(A;B; 10); f; (1; 1; 2)):where ~Df = (1; 1; 2) and ~Rf defaults to (1; 1; 1; � � �)since it is not speci�ed. Suppose we want to subsamplethe array C in dimension 0 using the pattern P = 0616.That is, we would like to evaluatesub0(apply(merge2(A;B; 10); f; (1; 1; 2)); P)Using Theorem 5.3, this can be rewritten asapply(sub0(merge2(A;B; 10); P); f; (1; 1;2))We can optimize further by pushing sub0 inside ofmerge2. This is trivial, since they operate in di�erentdimensions. This gives usapply(merge2(sub0(A;P); sub0(B;P); 10); f; (1; 1;2))which indicates that to retrieve parts of the daily tem-perature array, we need only retrieve parts of the day-time and nighttime arrays, as expected. 2There are situations in which the result of an applyoperation is being subsampled, but we cannot push thesub through the apply. This often happens when thePage 7

function is being applied to overlapping sub-arrays.Consider the following AML expression:B = subi(apply(A; f; (2; 2); (2; 2)); 110010)in which f maps 2� 2 sub-arrays from A to 2� 2 sub-arrays in the result. Note that if ~x is a point in slab1 (i.e., the second slab) of dimension i of A, the resultof evaluating f at ~x will be completely discarded bythe sub that follows apply. The results of such eval-uations form slabs 2 and 3 in the resulting array, andboth P [2] and P [3] in the subsample pattern are zero.In fact, because the subsampling pattern is an in�niterepetition of 110010, the result of evaluating f at any~x with ~x[i] MOD 3 = 1 will be discarded. Clearly,the function f should not be evaluated at such points.These evaluations cannot be avoided by moving thesub before the apply however, since all of A is neededto generate parts of B that are kept.Although we cannot always push sub throughapply, we may be able to push sub into apply. Forthe special case in which ~Rf has unit size, the followingrule shows this.Theorem 5.4 If j ~Rf j = 1 and d = dim(A), thensubi(apply(A; f; ~Df ; ~Rf ; P0; � � � ; Pi; � � � ; Pd�1); S) =apply(A; f; ~Df ; ~Rf ; Q0; � � � ; Qi; � � � ; Qd�1),where Qj = Pj for all j 6= i, and Qi[k] = Pi[k] ^S[count(Pi; k)� 1] for all k � 0.Example 5.5sub1(apply(A; f; ~Df ; 11; 101100; 110); 011)gets transformed to apply(A; f; ~Df ; 11; 001100; 110)according to this rewrite rule. 26 Query EvaluationQuery processing involves the generation of a queryexecution plan for a given AML expression.1 An n-operator AML expression can be executed in n sequen-tial steps in which each step generates an intermediateresult which is used as input by a subsequent step.This straightforward approach has several potentialdisadvantages. First, it does not allow for pipelining ofsteps. It should be possible for a step to begin execu-tion even if its input has only been partially generated.Second, it may result in the generation of many largeintermediate results. For example, consider steps thatimplement operations such as subi(A; 1111111110) ormergei(A;B; 10). If the arrays A and B are large, sotoo will be the output of these operations. An n-step1In fact, we may generate several candidate execution plans,and then choose a good one using execution cost estimates.Here, we will focus on some of the issues involved in executionplan generation.

array

Step 1 generates
output here

input from here
Step 2 takes

synchronization
boundaryFigure 6: Multidimensional Synchronization for Ar-rays.query execution plan might generate n such interme-diate results. This may be very time consuming, evenif the steps are implemented entirely in memory.The �rst of these problems can be addressed by al-lowing steps to execute concurrently. This requiressome mechanism for synchronizing access to arraysthat are simultaneously being produced by one stepand consumed by a subsequent step. Often, this isaccomplished by treating the data passed from onestep to another as a linear stream. A stream can bethought of as having a boundary point which indicateshow much of the stream data has actually been gen-erated by the �rst step. The subsequent step is forcedto wait if it has consumed all of the stream data up tothe boundary. A direct application of this idea to mul-tidimensional arrays would require that steps agree onhow an array is to be \linearized" to form a stream. Analternative is to generalize the synchronization bound-ary to accommodate multidimensional arrays. This isillustrated for two-dimensional arrays in Fig. 6. Thisapproach divides each array into two regions. As the�rst step runs, the region accessible to the second stepgrows until it covers the entire array.To address the second problem, we can choose anarray representation that permits steps to avoid creat-ing new copies of large arrays. In particular, we maybe able to allow a step to simply modify its input arrayand then use the modi�ed array as its output. Fig. 7illustrates an array representation that permits thisfor subsample and merge steps. This array repre-sentation has several features. One is a vector of validbits per array dimension. These bits can be cleared toindicate that a particular slab of data is invalid, i.e.,that it should be ignored by any subsequent steps thatuse the array. This provides an easy way to implementa subsample operation, since valid bits can simply becleared according to the positions of the zeros in thesubsample pattern. Of course, the disadvantage ofthis approach is that the size of the array represen-tation is not actually reduced by subsampling. Thissuggests that this mechanism should be used to im-plement subsample steps that have low selectivity,i.e., steps whose subsample patterns have a high ra-Page 8

