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ABSTRACT

Forecasting future events based on historic data is useful
in many domains like system management, adaptive query
processing, environmental monitoring, and financial plan-
ning. We describe the Fa system where users and appli-
cations can pose declarative forecasting queries—both one-
time queries and continuous queries—and get forecasts in
real-time along with accuracy estimates. Fa supports effi-
cient algorithms to generate execution plans automatically
for forecasting queries from a novel plan space comprising
operators for transforming data, learning statistical mod-
els from data, and doing inference using the learned mod-
els. In addition, Fa supports adaptive query-processing al-
gorithms that adapt plans for continuous forecasting queries
to the time-varying properties of input data streams. We re-
port an extensive experimental evaluation of Fa using syn-
thetic datasets, datasets collected on a testbed, and two
real datasets from production settings. Our experiments
give interesting insights on plans for forecasting queries, and
demonstrate the effectiveness and scalability of our plan-
selection algorithms.

1. INTRODUCTION
Forecasting future events based on historic data is appli-

cable and useful in a range of domains like proactive system
management, inventory planning, adaptive query process-
ing, and sensor data management. On-demand computing
systems, e.g., Amazon’s Elastic Cloud [9], treat physical re-
sources like servers and storage as a part of a shared com-
puting infrastructure, and allocate resources dynamically to
support changing application demands. These systems ben-
efit significantly from early and accurate forecasts of work-
load surges and potential failures [13].

Adaptive query processing [3], where query plans and
physical designs adapt to changes in data properties and
resource availability, becomes very effective if these changes
can be predicted with reasonable accuracy. Forecasting plays
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an important role in personal and enterprise-level decision
making. For example, inventory planning involves forecast-
ing future sales based on historic data; and day traders
rapidly buy and sell stocks based on forecasts of stock per-
formance [21].

In this paper, we describe the Fa1 data-management sys-
tem where users and applications can pose declarative fore-
casting queries. Fa supports efficient algorithms to generate
execution plans for these queries, and returns forecasts and
accuracy estimates in real-time. A forecasting query is posed
over a multidimensional time-series dataset that represents
historic data, as illustrated by the following example query.

Q1: Select C
From Usage
Forecast 1 day

The full syntax and semantics of forecasting queries will be
given in Section 2. The From clause in a forecasting query
specifies the historic time-series data on which the forecast
will be based. The query result will contain forecasts for
the attributes listed in the Select clause, with the forecasts
given for the timestamp(s) specified in the (new) Forecast
clause. By default, this timestamp is specified as an interval,
called lead-time, relative to the maximum timestamp in the
historic data.

The time-series dataset “Usage” in example query Q1 is
shown in Figure 1(a). Usage contains daily observations
from Day 5 to Day 17 of the bandwidth used on three links in
an Internet Service Provider’s network. Since Q1 specifies a
lead-time of 1 day, Q1’s result will be a forecast of attribute
C for Day 18. Q1 is a one-time query posed over a fixed
dataset, similar to a conventional SQL query posed over re-
lations in a database system. Our next example forecasting
query Q2 is posed as a continuous query over a windowed
data stream.

Q2: Select cpu util, num io, resp time
From PerfMetricStream [Range 300 minutes]
Forecast 15 minutes, 30 minutes

Q2 is expressed in the CQL continuous query language [1]
extended with the Forecast clause. Here, “PerfMetricStream”
is a continuous stream of performance metrics collected once
every minute from a production database server. At times-
tamp τ (in minutes), Q2 asks for forecasts of CPU utiliza-
tion, number of I/Os, and response time for all timestamps
in [τ + 15, τ + 30]. This forecast should be based on the
window of data in PerfMetricStream over the most recent
300 minutes, i.e., tuples with timestamps in [τ − 299, τ ].

1African god of fate and destiny
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17         12      25      16      13      47      68       ? 

Day       
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 11         35      46      68 
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 14         13      46      16 

 15         35      46      68 

 16         36      25      16 

 17         35      47       ? 

 5         −−       −−     16 

 6         −−       24      17 

 5          36      24      17      −−      −−      −−     16

Figure 1: Example datasets. (a) Usage; (b) and (c) are transformed versions of Usage

The problem we address in this paper is how to process
forecasting queries automatically and efficiently in order to
generate the most accurate answers possible based on pat-
terns in the historic data; also giving accuracy estimates for
forecasts. A forecasting query can be processed using an exe-
cution plan that builds and uses a statistical model from the
historic data. The model captures the relationship between
the value we want to forecast and the recent data available
to make the forecast. Before building the model, the plan
may apply a series of transformations to the historic data.

Let us consider a plan p to process our example query Q1.
Plan p first transforms the Usage dataset to generate the
dataset shown in Figure 1(b). A tuple with timestamp τ (in
days) in this transformed dataset contains the values of at-
tributes A, B, and C for timestamps τ−1 and τ from Usage,
as well as the value of C for timestamp τ + 1. These figures
use the notation Xδ to denote the attribute whose value at
time τ is the value of attribute X ∈ Usage at time τ + δ.
Using the tuples from Day 6 to Day 16 in the transformed
dataset as training samples, plan p builds a Multivariate
Linear Regression (MLR) model [21] that can estimate the
value of attribute C1 from the values of attributes A, B, C,
A−1, B−1, and C−1. The MLR model built is:

C1 =−0.7A−1.04B−0.43C−A−1+1.05B−1−0.32C−1+114.4

Once this model has been built, it can be used to compute
Q1’s result, which is the “?” in Figure 1(b) because C1 for
Day 17 is equal to C for Day 18 given our transformation.
By substituting A = 12, B = 25, C = 16, A−1 = 13, B−1 =
47, and C−1 = 68 from Day 17 (Figure 1(b)) into the MLR
model, we get the forecast 87.78.

However, plan p has some severe shortcomings that illus-
trate the challenges in accurate and efficient forecasting:

1. It is nontrivial to pick the best set of transformations to
apply before building the model. For example, if plan
p had performed the appropriate attribute creation and
removal to generate the transformed dataset shown in
Figure 1(c), then the MLR model built from this data
would forecast 64.10 which is more accurate than 87.78.
Notice from the Usage data that when A−2 and B−1 are
around 35 and 47 respectively, then C1 is around 68.

2. Linear regression may fail to capture complex data pat-
terns needed for accurate forecasting. For example, by
building and using a Bayesian Network model on the
dataset in Figure 1(c), the forecast can be improved to
68.5 (see Example 2 in Section 3). This observation
raises a challenging question: how can we pick the best
statistical model to use in a forecasting plan?

3. For high-dimensional datasets, most statistical models
(including MLR) have very high model-building times,
and often their accuracy degrades as well. This fact is
problematic when forecasts are needed for real-time deci-

sions, particularly in high-speed streaming applications.
Furthermore, plans must adapt as old patterns disappear
and new patterns emerge in time-varying streams.

1.1 Our Contributions and Outline
One-time and Continuous Forecasting Queries: In
Section 2, we introduce the syntax and semantics of fore-
casting queries, showing how these queries can be expressed
through simple extensions to conventional declarative lan-
guages for querying time-series datasets and data streams.

Plan Space: Section 3 describes a space of execution plans
for forecasting queries. As illustrated above, a plan for fore-
casting is a combination of (i) transformers that transform
the input data in desired ways, (ii) builders that generate
statistical models from the transformed data, and (iii) pre-
dictors that make forecasts using the models generated.

Plan Selection: Sections 4 and 5 describe how to find a
plan efficiently whose accuracy of forecasting is close to that
of the best plan from the extremely large plan space for a
forecasting query. The technical challenge comes from the
fact that there are no known ways to estimate the accuracy
of a plan without actually running the plan. Hence, conven-
tional optimization frameworks based on cost models (e.g.,
[16]) are inapplicable here. Furthermore, running a plan is
costly since statistical models can take a long time to build.
In effect, we need algorithms that converge to fairly-accurate
plans by running as few plans as possible.

