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Abstract

To enable modern data intensive applica-
tions including data warehousing, global in-
formation systems and electronic commerce,
we must solve the schema mapping prob-
lem in which a source (legacy) database is
mapped into a different, but fixed, target
schema. Schema mapping involves the discov-
ery of a query or set of queries that trans-
form the source data into the new structure.
We introduce an interactive mapping creation
paradigm based on value correspondences that
show how a value of a target attribute can
be created from a set of values of source at-
tributes. We describe the use of the value cor-
respondence framework in Clio, a prototype
tool for semi-automated schema mapping, and
present an algorithm for query derivation from
an evolving set of value correspondences.

1 Introduction

Many modern applications such as data warehousing,
global information systems and electronic commerce
need to take existing data with a particular structure
or schema, and re-use it in a different form. These
applications start with an understanding of how data
will be used and viewed. That is, they start by de-
termining a target schema. They then must create
mappings between this target and the schemas of the
underlying data sources. Creating those mappings is
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today a largely manual (and extremely difficult) pro-
cess. Transformation of the data is accomplished by
complex programs, hand-written or pieced together by
specialized tools (e.g., for data warehouses), and these
programs must then be carefully tuned to get reason-
able performance. While the time required to generate
and optimize these programs may be justified for data
warehouses, it 1s unacceptable for e-commerce, where
applications must evolve much more quickly, and it is
awkward for applications which require direct access
to source data (such as global information systems and
e-commerce).

We show how the transformation process can be
simplified and made more efficient and flexible by using
database management systems as transformation en-
gines. Data independent transformations, specified in
SQL, can then be automatically optimized and paral-
lelized by the DBMS for better performance. As many
DBMS today can process queries over data they do not
manage ([IBM97, CHS*95, Ora]), the DBMS can ef-
fectively handle the inter-source scheduling and data
movement needed for transformations as well. Creat-
ing mappings becomes a process of query discovery:
finding the queries or views that correctly transform
the data to the desired schema.

By simplifying the task of mapping creation, we
make 1t possible for DBMS to play a broader role in
new applications, not merely as a provider of data,
but as a manager of the transformations themselves.
Modern DBMS are not only data management tools,
they are query management tools. They incorporate a
wealth of sophisticated knowledge about queries and
query manipulation. While this knowledge has been
targeted to the problem of query optimization to pro-
duce efficient execution plans, we show how the same
infrastructure and similar reasoning can be applied
to the problem of query discovery for integrating and
transforming data. For both tasks, we are reasoning
about the relationships between and equivalences of
queries and schemas.

Clio [HMN*99] is a research prototype of a schema
mapping creation tool. Clio produces view definitions
that allow applications to directly access source data
using a middleware query engine. Queries posed on



these views can be optimized normally by the query
engine, so that only the data needed for a particular
query is converted. Clio produces the SQL queries for
the user, providing users with data samples and other
feedback to allow them to understand the mappings
produced.

In Section 2, we present a framework for map-
ping creation based on the notion of value correspon-
dences. Value correspondences are an intuitive way
of recording the relationships between source and tar-
get schemas. Given a set of value correspondences, we
show how to compute the query or queries needed to
perform the implied transformations (Section 3). Sec-
tion 4 illustrates the use of our mapping algorithm for
a data warehouse. We briefly discuss related work in
Section 5 and conclude in Section 6.

2 A Framework for Query Discovery

The focus in schema mapping is on query discovery.
By contrast, classical schema integration (including
both view integration and database integration) is the
activity of integrating a set of schemas into a unified
representation [RR99]. Schema integration techniques
typically distinguish two key tasks: creation of the in-
tegrated schema and creation of queries (mappings)
between schemas. In the applications we consider, the
target schema does not depend for its definition on
the identity and structure of the sources. Hence, the
problem of creating the integrated schema is no longer
relevant. However, the need to create mappings be-
tween the source and the integration remains. Yet the
problem of mapping generation between an integrated
schema and the source schemas used to derive the
integration is inherently different from that of deriv-
ing mappings between independently created schemas.
In the former problem, the mapping is implicit to
the derivation process. Indeed in their comprehensive
schema integration survey, Ram and Ramesh devote
only a single paragraph to mapping generation [RR99].
This is not an oversight on their part, but rather a true
reflection of the methodologies they survey.