array
blocks

valid bits
for dim. 1

valid bits for dim. 0

array blocks
pointers to

Figure 7: An Array Representation Permitting Fastsubsample and mergetio of ones to zeros. More selective subsamples canbe implemented by generating a new, smaller arrayrepresentation. Note that invalid slabs will actuallybe removed from the array representation by the �rst\downstream" step that actually generates a new ar-ray.The array representation also incorporates indirec-tion. The array data is divided into blocks, anda multidimensional array of pointers refers to theseblocks. Indirection allows some merge steps to beimplemented without copying array data. For exam-ple, consider the merge operation used to de�ne thedaily temperature array (C) in Fig. 1. It concatenatesthe daytime and nighttime arrays. This can be imple-mented by generating a new, larger pointer array, andthen setting the pointers to point to the existing blocksof the two arrays. Clearly, the existence of such a fastimplementation depends on the shape of the blocks ofthe arrays to be merged, and on the merge pattern.This creates an interesting opportunity for optimiza-tion, since whenever a new array copy is created, wecan choose the parameters of its representation, e.g.,the size and shape of the blocks.In combination with multidimensional synchroniza-tion, indirection can also help reduce the memory re-quirements of a query execution plan. This is becausethe space used by individual array blocks can be re-leased as soon as that block is no longer needed. Inmany cases, only a small part of a large array will needto be represented at any time.7 Related WorkA variety of database systems now provide supportfor user-de�ned data types such as arrays. These in-clude commercial systems [10, 1] and research systemssuch as Postgres, Paradise, and others [7, 13, 3, 12].As noted in the introduction, these systems may opti-mize relational expressions in which user-de�ned func-tions appear. However, they generally do not optimize

the user-de�ned expressions themselves. A notable re-cent exception is PREDAT OR[12], which treats user-de�ned expressions declaratively, and passes them toan optimizer that can handle them.Special purpose image database systems also handlearray data, at least in two dimensions. [2] is a surveyof work in this area. These systems focus on selec-tion and retrieval of images, or parts of images, basedon image content. AML does not directly support re-trieval based on image content. However, it can beused in conjunction with content-based indexing andretrieval techniques.There have been several other proposals for querylanguages for arrays, including [6] and [4]. Both ofthese are based on calculi which can be used to expressarray-related operations, as well as non-array opera-tions. We will brie
y describe the Array Query Lan-guage (AQL) de�ned in [6]. AQL is based on a calcu-lus which provides four array-related primitives: twoare used to create arrays, one performs subscripting,i.e., it extracts a value from an array, and one deter-mines the shape of an array. Using these very low-levelconstructs (plus such things as conditionals and arith-metic operations), higher level operations can be con-structed. For example, operations similar to the sub-sample, merge, and apply operations de�ned herecan be expressed in terms of those primitives. Opti-mization of AQL expressions is performed at the levelof the primitive operations after replacing higher-leveloperations with their de�nitions. Implementations ofeach of the primitive operations are then used to eval-uate the optimized queries. This is a very powerfuland
exible approach. For example, if new higher-level operations are added, they are expressed usingthe calculus. They can then be optimized, i.e., thereis no need to generate new rewrite rules \manually"for the new operations.Neither proposal suggests any particular set of high-level operations for arrays. Rather, they show howsuch operations can be de�ned and optimized. Itis not clear how e�ective such optimizations will be.Whether an optimizer will �nd appropriate rewriterules, and how quickly it will �nd them, remain openquestions. The e�ciency of execution of query plansconsisting of many small, primitive operations is alsoa potential concern.8 Summary and ConclusionWe have described the Array Manipulation Language,an algebra for arrays. AML can be used as a querylanguage for array data, and as a view de�nition lan-guage, to de�ne new arrays in terms of existing ones.AML's apply operator can be customized to supporta wide variety of user-de�ned array functions. AMLPage 9