Adaptive Query Processing: Section 8 describes how we
process continuous forecasting queries over windowed data
streams, where our plans need to adapt to the time-varying
nature of the streams.

Experimental Evaluation: Sections 6 and 8 report an ex-
tensive experimental evaluation based on synthetic datasets,
datasets collected on a testbed, and real operational datasets
collected from two production settings (a popular web-site
and a departmental cluster). This evaluation gives inter-
esting insights on plans for forecasting queries, and demon-
strates the effectiveness and scalability of our algorithms.

2. FORECASTING QUERIES
We consider multidimensional time-series datasets hav-

ing a relational schema Γ, X1, X2, . . . , Xn. Γ is a timestamp
attribute with values drawn from a discrete and ordered do-
main DOM(Γ). A dataset can contain at most one tuple for
any timestamp τ ∈ DOM(Γ). Each Xi is a time series. We
use Xi(τ) to denote Xi’s value at time τ .

We defer the discussion of continuous forecasting queries
over windowed data streams to Section 8. A one-time fore-
casting query over a fixed dataset has the general form:
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Select AttrList
From D
Forecast [absolute] L [, [absolute] L′]

D(Γ, X1, . . . , Xn) is a time-series dataset, AttrList is a sub-
set of X1, . . . , Xn, and L, L′ are intervals or timestamps from
DOM(Γ). Terms enclosed within “[“ and “]” are optional.

Before we consider the general case, we will first explain
the semantics of a simple forecasting query “Select Xi From
D Forecast L,” which we denote as Forecast(D, Xi, L). Let
D consist of m tuples with respective timestamps τ1 < τ2 <
· · · < τm. Then, the result of Forecast(D, Xi, L) is the two-
tuple 〈Xi(τm +L), acc〉; Xi(τm +L) is the forecast and acc is
the estimated accuracy of this forecast. Intuitively, the re-
sult of Forecast(D, Xi, L) is the forecast of attribute Xi for
a timestamp that is L time units after the maximum times-
tamp in D; hence, L is called the lead-time of the forecast.

The extension to forecasting multiple attributes is straight-
forward. For example, the result of “Select Xi, Xj From
D Forecast L,” is a four-tuple 〈Xi(τm + L), acci, Xj(τm +
L), accj〉, where acci and accj are the accuracy estimates of
the Xi(τm + L) and Xj(τm + L) forecasts.

If the query specifies two lead-times L and L′, then the
query is called a range forecasting query, as opposed to a
point forecasting query that specifies a single lead-time. The
result of a range forecasting query contains a forecast and
accuracy estimate for each specified attribute for each times-
tamp in the [L, L′] range. If the keyword absolute is speci-
fied before a lead-time L, then L is a treated as an absolute
timestamp (e.g., March 1, 2007) rather than as an interval
relative to the maximum timestamp in D.

Problem Setting: In this paper we consider point forecast-
ing queries of the form Forecast(D, Xi, L). Range forecasting
is not a straightforward extension of point forecasting, and
will be considered in future work.

3. EXECUTION PLANS
A plan for a forecasting query contains three types of log-

ical operators—transformers, predictors, and builders—and
a summary data structure called synopsis.

• A transformer T (D) takes a dataset D as input, and
outputs a new dataset D′ that may have a different
schema from D.

• A synopsis Syn({Y1, . . . , YN}, Z) captures the relation-
ship between attribute Z and attributes Y1, . . . , YN ,
such that a predictor P (Syn, u) can use Syn to esti-
mate the value of Z in a tuple u from the known values
of Y1, . . . , YN in u. Z is called Syn’s output attribute,
and Y1, . . . , YN are called Syn’s input attributes.

• A builder B(D, Z) takes a dataset D(Γ, Y1, . . . , YN , Z)
as input and generates a synopsis Syn({Y1, . . . , YN}, Z).

Next, we give two example physical implementations each
for the logical entities defined above.

Project transformer: A project transformer πlist retains
attributes in the input that are part of the attribute list list,
and drops all other attributes in the input dataset; so it is
similar to a duplicate-preserving project in SQL.

Shift transformer: Shift(Xj ,δ), where 1 ≤ j ≤ n and δ is
an interval from DOM(Γ), takes a dataset D(Γ, X1, . . . , Xn)
as input, and outputs dataset D′(Γ, X1, . . . , Xn, X ′) where
the newly-added attribute X ′(τ) = Xj(τ + δ). When δ is

positive (negative), then X ′ is copy of Xj that is shifted
backward (forward) in time.

Example 1. The dataset in Figure 1(c) was computed from
the Usage(A, B, C) dataset in Figure 1(a) by applying the
transformers Shift(A,−2), Shift(B,−1), Shift(C, 1), and the
transformer πA−2,B−2,C1

in sequence. 2

Multivariate Linear Regression (MLR): An MLR syn-
opsis with input attributes Y1, . . . , YN and output attribute
Z estimates the value of Z as a linear combination of the
Yj values using the equation Z = c +

PN

j=1 αjYj [20]. The

MLR-builder uses a dataset D(Γ, Y1, . . . , YN , Z) to compute
the regression coefficients αj and the constant c. Note that
this equation is actually a system of linear equations, one
equation for each tuple in D. The MLR-builder computes
the least-squares solution of this system of equations, namely,
the values of αjs and c that minimize the sum of (Z(τ) −

Ẑ(τ))2 over all the tuples in D [21]. Here, Z(τ) and Ẑ(τ) are
respectively the actual and estimated values of Z in the tuple
with timestamp τ in D. Once all αjs and c have been com-
puted, the MLR-predictor can estimate Z in a tuple given
the values of attributes Y1, . . . , YN .

Bayesian Networks (BN): A BN synopsis is a summary
structure that can represent the joint probability distribu-
tion Prob(Y1, . . ., YN , Z) of a set of random variables Y1,
. . ., YN , Z [20]. A BN for variables Y1, . . . , YN , Z is a di-
rected acyclic graph (DAG) with N +1 vertices correspond-
ing to the N + 1 variables. Vertex X in the BN is as-
sociated with a conditional probability table that captures
Prob(X|Parents(X)), namely, the conditional probability
distribution of X given the values of X’s parents in the
DAG. The DAG structure and conditional probability ta-
bles in the BN satisfy the following equation for all (Y1 =
y1, . . . , YN = yN , Z = z) [20]:

Prob(y1, . . . , yN , z) =

N
Y

i=1

Prob(Yi = yi|Parents(Yi))

×Prob(Z = z|Parents(Z))

Given a dataset D(Γ, Y1, . . . , YN , Z), the BN-builder finds
the DAG structure and conditional probability tables that
approximate the above equation most closely for the tuples
in D. Since this problem is NP-Hard, the BN-builder uses
heuristic search over the space of DAG structures for Y1, . . .,
YN , Z [20].

The BN-predictor uses the synopsis generated by the BN-
builder from D(Γ, Y1, . . . , YN , Z) to estimate the unknown
value of Z in a tuple u from the known values of u.Y1, . . .,
u.YN . The BN-predictor first uses the synopsis to infer the
distribution Prob(u.Z = z|u.Yj = yj , 1 ≤ j ≤ N). The
exact value of u.Z is then estimated from this distribution,
e.g., by picking the expected value.

Example 2. Figure 2 shows the BN synopsis built by the
BN-builder from the Usage(A−2, B−1, C1) dataset in Fig-
ure 1(c). To compute example query Q1’s result, the BN-
predictor will use the synopsis to compute Prob(C1 ∈ [16−
17]|A−2 = 35, B−1 = 47) and Prob(C1 ∈ [68 − 69]|A−2 =
35, B−1 = 47), which are 0 and 1 respectively; hence the
forecast 68.5 will be output. 2

3.1 Initial Plan Space Considered (Φ)
There is a wealth of possible synopses, builders, predic-

tors, and transformers from the statistical machine-learning
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B−1Prob(         <  35)  =  0.2

1C A −2 B−1Prob(       = [16−17] |        < 24,         < 35) = 1

1C A −2 B−1Prob(       = [16−17] |        < 24,         > 35) = 1

1C A −2 B−1Prob(       = [16−17] |        > 24,         < 35) = 1

1C A −2 B−1Prob(       = [68−69] |        > 24,         > 35) = 1

A −2Prob(            <  24)  =  0.4

A−2

C1

B−1

Figure 2: BN synopsis built from data in Fig. 1(c)

literature [20]. For clarity of presentation, we begin by con-
sidering a focused physical plan space Φ. Section 7 describes
how our algorithms can be applied to larger plan spaces.