As with schema integration, the schema mapping
task cannot be fully automated since the syntactic
representation of schemas and data do not completely
convey the semantics of different databases. For ex-
ample, 1t 1s not possible to know with complete cer-
tainty from the schema and data alone whether the
Emp relation in one schema has the same meaning as
the Employee relation in another. As a result, for both
schema mapping and schema integration, we must
rely on an outside source to provide some information
about how different schemas (and data) correspond.

However, the different nature and goals of these two
tasks necessitate the use of different types of corre-
spondences. For the schema integration, which is pre-
dominantly a schema design problem, design level as-
sertions detailing how schema constructs relate are ap-
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propriate [RR99]. These assertions state how the set
of values of a construct in one source schema relate
to the set of values of a construct in another source
schema. For the mapping problem, we claim that a dif-
ferent type of assertion is both more informative and
easier to elicit from a user. We call this new type of
assertion a value correspondence.

2.1 Overview of Value Correspondences

Informally, a value correspondence is a pair, consisting
of (1) a function defining how a value (or combination
of values) from a source database can be used to form
a value in the target, and (2) a filter, indicating which
source values should be used. For example, a string
concatenation function can be used to indicate that a
value of the staff-id attribute of the target schema is
formed by concatenating the letter 'E’ to an employee
number from the source, along with a filter that se-
lects only active employees. Similarly, a value of the
appellation attribute may be formed by concatenating
together a title and name value from the source. There
might be a filter on title, or any other attribute(s), or
the filter might be “True”. From these examples, it
should be clear that schema assertions and value cor-
respondences are related. An attribute assertion that
an Attribute A is a subset of Attribute D may imply
the use of the identity function and some filter as a
value correspondence to map values of A to values of
D [RR99]. However, the main focus of schema asser-
tions is on specifying how the values of one attribute
(or other schema constructs) as a set relate with the
set of values of another attribute. It is this set rela-
tionship that drives the integration algorithms [RR99].

In contrast, in Clio, the value correspondences drive
the integration. This distinction is important for two
reasons. First, we argue that it is natural for a DBA
to be able to specify value correspondences indicat-
ing the form in which a source value should appear
in the target. Even DBAs with incomplete knowl-
edge of the schema can specify the correspondences
for those values they understand. To be accurate, the
set relationships of attribute assertions require a more
complete knowledge of the schema and relationships
between components of the schema. Inaccurate or im-
precise assertions (for example, asserting that two at-
tributes overlap when there is actually a set contain-
ment relationship) will lead to incorrect integrations.
Second, the knowledge provided by these two differ-
ent types of statements is very different. This differ-
ence gives rise to a new approach to reasoning about
and creating schema assertions that has not previously
been explored. Specifically, we propose an iterative
wntegration-by-example paradigm under which a DBA
specifies how example values are mapped and the tool
attempts to deduce a likely schema mapping. In the
process, the DBA may be prompted for information
relevant to choosing between alternative mappings.



This information may sometimes include information
about the set relationships (but only if this informa-
tion is necessary for disambiguating between different
mappings).

Note that we are not arguing that the information
provided by schema assertions is irrelevant. On the
contrary, we are arguing it may not be required to de-
duce all mappings and that it may be impossible for
a DBA to specify a prior: without having seen even
a partial or potential mapping. Furthermore, we do
not use schema level assertions to drive the mapping
derivation process. Rather, we make use of reasoning
about schemas (and queries) and about possible alter-
native schemas (and queries) to drive this process.

Our thesis is two-fold.

e Value correspondences are an appropriate
abstraction for eliciting information from
the user or DBA. A DBA may easily be able
to indicate that distance values are formed by
multiplying rate times time. However, (s)he may
not readily be able to specify the possibly com-
plex query required to indicate how a specific rate
value is paired with a specific time value (per-
haps through a complex query involving many re-
lations) without some help or prompting from the
mapping tool.

¢ Using reasoning about queries and query
containment, we can effectively and effi-
ciently help the user derive correct schema
mappings. Specifically, we will employ the same
reasoning about queries (and alternative queries)
already used in DBMS to do query optimization
and semantic query optimization. Traditionally,
this knowledge is buried deep within the optimizer
and highly tuned to the problem of finding a low
cost query plan. To our knowledge, this is the
first principled attempt to expose this sophisti-
cated reasoning about queries to a user to help in
the schema mapping task.