expressions can also be optimized. Optimizations canexploit the structural properties of the AML opera-tions.In [8], Maier and Vance claim that a reasonable al-gebra for ordered types, such as arrays, should have asmall number of operators, should encapsulate a sig-ni�cant fraction of the control structures used for �leprocessing, should possess non-trivial transformationsuseful for query optimization, and should admit to rea-sonably e�cient implementation over large arrays. Weclaim that AML has at least the �rst, third, and fourthof these properties. The second property, expressive-ness, is more di�cult to pin down as it is very domaindependent. However, we note that AML is at leastexpressive enough to mimic the widely used �le-baseddata management packages, such as NetCDF, whichsupport multidimensional arrays.Array data will be most useful in conjunction withother types of data. In particular, we may wish toassociate various sorts of metadata with each arrayto facilitate the selection of individual arrays from aset. Thus, AML will be most useful if it can be imple-mented as part of a system capable of integrating dataof various types. One promising approach is o�eredby PREDAT OR [12], which views the world as anintegrated collection of data types, each of which sup-ports a declarative, optimizable query language (suchas AML). A similar, but more loosely coupled, ap-proach is taken by systems like Garlic [5] that attemptto federate a collection of independent and heteroge-neous data repositories. Extensible object-relationalsystems, such as the Informix Universal Server [10],may also serve as useful platforms for implementationof AML. We are currently considering these implemen-tation alternatives.References[1] F. Bancilhon and G. Ferran. ODMG-93: Theobject database standard. Bulletin of the IEEEComputer Society Technical Committee on DataEngineering, 17(4):3{14, December 1994.[2] S.-K. Chang and A. Hsu. Image informationsystems: Where do we go from here? IEEETransactions on Knowledge and Data Engineer-ing, 4(5):431{442, October 1992.[3] D. J. DeWitt et al. Client{Server Paradise. InProc. of the 20th VLDB Conference, pages 558{569, 1994.[4] L. Fegaras and D. Maier. Towards and E�ectiveCalculus for Object Query Languages. In Proc.of the SIGMOD Conference, pages 47{58, 1995.

[5] L. M. Haas et al. An optimizer for heteroge-neous systems with nonstandard data and searchcapabilities. Bulletin of the IEEE Computer So-ciety Technical Committee on Data Engineering,19(4):37{44, December 1996.[6] L. Libkin et al. A Query Language for Multidi-mensional Arrays: Design, Implementation, andOptimization Techniques. In Proc. of the SIG-MOD Conference, pages 228{239, 1996.[7] V. Linnemann et al. Design and Implementationof an Extensible Database Management SystemSupporting User De�ned Data Types and Func-tions. In Proc. of the 14th VLDB Conference,pages 294{305, 1988.[8] D. Maier and B. Vance. A call to order. In Proc.of the ACM SIGACT-SIGMOD-SIGART Sympo-sium on Principles of Database Systems, pages1{16, 1993.[9] National Space Science Data Center, Greenbelt,Maryland. CDF User's Guide, October 1996. Ver-sion 2.6.[10] M. A. Olson et al. Query Processing in a ParallelObject-Relational Database System. Bulletin ofthe IEEE Computer Society Technical Committeeon Data Engineering, 19(4):3{10, December 1996.[11] R. Rew et al. NetCDF User's Guide. UnidataProgram Center, Boulder, Colorado, February1996. Version 2.4.[12] P. Seshadri et al. E-ADTs:turbo-charging com-plex data. Bulletin of the IEEE Computer So-ciety Technical Committee on Data Engineering,19(4):11{18, December 1996.[13] M. Stonebraker et al. The implementation ofPOSTGRES. IEEE Transactions on Knowledgeand Data Engineering, 2(1):125{142, 1990.[14] University of Illinois at Urbana-Champaign.NCSA HDF Calling Interfaces and Utilities, 3.1edition, July 1990.[15] G. K. Wallace. The JPEG still picture com-pression standard. Communications of the ACM,34(4):30{44, April 1991.
Page 10