An execution plan p ∈ Φ for a Forecast(D, Xi, L) query
first applies a sequence of transformers to D, then uses a
builder to generate a synopsis from the transformed dataset,
and finally uses a predictor to make a forecast based on the
synopsis and the transformed dataset. For example, the
transformers in Example 1, followed by the BN synopsis
built by the BN-builder and used to make the forecast by
the BN-predictor in Example 2, is one complete plan in Φ.

Transformers: The transformers in a plan p ∈ Φ are lim-
ited to Shift and π which play a critical role in presenting
the input data in ways that a synopsis built from the data
can capture patterns useful for forecasting. Shift creates
relevant new attributes—not present in the original input
dataset—to include in a synopsis. π eliminates irrelevant
and redundant attributes that harm forecasting if included
in synopses: (i) irrelevant attributes can reduce forecasting
accuracy by obscuring relevant patterns, and (ii) redundant
attributes can increase the time required to build synopses.

Synopses, Builders, and Predictors: A plan p ∈ Φ contains
one of five popular synopses—along with the builder and
predictor for that synopsis—from the machine-learning lit-
erature: Multivariate Linear Regression (MLR), Bayesian
Networks (BN), Classification and Regression Trees (CART),
Support Vector Machines (SVM), and Random Forests (RF)
[20]. The choice of which synopses to include in Φ was
guided by some recent studies that compare various syn-
opses; see Section 9 for details. MLR and BN are described
in Section 3. We give very brief descriptions of the other
synopses below; more details, including descriptions of re-
spective builders and predictors, are in the technical report
[8]. It is not necessary to understand the specific details of
these synopses to understand our contributions.

• CART synopses capture attribute relationships as a
decision tree where the nonleaf nodes check conditions
and the leaf nodes forecast values.

• SVM synopses map training data points into a high-
dimensional space and determine linear hyperplanes
that best separate (classify) the data.

• RF synopses learn many CARTs by choosing attributes
randomly from a dataset, and combine forecasts from
individual CARTs. RFs represent ensemble learning
[20] that is used widely in machine-learning today.

• Time-Series Methods: In conjunction with Shift
transformers, MLR synopses can capture popular time-
series forecasting methods like univariate autoregres-
sion [5] and multivariate Muscles [21].

4. PLAN­SELECTION PRELIMINARIES
In this section we describe the important characteristics of

the problem of selecting a good plan from Φ for a Forecast(D,
Xi, L) query. We describe the structure of plans from Φ,
estimate the total size of the plan space, and show the dif-
ficulty in estimating the forecasting accuracy of a plan.

Observation 1. (Plan structure) Let D(Γ, X1, . . . , Xn)
be a time-series dataset. A plan p ∈ Φ for a Forecast(D, Xi, L)
query can be represented as 〈Y1, . . ., YN , type, Z〉 where:
• type ∈ {MLR,BN,CART,SVM,RF} is p’s synopsis type.

The synopsis type uniquely determines both p’s builder
and p’s predictor.

• Y1, . . . , YN are attributes such that each Yi = Xj(τ + δ)
for some j and δ, 1 ≤ j ≤ n and δ ≤ 0. Y1, . . . , YN are
the input attributes of p’s synopsis.

• Attribute Z = Xi(τ + L) is the output attribute of p’s
synopsis.

This observation can be justified formally based on our as-
sumptions about Φ and the definitions of synopses, builders,
predictors, and transformers. Because of space constraints,
we provide an intuitive explanation only.

Recall that plan p for Forecast(D, Xi, L) will use a syn-
opsis to estimate the query result, namely, the value of
Xi(τm +L), where τm is the maximum timestamp in D. p’s
synopsis has access only to data in D up to timestamp τm

in order to estimate Xi(τm + L). Furthermore, Φ has only
the Shift transformer to create new attributes apart from
attributes X1, . . . , Xn. Given these restrictions, the input
attributes in p’s synopsis can only be Xj(τ + δ), 1 ≤ j ≤ n
and δ ≤ 0, and the output attribute is Xi(τ + L).

Observation 2. (Size of plan space) Suppose we restrict
the choice of Shift transformers to derive input attributes for
synopses in a plan to Shift(Xj , δ), 1 ≤ j ≤ n and −∆ ≤ δ ≤

0. Then, the number of unique plans in Φ, |Φ| = 5×2n(1+∆).

In one of our application domains, n = 252 and ∆ = 90, so
|Φ| = 5 × 222932!

4.1 Estimating Forecasting Accuracy of a Plan
The forecasting accuracy (accuracy) of a plan p = 〈Y1, . . .,

YN , type, Z〉 is the accuracy with which p’s synopsis can
estimate the true value of Z given the values of Y1, . . . , YN .
The goal of plan selection for a Q =Forecast(D, Xi, L) query
is to find a plan that has accuracy close to the best among
all plans for Q in Φ. To achieve this goal, we need a way to
compute the accuracy of a given plan.

The preferred technique in statistical machine-learning to
estimate the accuracy of a synopsis is called K-fold cross-
validation (K-CV) [20]. K-CV can estimate the accuracy of
a plan p that builds its synopsis from the dataset D(Γ, Y1,
. . ., YN , Z). K-CV partitions D into K (nonoverlapping)
partitions, denoted D1, . . . , DK . (Typically, K = 10.) Let
D′

i = D − Di. For i ∈ [1, K], K-CV builds a synopsis
Syni({Y1, . . . , YN}, Z) using the tuples in D′

i, and uses this
synopsis to estimate the value of u.Z for each tuple u ∈ Di.
This computation will generate a pair 〈aj , ej〉 for each of the
m tuples in D, where aj is the tuple’s actual value of Z and
ej is the estimated value. Any desired accuracy metric can
be computed from these pairs, e.g., root mean squared error

=
q

Pm

j=1

(aj−ej)2

m
, giving an accuracy estimate for p.

Observation 3. (Estimating accuracy) K-CV is a ro-
bust technique to estimate the accuracy of a plan p = 〈Y1,
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Algorithm Fa’s Plan Search (FPS)
Input: Forecast(D(Γ, X1, . . . , Xn), Xi, L) query
Output: Forecasts and accuracy estimates are output as FPS

runs. FPS is terminated when a forecast with satisfactory
accuracy is obtained, or when lead-time runs out;

1. l = 0; /* current iteration number of outer loop */
BEGIN OUTER LOOP
2. Attribute set Attrs = {}; /* initialize to an empty set */
3. l = l + 1; /* consider ∆ more shifts than in last iteration */
4. FOR j ∈ [1, n] and δ ∈ [−l∆, 0]

Add to Attrs the attribute created by Shift(j, δ) on D;
5. Generate attribute Z = Xi(τ + L) using Shift(Xi, L) on D;
6. Let the attributes in Attrs be Y1, . . . , Yq . Rank Y1, . . . , Yq

in decreasing order of relevance to Z; /* Section 5.2 */
/* Traverse the ranked list of attributes from start to end */

BEGIN INNER LOOP
7. Pick next chunk of attributes from list; /* Section 5.3 */
8. Decide whether a complete plan should be generated

using the current chunk of attributes; /* Section 5.5 */
9. IF Yes, find the best plan p that builds a synopsis using

attributes in the chunk. If p has the best accuracy among
all plans considered so far, output the value forecast
by p, as well as p’s accuracy estimate; /* Section 5.4 */

END INNER LOOP
END OUTER LOOP

Figure 3: Plan selection and execution algorithm for
one-time forecasting queries

. . ., YN , type, Z〉 without knowing the actual query result.
However, K-CV builds a synopsis of type type K times, and
uses these synopses to estimate Z for each input tuple.