Value correspondences may be entered by a user
or may be suggested using linguistic techniques ap-
plied to the data and meta-data such as the names of
schema components [BHP94, Joh97]. In Clio, we use
a graphical interface that facilitates schema and data
browsing to elicit value correspondences from users
[HMN*99]. Other data-centric interfaces, including
the scalable spreadsheet paradigm proposed by Ra-
man, Chou and Hellerstein [RCH99], would also be ap-
propriate for eliciting the correspondences that drive
our algorithms.

2.2 Constructing Schema Mappings

We now turn to the question of constructing a schema
mapping from a set of value correspondences. The
construction process is one of searching for the most
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Figure 1: Example schemas to be mapped.
reasonable mapping based on the properties of the cor-
respondences, the properties of the schemas, and the
schema or structuring cues that lie buried in the data.
We begin with an example that explains intuitively the
type of reasoning we will employ.

Example 2.1 Consider the two schemas of Figure 1.
Suppose a user has indicated that the product of the
values in the PayRate(HrRate) and WorksOn(Hrs) at-
tributes should also appear in Personnel(Sal). This
value correspondence is represented by the function fi.
For this example, we will assume all filters are “True”.
f1 : PayRate(HrRate)x WorksOn(Hrs) — Personnel(Sal)

This correspondence indicates how two values from the
source can be combined into a target attribute. How-
ever, it does not indicate which values should be com-
bined. Intwitwvely, if HrRate and Hrs belonged to the
same relation, then the most likely interpretation of
the correspondence is to combine values from the same
tuple. However, in general, particularly when HrRate
and Hrs belong to different relations, we must define a
query that produces pairs of values to be combined.

In this example, to produce a schema mapping we
must determine a way of associating a specific tuple
of PayRate with a tuple of WorksOn. If ProjRank is
a foreign key of PayRate, then the natural way of do-
ing this is through a join on Rank = ProjRank. This
produces the following mapping.

q1: SELECT P.HrRatexW.Hrs
FROM PayRate P, WorksOn W
WHERE P.Rank = W.ProjRank

However, suppose this foreign key is not declared but
nstead WorksOn. Name 1is declared as a foreign key of
Student and Student.Yr is declared as a foreign key of
PayRate. (That is, there is a different HrRate value
for Sophomores than for Juniors, etc.) Then the for-
etgn key path WorksOn < Student < PayRate would
be a better join path to use in the schema mapping.

qy: SELECT P.HrRate * W.Hrs
FROM PayRate P, WorksOn W, Student S
WHERE W.Name = S.Name AND S.Yr = P.Rank

Note that if, in fact, ProjRank s also declared as a
foreign key of PayRate, it is then not clear which join
path s better. In some circumstances, the filter of the



value correspondence may provide a clue. For example,
if our filter were “Student.Yr > 27, the join through
Student would make more sense. In the absence of
such clues, user input is required. A tool such as Clio
can still help, however, by enumerating the options and
providing “samples” (that is, instances of the target
schema) that are the results of different mappings.

Implicit to the process of deriving the mapping is
our intuition that for each HrRate value, there is some-
where in the source database a value for the Hrs at-
tribute that can be used to derive a value of the Sal
attribute in the target. It is certainly possible that a
user wished to take the cross product of HrRate and
Hrs and form salaries from every pair of these source
values. However, this possibility is unlikely, particu-
larly if there is a natural way to pair HrRates with spe-
cific Hrs values. So Clio makes use of reasoning about
schemas and the semantics conveyed by constraints,
such as foreign keys, to deduce likely mappings.

Example 2.2 Continuing this example, suppose that
the user has provided a second value correspondence
indicating that values of the Professor(Sal) attribute
should appear in Personnel(Sal) in the target.

f2 : Professor(Sal) — Personnel(Sal)
Certainly, one interpretation of these correspondences
s that we should take the join of salary values produced
by f1 and those produced by fo to populate the target.
However, this is not the most intuitive mapping since
it would mean that many (or perhaps even most) of the
source values for salary would not appear in the tar-
get. Rather, it 1s more likely that the user intended the
mapping to be a union of these values. The salary for
personnel may be derived either from professor salaries
or from student pay rates and hours. That 1s, a better
mapping would be the following.