In effect, K-CV is computationally expensive. However, dis-
cussions with researchers in statistical machine-learning re-
vealed that there are no known techniques to estimate the
accuracy of an MLR, BN, CART, SVM, or RF synopsis
fairly accurately on a dataset D without actually building
the synopsis on D. (In Section 6.6, we report experimental
results related to this point.) Therefore, K-CV is as good a
technique as any to estimate the accuracy of a plan, and we
will use it for that purpose.

5. PROCESSING ONE­TIME QUERIES
The observations in Section 4 motivate our algorithm,

called Fa’s Plan Search (FPS), to process a one-time fore-
casting query Forecast(D, Xi, L) query.

5.1 Overview of FPS
Figures 3 and 4 give an overview of FPS which runs as a

two-way nested for loop. For simplicity of presentation, Fig-
ure 3 does not show how computation can be shared within
and across the loops of FPS; sharing and other scalability
issues are discussed in Section 5.6.

FPS’s outer loop enumerates a large number of attributes
of the form Xj(τ + δ), 1 ≤ j ≤ n and −l∆ ≤ δ ≤ 0, where
∆ ≥ 0 is a user-defined constant. The value of l is in-
creased across iterations of the loop so that more and more
attributes will be enumerated progressively. FPS aims to
pick subsets of attributes from the enumerated set such that
synopses built from these subsets give good accuracy. Intu-
itively, a combination of a highly-predictive attribute subset
Y1, . . . , YN and an appropriate synopsis type type gives a
plan p = 〈Y1, . . . , YN , type, Z〉 for estimating Z = Xi(τ + L)
with good accuracy.

As illustrated in Figure 4 and Line 6 of Figure 3, FPS
ranks the enumerated attributes in decreasing order of rele-

A−1 B−1 C−1 A−2 B−2 C−2 C1A    B    C

C1A−2 B−1 B−2 A−1 C−1 C−2

A−2
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Figure 4: Pictorial view of FPS processing Example
query Q1 from Section 1

vance to attribute Z. Techniques for ranking are described
in Section 5.2. In its inner loop, FPS traverses the ranked
list from highly relevant to less relevant attributes, and ex-
tracts one chunk of attributes at a time. Techniques for
traversing the ranked list are described in Section 5.3.

For each chunk C, FPS decides whether or not to derive
a complete plan from C. Section 5.5 describes how this
decision is made, and the implications of making a wrong
decision. If the decision is to derive a plan, then FPS finds
a highly-predictive subset of attributes Y1, . . . , YN from C,
and an appropriate synopsis type type, to produce the best
plan p = 〈Y1, . . . , YN , type, Z〉 possible from C. These tech-
niques are described in Section 5.4. Recall from Section 4.1
that FPS has to build p’s synopsis in order to estimate p’s
accuracy. Once the synopsis is built, the extra cost to use
the synopsis to compute the value forecast by p is small.

Whenever FPS finds a plan p whose accuracy estimate is
better than the accuracy estimates of all plans produced so
far, FPS outputs the value forecast by p as well as p’s accu-
racy estimate. Thus, FPS produces more and more accurate
forecasts in a progressive fashion, similar to online aggrega-
tion techniques proposed for long-running SQL queries [11].
FPS runs until it is terminated by the application/user who
issued the query, e.g., a user may terminate FPS when she
is satisfied with the current accuracy estimate.

We now present the options we considered to implement
each step in FPS. These options are evaluated experimen-
tally in Section 6, and a concrete instantiation of FPS is
presented in Section 7.

5.2 Ranking Attributes
Line 6 in Figure 3 ranks the attributes enumerated by

FPS’s outer loop in decreasing order of relevance to the out-
put attribute Z. Intuitively, attributes more relevant to Z
are more likely to give accurate forecasts when included in
a synopsis to forecast Z. Such relevance can be computed
in one of two ways: (i) correlation-based, where attributes
are ranked based on their correlation with Z; and (ii) time-
based, where attributes whose values are more recent are
ranked higher.
Correlation-based Ranking: There exist two general ap-
proaches to measure correlation between attributes Y and Z,
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one based on linear-correlation theory and the other based
on information theory [22]. Linear correlation coefficient
(LCC) is a popular measure of linear correlation [20].

LCC(Y, Z) = LCC(Z, Y ) =

P

i(yi − Y )(zi − Z)
q

P

i(yi − Y )2
q

P

i(zi − Z)2

Each (yi, zi) is a pair of (Y, Z) values in a tuple in the input
dataset, and Y and Z denote the respective means. LCC
is efficient to compute, but it may not capture nonlinear
correlation.

Information gain of Z given Y , denoted IG(Z, Y ), is an
information-theoretic measure of correlation between Y and
Z computed as the amount by which the entropy of Z de-
creases after observing the value of Y . IG(Z, Y ) = H(Z) −
H(Z|Y ) = H(Y ) − H(Y |Z) = IG(Y, Z), where H denotes
entropy, e.g., H(Y ) = −

P

i Prob(yi) log2(Prob(yi)).

IG(Z, Y ) = IG(Y, Z) = −
X

i

Prob(zi) log2(Prob(zi)) +

X

j

Prob(yj)
X

i

Prob(zi|yj) log2(Prob(zi|yj))

Information gain is biased towards attributes with many dis-
tinct values, so a normalized variant called symmetrical un-
certainty (SU) is often used to measure correlation.

SU(Y, Z) = SU(Z, Y ) = 2

ů

IG(Y, Z)

H(Y ) + H(Z)

ÿ

(1)

Time-based Ranking: Time-based ranking assumes that
an attribute whose value was collected closer in time to τ
is likely to be more predictive of Z(τ) than an attribute
whose value was collected earlier in time. For example, con-
sider attributes Y1 and Y2 created from the input dataset D
by Shift(X1, δ1) and Shift(X2, δ2) transformers respectively.
Because of the shift, the value of Y1(τ) (Y2(τ)) comes from a
tuple in D with timestamp τ + δ1 (τ + δ2). Let δ1 < δ2 ≤ 0.
Then, Y2(τ) is more relevant to Z(τ) than Y1(τ).

5.3 Traversal of the Ranked List in Chunks
Single Vs. Multiple Chunks: FPS traverses the ranked
list in multiple overlapping chunks C1 ⊂ C2 ⊂ · · · ⊂ Ck

that all start from the beginning of the list (see Figure 4).
If all the attributes are considered as a single chunk (i.e., if
k = 1), then the time for attribute selection and synopsis
learning can be high because these algorithms are nonlinear
in the number of attributes. Overlapping chunks enable FPS
to always include the highly relevant attributes that appear
at the beginning of the list. The potential disadvantage of
overlapping chunks is the inefficiency caused by repetition of
computation when the same attributes are considered multi-
ple times. However, as we will show in Section 5.6, FPS can
share computation across overlapping chunks, so efficiency
is not compromised.
Fixed-size Vs. Variable-size Increments: Successive
overlapping chunks C1 ⊂ C2 ⊂ · · · ⊂ Ck can be chosen with
fixed-size increments or variable-size increments. An exam-
ple of consecutive chunk sizes with fixed-size increments is
|C1| = 10, |C2| = 20, |C3| = 30, |C4| = 40 and so on (arith-
metic progression), while an example with variable-size in-
crements is |C1| = 10, |C2| = 20, |C3| = 40, |C4| = 80 and so
on (geometric progression).

5.4 Generating a Plan from a Chunk
At Line 9 in Figure 3, we need to generate a complete

plan from a chunk of attributes C. This plan 〈Ω, type, Z〉

should contain attributes Ω ⊆ C and a synopsis type type
that together give the best accuracy in estimating the out-
put attribute Z among all choices for (Ω, type). We break
this problem into two subproblems: (i) finding an attribute
subset Ω ⊆ C that is highly predictive of Z, and (ii) finding
a good synopsis type for Ω.

5.4.1 Selecting a Predictive Attribute Subset

The problem of selecting a predictive attribute subset
Ω ⊆ C can be attacked as a search problem where each
state in the search space represents a distinct subset of C
[10]. Since the space is exponential in the number of at-
tributes, heuristic search techniques can be used. The search
technique needs to be combined with an estimator that can
quantify the predictive ability of a subset of attributes. We
consider three methods for attribute selection:
1. Wrapper [10] estimates the predictive ability of an at-
tribute subset Ω by actually building a synopsis with Ω as
the input attribute set, and using K-CV to estimate ac-
curacy. Wrapper uses Best First Search (BFS) [20] as its
heuristic search technique. BFS starts with an empty set of
attributes and enumerates all possible single attribute ex-
pansions. The subset with the highest accuracy estimate is
chosen and expanded in the same manner by adding single
attributes. If no improvement results from expanding the
best subset, up to k (usually, k = 5) next best subsets are
considered. The best subset found overall is returned when
the search terminates. Building synopses for all enumerated
subsets makes Wrapper good at finding predictive subsets,
but computationally expensive.
2. Correlation-based Feature Selection (CFS) [10]
is based on the heuristic that a highly-predictive attribute
subset Ω is composed of attributes that are highly correlated
with the (output) attribute Z, yet the attributes in Ω are
uncorrelated with each other. This heuristic gives the fol-
lowing estimator, called CFS Score, to evaluate the ability
of a subset Ω, containing k (input) attributes Y1, . . . , Yk, to
predict the (output) attribute Z (Equation 1 defines SU):

CFS Score(Ω) =

Pk

i=1 SU(Yi, Z)
q

k +
Pk

i=1

Pk

j 6=i,j=1 SU(Yi, Yj)
(2)

The numerator in Equation 2 is proportional to the input-
output attribute correlation, so it captures how predictive Ω
is of Z. The denominator is proportional to the input-input
attribute correlation within Ω, so it captures the amount of
redundancy among attributes in Ω. CFS uses BFS to find
the attribute subset Ω ⊆ C with the highest CFS Score.
3. Fast Correlation-based Filter (FCBF) [22] is based
on the same heuristic as CFS, but it uses an efficient de-
terministic algorithm to eliminate attributes in C that are
either uncorrelated with the output attribute Z, or redun-
dant when considered along with other attributes in C that
have higher correlation with Z. While CFS’s processing-
time is usually proportional to n2 for n attributes, FCBF’s
processing-time is proportional to n log n.

5.4.2 Selecting a Synopsis Type

To complete a plan from an attribute subset Ω, we need
to pick the synopsis type that gives the maximum accuracy
in estimating Z using Ω. Recall from Section 4.1 that there
are no known techniques to compute the accuracy of a syn-
opsis without actually building the synopsis. One simple,
but expensive, strategy in this setting is to build all five
synopsis types, and to pick the best one. As an alternative,
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Parameter/Option name Default
Forecast lead time (Sec. 2) 25
∆ in FPS (Fig. 3) 90
Ranking attributes (Sec. 5.2) Correlation-based (LCC)
Ranked-list traversal (Sec. 5.3) Variable-sized (10 × 2i)
Attribute selection (Sec. 5.4) FCBF
Synopsis type (Sec. 5.4) BN
Generate plan or not? (Sec. 5.5) No pruning
Sharing across chunks (Sec. 5.6) FPS-incr-cum

Table 1: Defaults for experiments

we tried to determine experimentally whether one or more
synopsis types in BN, CART, MLR, SVM, and RF compare
well in general to the other types in terms of both the ac-
curacy achieved and the time to build. The results are very
encouraging, and are reported in Section 6.5.

5.5 Decision to Generate a Plan or Not
At Line 8 in Figure 3, we need to decide whether to gener-

ate a complete plan using the current chunk of attributes C.
Generating a complete plan p from C involves an attribute
selection and building one or more synopses, so it is desir-
able to avoid or reduce this cost if p is unlikely to be better
than the current best plan. To make this decision efficiently,
we need an estimator that gives a reasonably-accurate and
efficiently-computable estimate of the best accuracy possible
from chunk C. We can prune C if the estimated best accu-
racy from C is not significantly higher than the accuracy of
the current best plan. We considered two options:
• No Pruning, where a plan is generated for all chunks.
• Pruning(k), where chunk C is pruned if the best CFS

Score (Equation 2) among attribute subsets in C is worse
than the k-th best CFS score among all chunks so far.

5.6 Sharing Computation in FPS
Recall from Section 5.3 that FPS traverses the ranked list

of attributes in overlapping chunks C1 ⊂ C2 ⊂ · · · ⊂ Ck

starting from the beginning of the list. The version of FPS
described in Figure 3—which we call FPS-full—performs at-
tribute selection and synopsis building from scratch for each
chunk where a complete plan is generated.

An incremental version of FPS, called FPS-incr, shares
(or reuses) computation across chunks by generating a plan
from the attributes Θ∪{Ci−Ci−1} at the ith chunk, instead
of generating the plan from Ci. Here, Ci −Ci−1 is the set of
attributes in Ci that are not in Ci−1, and Θ ⊆ Ci−1 enables
reuse of computation done for previous chunks. We consider
two options for choosing Θ:

Θ =

¡

Θi−1 (FPS-incr-cum)
Θj′ , j′ = argmax1≤j≤i−1 accj (FPS-incr-best)

Here, Θj ⊆ Cj is the attribute subset chosen in the plan
for chunk Cj (Section 5.4.1), with corresponding accuracy
accj . Intuitively, Θ in FPS-incr-cum tracks the cumulative
attribute subset selected so far, while FPS-incr-best uses the
best attribute subset among all chunks so far.

Note that sharing can be done across chunks in a ranked
list—like we described above—as well as across the much
larger overlapping chunks of attributes considered by succes-
sive iterations of FPS’s outer loop; our description applies
to this case as well.

6. EXPERIMENTAL EVALUATION
Our algorithms for processing one-time and continuous

forecasting queries have been implemented in the Fa data

management system being developed at Duke. Fa is tar-
geted at managing the massive volumes of high-dimensional
data generated by system and database monitoring appli-
cations. Fa’s implementation of all synopses is based on
the open-source WEKA toolkit [20]. Table 1 indicates the
experimental defaults.

6.1 Datasets, Queries, and Balanced Accuracy
Since Fa’s target domain is system and database monitor-

ing, the datasets, forecasting queries, and accuracy metrics
we present in this paper are drawn from this domain. The
complete details of our experimental evaluation—including
results omitted due to lack of space and datasets from other
application domains—are given in the technical report [8].
We used real, testbed, and synthetic datasets; described
next and in Table 2.
Real datasets: We consider two real datasets: Aging-real
and FIFA-real. Aging-real is a record of OS-level data col-
lected over a continuous period of two months from nine pro-
duction servers in the Duke EE departmental cluster; [18]
gives a detailed analysis. The predictive patterns in this
dataset include the effects of software aging—progressive
degradation in performance due to, e.g., memory leaks, un-
released file locks, and fragmented storage space—causing
transient system failures. We use Aging-real to process
queries that forecast with lead-time L whether a server’s
average response time will exceed a specified threshold.