q2: SELECT P.HrRate * W.Hrs

FROM PayRate P, WorksOn W, Student S
WHERE W.Name = S.Name AND S.Yr = P.Rank
UNION ALL

SELECT Sal

FROM Professor

While these examples may seem heuristic, there is
some principled reasoning going on under the covers.
To guide the mapping construction, we are following
two key principles. First, if possible, all values in the
source appear in the target. This principle guided our
decision to use a union rather than a join in the ex-
ample when two different value correspondences were
given for the same attribute. Second, if possible, a
value from the source should only contribute once to
the target. In other words, associations between val-
ues that exist in the source should not be lost. This
principle guided our choice to use a join rather than
the cross product to compute a salary value using the
correspondence fi.
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Figure 2: Value Correspondences.

Note that these principles are restatements of com-
mon data design principles such as “one fact in one
place” [Dat95]. Even in the presence of filters, we try
to uphold these principles for those values selected by
the filter. Since our goal is schema mapping rather
than schema design, we do permit a user to override
these principles. For example, in publishing informa-
tion for a “What-If” scenario, a user might want a
cross-product so that (s)he could evaluate all possibil-
ities.

We use these principles to derive an initial map-
ping, one that preserves, to the extent possible, the
information in the source. A user may examine target
data derived under this mapping and decide whether
to restrict or modify the mapping.

Example 2.3 To complete our running example, con-
sider the extended schemas of Figure 2 and the follow-
ing additional value correspondences.

fa: Professor(Id) — Personnel(Id)

fa: Professor(Name) — Personnel(Name)
fs: Address(Addr) — Personnel(Addr)
fe: Student(Name) — Personnel(Name)

Intuitively, these correspondences divide naturally into
two groups that coincide with the two different ways
in which a Personnel tuple can be created. The first
group includes the correspondences from Professor and
Address, namely fs, f3, fa, fs. A Personnel tuple can
be created by joining together a Professor tuple and
an Address tuple. Such a mapping is suggested by
the presence of foreign key constraints between these
relations or by the presence of a source query work-
load that includes a join of these two relations or even
by the data itself (if the Id values in the two rela-
tions overlap). Depending on the constraint informa-
tion, we may choose an outer-join, rather than a join
to avoid losing information (but we use a join here,
to keep our erample simple). The second group in-
cludes the correspondences from Student, PayRate and
WorksOn, namely f1 and fs. A Personnel tuple can
be created by joining together Student, PayRate and
WorksOn. Hence, the most reasonable schema map-
ping gqiven these specific constraints in the source is
the following.



s1: SELECT P.Id, P.Name, P.Sal, A.Addr

FROM Professor P, Address A

WHERE A.Id = P.Id

UNION ALL

SELECT NULL as Id, S.Name, P.HrRate*W.Hrs,
NULL as Addr

FROM Student S, PayRate P, WorksOn W

WHERE S.name = W.name AND S.Yr = P.Rank

Notice that this is not the only possible mapping. An-
other option would be to take the outer-union of all the
relations in the source and project out attributes from
the source that do not participate in any value corre-
spondence. The outer-union is the union where any
mussing attributes are set to null.

si:SELECT NULL as Id, NULL as Name, NULL as Sal, Addr
FROM Address A
UNION ALL
SELECT P.Id, P.Name, P.Sal, NULL as Addr
FROM Professor P
UNION ALL
SELECT NULL as Id, Name, NULL as Sal, NULL as Addr
FROM Student S ...

While possible, it is clear from our understanding of
the semantics of the source schema that this would not
be a particularly natural mapping. Such a mapping
loses associations between data values present in the
source. For example, in the source, we can determine
the address of a professor (assuming the Id of a profes-
sor appears in the Address relation). This would not
be true in the target using a mapping based on outer-
unions.

In the example, we described the intuition behind
the mapping derivation. This intuition, while seem-
ing natural to anyone who has worked with databases,
actually has a formal basis that dates back to early
theoretical work on database design. Simply put, our
goal is to find mappings that do not lose information,
or at least lose as little information as possible. In rea-
soning about mappings, we will consider alternative
ways of combining value correspondences to produce
mappings. We use formal reasoning about schemas
to choose among these alternatives. Due to the va-
garies of semantics, we will not always be right. But
our goal is not to fully automate this process. Rather,
our goal is to present users with a reasonable map-
ping as a starting point which can be refined. By
providing an example mapping, the user can see tar-
get values produced by this mapping and identify data
values that are missing (or have been included in er-
ror). Hence, the mapping refinement process is data-
or value-driven. The user does not have to edit SQL
to refine the mapping.