FIFA-real is derived from a 92-day log for the 1998 FIFA
Soccer World Cup web-site; [2] gives a detailed analysis. We
use this dataset to process queries that forecast with lead-
time L whether the web-site load will exceed a specified
threshold. The load on the FIFA web-site is characteris-
tic of most popular web-sites—with periodic segments, high
burstiness at small time scales, but more predictability at
larger time scales, and occasional traffic spikes.
Testbed datasets: These datasets contain OS, DBMS,
and transaction-level performance metrics collected from a
MySQL DBMS running an OLTP workload on a monitoring
testbed we have developed. Table 2 gives brief descriptions.
These datasets are used to process queries that forecast
with lead-time L whether the average transaction response
time will exceed a specified threshold. Our testbed datasets
cover (i) periodic workloads—with different period lengths
and complexity of pattern—(ii) aging behavior—both peri-
odic and non-periodic, fixed and varying rate of aging—and
(iii) multiple performance problems (e.g., CPU and I/O con-
tention) happening in overlapping and nonoverlapping ways.
Synthetic datasets: We also generated synthetic time-
series datasets to study the robustness of our algorithms;
see Table 2.
Balanced Accuracy (BA): Notice that the queries we
consider in our experimental evaluation forecast whether the
system will experience a performance problem L time units
from now. The accuracy metric preferred for such queries in
the system management domain is called Balanced Accuracy
(BA) [13]. BA is computed using K-CV (Section 4.1) as: BA
= 0.5(1 - FP) + 0.5(1 - FN). Here, FP is the ratio of false
positives (predicting a problem when there is none) in the
〈actual value, estimated value〉 pairs. Similarly, FN is the
ratio of false negatives (failing to predict an actual problem).
Graphs: The majority of our graphs track the progress of
FPS over time; the X axis shows the elapsed time since
the query was submitted, and the Y axis shows the best
BA among plans generated so far. Fast convergence to the
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Name n m I Description

1. Aging-real 44 4820 15 OS-level data collected for 55 days from nine Duke EE departmental servers
2. FIFA-real 124 2068 60 Load metrics collected for 92 days from the 1998 Soccer World Cup web-site
3. Periodic-small-tb 196 4315 1 10-minute period; query parameter values varied to vary transaction response time
4. Periodic-large-tb 252 6177 1 90-minute period; resource contention created by varying number of DBMS threads
5. Aging-fixed-tb 252 1499 1 non-periodic; resource contention caused by an aging [18] CPU-intensive thread
6. Multi-large-tb 252 5000 1 non-periodic; resource contention caused by both CPU and disk contention
7. Multi-small-tb 252 719 1 16-minute period; resource contention caused by both CPU and disk contention
8. Aging-variant-syn 3 7230 1 non-periodic; rate of aging is not fixed like in Aging-fixed-tb
9. Complex-syn 6 14760 1 non-periodic; pattern simulating a problem that affects response time with a lag

Table 2: Datasets used in experiments; n, m, and I are the number of attributes, tuples, and measurement
interval (minutes) respectively; real, tb, and syn represent real, testbed, and synthetic datasets respectively
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Figure 5: (a) Comparing correlation metrics, (b) Correlation Vs. time-based ranking, (c) Importance
of chunk-based traversal. All three experiments use the Periodic-large-tb dataset.

maximum BA possible indicates good performance. BA is
always≥0.5, so the minimum Y value in these graphs is 0.5.

6.2 Ranking Attributes
Recall from Section 5.2 that FPS can choose to do time-

based ranking of enumerated attributes, or correlation-based
ranking using LCC, IG, or SU. Figures 5(a) and 5(b) show
the general trend that we have seen across all our datasets
and queries (note that the full set of performance graphs
from our evaluation is given in the technical report [8]):
• FPS using LCC converges much faster and to almost the

same BA as SU and IG. The worst results for LCC were
for the synthetic Complex-syn dataset where we forced
the predictive attributes to have nonlinear correlation
with the output attribute Z. Even in this case, LCC
converged to the same BA as IG and SU, with 20% more
time than SU and 14% more time than IG.

• Correlation-based ranking using LCC is more robust than
time-based ranking. Note the sensitivity of time-based
ranking to the lead-time in Figure 5(b): time-based rank-
ing will converge quickly only when the predictive pat-
terns are “close by” in time, which depends on the lead-
time for Periodic-large-tb.

6.3 Traversal of Ranked List
The trend in Figure 5(c) was consistent across all our

datasets: it is significantly better to consider attributes in
the ranked list in multiple overlapping chunks rather than
considering all attributes all-at-once. The main reason is
that the time for attribute selection and synopsis learning is
nonlinear in the number of attributes. With multiple over-
lapping chunks, the chunks are smaller since the effects of
computation sharing from Section 5.6 kick in.

We have found variable-size traversal (Section 5.3)—with
chunk sizes increasing in a geometric progression 10× 2i up
to a maximum size, then switching to an arithmetic pro-

gression with the last increment—to be more effective than
fixed-size traversal:
• If ranking correctly brings the most predictive attributes

to the beginning of the ranked list, then FPS gets close
to the best accuracy from the first few chunks. Here,
fixed-size and variable-size traversal are comparable.

• If the predictive attributes are not at the beginning of
the ranked list—e.g., because the use of LCC for rank-
ing failed to capture nonlinear correlation, or ∆ was
too low—then FPS may not get good accuracy until
the middle/last chunks are considered or until more at-
tributes are enumerated; variable-size traversal can get
there sooner. This effect is clear in Figure 6 which con-
siders a case where ∆ = 30 was low, so multiple iterations
of the outer loop in Figure 3 were required to get to the
best BA possible. Note the log scale on the X axis.

6.4 Selecting a Predictive Attribute Subset
Figure 7 represents the consistent trend we observed: (i)

The running times of the attribute-selection techniques are
in the order FCBF < CFS ¿ Wrapper, with Wrapper being
about an order of magnitude slower than FCBF and CFS,
without any significant advantage in accuracy; (ii) FCBF
tends to perform better on average than CFS, but other
features of FPS—mainly, sharing of computation (Section
5.6)—blur the difference between FCBF and CFS. (Principal
Component Analysis also performs worse than FCBF/CFS.)

6.5 Selecting a Synopsis
Table 3 shows the time to produce the best plan, and the

corresponding BA, for FPS when using BN, CART, MLR,
and SVM synopses. As a comparison point, we provide the
best performance of RF synopses which were found to be
one of the most accurate synopses available today in a recent
comprehensive study [4]. (More detailed comparisons with
RFs are provided in Section 7.)
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Figure 6: Choosing chunk sizes
(Periodic-large-tb, ∆=30 in Fig. 3)

Figure 7: Comparing attribute-
selection techniques (Aging-real)

Figure 8: CFS-Score Vs. BA for
random subsets (Multi-large-tb)

FPS (BN) FPS (CART) FPS (MLR) FPS (SVM) RF
Dataset BA Time BA Time BA Time BA Time BA Time

Aging-real 0.71 62.4 0.71 134.9 0.64 35.8 0.51 1948.7
FIFA-real 0.87 28.8 0.85 36.6 0.84 201.4
Periodic-small-tb 0.84 44.9 0.85 249.3 0.80 130.3 0.86 22339.7
Periodic-large-tb 0.98 71.98 0.98 167.7 0.97 92.6
Aging-fixed-tb 0.91 27.5 0.93 56.8 0.89 145.3
Multi-large-tb 0.72 99.7 0.73 197 0.71 100.8
Multi-small-tb 0.91 53.2 0.91 49.7 0.85 19.1 0.86 482.3 0.91 933.2
Aging-variant-syn 0.82 14.2 0.81 109.4 0.80 24.2 0.85 3200.1
Complex-syn 0.99 130.1 0.99 506.4 0.99 134.7

Table 3: Synopsis comparisons. The time in seconds to produce the best plan, and the corresponding BA,
are shown. The missing data points are cases where Java ran out of heap space before convergence.

• The running times for SVM and RF are consistently
worse than for BN/CART/MLR. The missing data points
for SVM and RF are cases where Java runs out of heap
space on our machine before the algorithms converge;
showing the high memory overhead of these algorithms.

• BN and CART are competitive with other synopses in
terms of both accuracy and running time; we attribute
this performance to the fact that once the right transfor-
mations are made, a reasonably-sophisticated synopsis
can attain close to the best accuracy possible.

6.6 Decision to Generate a Plan or Not
Our attempt to use the best CFS Score from a set of at-

tributes Ω as an estimator of the best BA from Ω gave mixed
results. Figures 8 and 9 plot the CFS Score and correspond-
ing BA for a large set of randomly chosen attribute subsets
from Multi-large-tb and Periodic-large-tb: CFS Score seems
to be a reasonable indicator of BA for Multi-large-tb (note
the almost linear relationship), but not so for Periodic-large-
tb (note the points where CFS Score is reasonably high,
but BA is far below the best). Figure 10 shows the per-
formance of CFS-Score-based pruning, for k=1 and k=5,
for Periodic-large-tb. While pruning does sometimes reduce
the total processing-time considerably, it does not translate
into faster convergence; in fact, convergence can be delayed
significantly as seen in Figure 10.

6.7 Effect of Sharing
Figure 11 shows the consistent trend we observed across

all datasets: computation sharing improves the speed of con-
vergence of FPS significantly, without any adverse effect on
accuracy. Note that sharing can be done across chunks in a
ranked list as well as across the much larger chunks of at-
tributes considered by successive iterations of FPS’s outer
loop. To show both effects, we set ∆ = 30 instead of the
default 90 in Figure 11, so multiple iterations of the outer
loop are required to converge.

7. MAKING FPS CONCRETE
The trends observed in our experimental evaluation point

to reasonable defaults for each step of FPS in Figure 3, to
find a good plan quickly from Φ for a one-time Forecast(D,
Xi, L) query:
• Use LCC for ranking attributes.
• Traverse the ranked list in multiple overlapping chunks,

with increasing increments in chunk size up to a point.
• Generate a complete plan from each chunk considered.
• Use FCBF or CFS for attribute selection.
• Build BN or CART synopses.
• Use FPS-incr-cum for computation sharing.

A recent comprehensive study [4] found RFs to be one of the
most accurate synopses available today. Figure 12 compares
the above concrete instantiation of FPS with:

• RF-base, which builds an RF synopsis on the original
input dataset. Intuitively, RF-base is similar to applying
today’s most-recommended synopsis on the input data.
Note that RF-base does not consider transformations.

• RF-shifts, which builds an RF synopsis on the input af-
ter applying all Shift(j, δ) transformers, 1 ≤ j ≤ n and
−∆ ≤ δ ≤ 0.

The results in Figure 12 demonstrate FPS’s superiority over
RF-base and RF-shifts in finding a good plan quickly for
one-time forecasting queries.

In the technical report, we extend FPS to consider a much
larger space of transformers than Φ. This extension is based
on two main observations:

• FPS handles a large space of shift transformations by
first applying these transformations to create all cor-
responding attributes, and then applying efficient at-
tribute traversal and selection techniques to find good
transformations quickly. The same technique can be
used to consider more transformers, e.g., we consider
log, wavelet, and difference in the technical report.
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random subsets(Periodic-large-tb)

Figure 10: CFS-Score-based prun-
ing (Periodic-large-tb)

Figure 11: Improvements with
sharing (Periodic-large-tb)
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Figure 12: FPS Vs. State-of-the-art synopsis (RF): (a)Aging-real, (b) Complex-syn, (c) Multi-large-tb,
(d) Aging-variant-syn

• FPS can first apply simple transformers (e.g., Shift, π)
and synopses (e.g., BN) to identify the small subset Ω
of original and new attributes that contribute to good
plans. Then, more complex transformers and synopses
can be applied only on Ω.

8. CONTINUOUS FORECASTING QUERIES
So far we considered one-time forecasting of the form

Forecast(D, Xi, L) where the dataset D is fixed for the dura-
tion of the query. We now extend our techniques to handle
continuous queries of the form Forecast(S[W ], Xi, L) where
S is a data stream of relational tuples, and W is a sliding
window specification over this stream.
Semantics: The semantics of a Forecast(S[W ], Xi, L) query
is a straightforward extension of the one-time semantics
from Section 2. The result of a Forecast(S[W ], Xi, L) query
at time τ is the same as the result of Forecast(D, Xi, L),
where D is the time-series dataset containing the window
W of data in stream S at τ . As time advances, this window
of data shifts, and a continuous stream of forecasts will be
produced in the result of Forecast(S[W ], Xi, L).

Example 3. Consider the example continuous query Fore-
cast(Usage[Range 5 days],C,1 day) that treats the Usage
data in Figure 1(a) as a stream. CQL syntax is used to
specify a sliding window containing tuples in the last 5 days.
Thus, e.g., on Day 10, a forecast will be output for C for
Day 11, based on the data (window) for Days 6-10. 2

8.1 FPS­Adaptive (FPS­A)
We could process a Forecast(S[W ], Xi, L) query by run-

ning FPS on the initial window of data to get the best plan
p, and then keep producing new forecasts using p as the
window of data changes. However, this technique will pro-
duce inaccurate forecasts as the predictive patterns in the
data change over time. Another option is to rerun FPS from
scratch to generate the current best plan whenever the win-
dow changes; this option is inefficient.

A good algorithm for processing a Forecast(S[W ], Xi, L)
query should use the same plan that FPS would find for each
window of data, but incur minimal cost to maintain this plan
as the window slides. FPS-A (FPS-Adaptive) is our attempt
at such an algorithm. FPS-A exploits the structure (Figure
4) and defaults (Section 7) we established for FPS. FPS-A
works as follows:

• The ranked list of all enumerated attributes is main-
tained efficiently. Because FPS uses LCC for rank-
ing, FPS-A gets two useful properties. First, LCC can
be updated incrementally, and batched updates make
this overhead very low. Second, recent work [23] shows
how tens of thousands of LCCs can be maintained in
real-time; we haven’t used this work yet since batched
updates give us the desired performance.

• If there are significant changes to the ranked list, then
the overall “plan structure” is updated efficiently (e.g.,
the best attribute subset for a chunk may have changed,
giving a new best plan).

At all points of time, FPS-A maintains a reference rank list
Rr composed of k chunks Cr

1 ⊂ Cr
2 ⊂ · · · ⊂ Cr

k , the best
plans pr

1, . . . , p
r
k for these chunks, and the overall best plan

pr
best. The current pr

best is used for producing forecasts and
accuracy estimates at any point of time. The reference val-
ues are initialized by running FPS on the initial window of
tuples. Figure 13 shows how FPS-A maintains these values
as the window slides over time. FPS-A uses two user-defined
thresholds: α for detecting significant changes in LCC val-
ues, and β that determines the batch size for updating LCC
values. The notation Level(Y )r is used to denote the num-
ber of the largest chunk to which attribute Y belongs in Rr.
That is, Level(Y )r = i if Y ∈ Cr

i and Y /∈ Cr
i+1.

After updating LCC scores, FPS-A computes two sets
of attributes: Gainers (Losers) that moved up (down) one
or more levels in the ranked list, and whose LCC values
changed significantly. If there are no Gainers or Losers,
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Algorithm Fa’s Adaptive Plan Maintenance (FPS-A)
Input: A β-sized batch of tuples inserted/deleted from the

sliding window for a Forecast(S[W ], Xi, L) query. Rr,
Cr

1 , . . . , Cr
k
, pr

1, . . . , pr
k
, pr

best
are the current reference values;

Output: The reference values will be updated if required;
1. Do batched update of all LCC values to get the new ranked

list R and its chunks C1, . . . , Ck;
2. For attribute Y , let LCC(Y, Z)r and LCC(Y, Z) be the

reference and current LCC between Y and Z = Xi(τ + L);
3. For attribute Y , Level(Y )r = i if Y ∈ Cr

i and Y /∈ Cr
i+1;

4. For attribute Y , Level(Y ) = i if Y ∈ Ci and Y /∈ Ci+1;
// Attributes that gained LCC significantly and moved up levels
5. Gainers = Set of Y such that Level(Y )r > Level(Y )

AND |LCC(Y, Z)r − LCC(Y, Z)| > α);
// Attributes that lost LCC significantly and moved down levels
6. Losers = Set of Y such that Level(Y )r < Level(Y )

AND |LCC(Y, Z)r − LCC(Y, Z)| > α);
7. IF (|Gainers| = 0 AND |Losers| = 0)
8. No changes are required for reference values. Exit;
9. FOR (i going from 1 to number of chunks k) {
10. IF (there exists a Y ∈ Losers such that Y ∈ pr

i ) {
11. Regenerate pr

i using the attribute subset in pr
i−1 and

the attributes in Ci − Ci−1, and using BN synopsis;
12. } /* END IF */
13. ELSE {
14. NewAttrs = Set of attributes Y ∈ Gainers such that

Y ∈ Ci and Y /∈ pr
i ;

15. If |NewAttrs| > 0, then regenerate pr
i using NewAttrs

and current attribute subset in pr
i , and BN synopsis;

16. } /* END ELSE */
17. } /* END FOR */
18. Update the reference rank list, chunks, and best plan;

Figure 13: FPS-Adaptive (FPS-A)

then the current reference values are fine as is. If one or
more attributes in the attribute subset of plan pr

i for the ith
chunk are in Losers, then pr

i may have become suboptimal.
So, FPS-A regenerates pr

i using the best attribute subset
for the previous chunk and the attributes at this level (re-
call Section 5.6). Similarly, if new attributes have moved
into the ith chunk, then pr

i can be updated efficiently to
(possibly) include these attributes. FPS-A builds BN syn-
opses, and updates the synopsis in the current best plan after
every batch of tuples are processed. While these synopses
can be updated incrementally, we have got equally efficient
performance from simply rebuilding the synopsis on the few
(< 10) attributes chosen by attribute selection.

Notice that FPS-A reacts to changes in the ranked list
only when attributes transition across levels. (The thresh-
old α filters out spurious transitions at chunk boundaries.)
This feature makes FPS-A react aggressively to changes at
the head of the ranked list—where attributes have a higher
chance of contributing to the best plan—and be lukewarm
to changes in the tail. FPS-A gets this feature from the fact
that successive overlapping chunk sizes in FPS increase in a
geometric progression.

We now report experiments where we evaluate FPS-A on
the three metrics for adaptive query processing defined in
[3]: (i) speed of adaptivity (how quickly can FPS-A adapt to
changes in stream properties?), (ii) convergence properties
(when stream properties stabilize, can FPS-A produce the
accuracy that FPS gives for the stable properties?), and (iii)
run-time overhead (how much extra overhead does FPS-A
incur in settings where stream properties are stable, and in
settings where properties change over time?).

We consider continuous queries with a 200-minute win-
dow on the input stream. α = 0.1 for FPS-A. Figures 14(a)
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Figure 14: Adaptivity and convergence properties

β Without property changes With property changes
FPS-A Strawman % FPS-A Strawman %

5 32.02 32.83 2.53 33.41 36.69 9.82
10 61.17 62.24 1.74 66.37 60.73 -8.5
15 89.5 90.99 1.56 81.87 88.33 7.89
20 116.27 118.17 1.64 95.50 112.82 18.13
25 129.34 132.10 2.13 108.54 126.24 16.30

Table 4: Run-time overhead. Values for FPS-A and
Strawman are tuples processed per second. % is
FPS-A’s degradation relative to Strawman
and (b) show FPS-A’s speed of adaptivity and convergence
properties for two input streams. The input stream used
in Figure 14(a) concatenates the Multi-large-tb and Aging-
fixed-tb datasets from Table 2 to create a scenario where
predictive patterns change because of a change in workload
on the monitored system. The second stream is more ad-
versarial where we randomly permute the attributes in the
Multi-small-tb dataset over time.

We compare FPS-A’s performance with that of Strawman
which runs FPS on the initial window of data to choose the
initial best plan. Like FPS-A, Strawman updates the BN
synopsis in the current best plan after every batch of tuples
have been processed. However, unlike FPS-A, Strawman
never updates the set of attributes selected. The X-axis
in Figure 14 shows the number of tuples processed so far,
and the Y axis shows the estimated accuracy of the current
best plan. Note that FPS-A adapts fairly quickly in Figure
14(a) when the stream properties change at X = 2000, but
Strawman does not because the set of predictive attributes
has changed. Comparing the accuracies before and after the
change in Figure 14(a) with the respective individual best
accuracies for the Multi-large-tb and Aging-fixed-tb datasets
in Table 3, shows that FPS-A indeed finds plans comparable
to FPS. The behavior in Figure 14(b) is similar.

Table 4 shows the extra overhead for FPS-A over Straw-
man for the adversarial stream. When there are no changes
in stream properties, FPS-A’s extra overhead is limited to
LCC maintenance; which is around 2%. Even when stream
properties change and FPS-A has to update attribute sub-
sets, the worst-case overhead is < 20%. Note that FPS-A’s
overhead can be lower than that of Strawman if FPS-A finds
a smaller attribute subset.

9. RELATED WORK
Time-series forecasting has been a topic of extensive re-

search for years because of its use in many domains like
weather and econometric forecasting. Reference [5] is a re-
cent and comprehensive review of this research over the past
25 years. The motivation of making systems and DBMSs
easier to manage (ideally self-tuning) has attracted recent
interest in forecasting (e.g., [13, 14]). Our work differs from
previous work on forecasting in two fundamental ways: (i)
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we consider declaratively-specified forecasting queries, and
develop automated algorithms for choosing plans composed
of transformation, prediction, and synopsis-building opera-
tors; (ii) our algorithms balance accuracy against the time
to generate forecasts.

Our goal in this paper is not to propose new synopses or
transformers for forecasting—plenty of such operators are
listed in [5]—but to develop algorithms that can compose
existing operators into a good plan for a given query and
dataset. While [13, 14] show how various synopses can fore-
cast performance problems and failures in real enterprise
environments, transformations are selected manually in [13,
14]. Muscles [21] uses MLR synopses to process continuous
forecasting queries over data streams. While Muscles up-
dates synopses incrementally as new tuples arrive, the set of
transformations is not updated.

The design of FPS has been influenced by recent com-
parison studies on synopses and transformations done by
the machine-learning community [4, 10, 19]. Reference [4]
reports a large-scale empirical comparison of the accuracy
(processing time is not considered) of ten synopses, including
regression, BN, CART, SVM, and RF. This study found RF
to be one of the most accurate synopses available. Reference
[19] is a similar study, but with a much smaller scope—only
BN and CART synopses are considered. However, [19] eval-
uates processing time and considers some attribute-selection
algorithms. Reference [10] is a comprehensive evaluation of
attribute-selection algorithms, with findings similar to ours.
None of this work considers algorithms for determining a
good combination of synopses and transformations.

Synopses have found many uses recently in database and
data stream systems, e.g., in approximate query answer-
ing, query optimization, self-tuning, and acquisitional query
processing [6, 12, 17]. While most of this work focuses on
conventional SQL or XML queries, Fa can benefit from some
of it. For example, [23] develops techniques to maintain a
large number of LCCs in real-time. Reference [5] urges the
time-series forecasting community to develop multivariate
synopses that are robust and easy to use as well as good
at multi-step-ahead forecasting. Commercial DBMSs have
made rapid strides towards becoming self-tuning (e.g., see
[17]). However, these systems take a predominantly reac-
tive approach to tuning and diagnosis, which can be made
proactive with Fa’s accurate and automated forecasting.

Fa can leverage as well as extend work on integrating data-
mining algorithms (e.g., [12, 15]) and synopses (e.g., [7]) into
DBMSs. MauveDB [7] proposes a declarative language and
efficient materialization and update strategies for synopsis-
based views. None of this work addresses how to choose
the best algorithm or synopsis for a specific query or mining
task automatically; where ideas from Fa apply.

10. CONCLUSION
In conclusion, the Fa system enables users and applica-

tions to pose declarative forecasting queries—both one-time
and continuous—and get forecasts in real-time along with
accuracy estimates. We described the FPS algorithm to
process one-time forecasting queries using plans composed of
operators for transforming data, building statistical models
from data, and doing inference using these models. We also
described the FPS-A algorithm that adapts plans for con-
tinuous forecasting queries based on the time-varying prop-
erties of input data streams. Finally, we demonstrated the
effectiveness and scalability of both algorithms empirically.
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