We have used a very simple example and enu-
merated only a few of the possible mappings that
would need to be considered. We have not had space
to overview the complexities introduced by consider-
ing aggregations, groupings or even outer-joins, all of
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which are important constructs for integrating infor-
mation. In Example 2.3, if no foreign keys had been
specified, we would need to use outer-joins rather than
joins to avoid losing information. Because outer-joins
are not associative, the differences between alternative
outer-join orders can be subtle yet these differences are
extremely important in obtaining a semantically cor-
rect mapping. There is a considerable literature on
these subtleties alone [GL94, RU96, GLRI7]. Given
this inherent complexity, a systematic search through
the large search space of alternative mappings is a job
best done by a tool that can eliminate unlikely map-
pings and identify correct mappings a user might not
otherwise have considered.

2.3 Search Space

Having defined the mapping discovery problem as a
search through a set of alternative mappings, an im-
portant characteristic of the approach is the set of
possible mappings considered. We begin by consider-
ing mappings that preserve information capacity dom-
inance or equivalence [Hul86]. Such mappings are im-
portant in information integration [MIR93]. We are
able to take advantage of a solid literature enumer-
ating such mappings [MIR94, RU96, RR94] and pro-
viding search procedures for finding such mappings
[AH88, MIR94]. From this foundation, we extend
the search space in two ways. First, we consider a
larger class of mappings, including queries for which
the equivalence problem is not decidable. As a result,
our algorithm is not complete in that it may not con-
sider all possible mappings. However, this extension is
required to consider mappings between schemas with
constraints or dependencies. Second, we consider non-
equivalence (or dominance) preserving mappings. This
extension is a necessity since in practice, the source
and target schemas will not represent the same infor-
mation. To keep our search problem tractable, we at-
tempt to find mappings that minimize the information
loss. A formal description of the search space is be-
yond the scope of this paper. Informally, the mappings
we consider can be broadly classified into two groups.

Vertical Compositions Facts or tuples can be
combined using the join operator. To avoid having a
tuple combine or join with multiple tuples (that is, to
avoid having a single tuple contribute multiple times
to the result), we favor performing joins where there
is a functional (N:1) relationship between the tuples.
Dependency theory tells us this can be accomplished
using joins across foreign keys. (Indeed this same intu-
ition motivates the relational normal forms.) In addi-
tion, to minimize information loss, we use outer-joins
unless the constraints in the mapping imply that the
outer and inner-joins would be equivalent or unless we
can determine that the tuples that could be lost by
using a join are included elsewhere in the mapping.
Obviously, we will not always be able to determine



this since this problem is undecidable for the general
constraints we consider. In composing outer-joins, we
favor full disjunctions to ensure all information for a
single fact is collected in a single tuple [RU96, GLR97].
Note that using an outer-join over a foreign key, we
have a mapping that corresponds to the composition
transformation of [MIR94]. Such a transformation pre-
serves information (that is, information capacity dom-
inance) in the sense of [Hul86]. We also have an algo-
rithm for determining if such a mapping exists between
two schemas and for finding such mappings [MTR94].

Horizontal Compositions Facts or tuples can
also be combined using set operators. When we have
multiple value correspondences to the same value in
the target, we begin by using union to combine the val-
ues. To accomplish our information preservation prin-
ciples, we favor using (multi-set) unions as a starting
point, over other set operations such as intersections.
If we can determine the sets being unioned are disjoint,
a regular (set) union is used. For example, meta-data
is often used to create a tag to distinguish a tuple com-
ing from one place in the schema from a tuple coming
from a different location. Indeed, the mappings re-
sulting from schematic (or meta-data) heterogeneity
between the source and target schemas can often be
represented using tagged unions [Mil98].

This framework is an extensible one. Additional
classes of mappings and additional heuristics for se-
lecting between mappings can easily be integrated.
Furthermore, this framework and the algorithms de-
scribed below can be used both for traditional appli-
cations where the target schema is a (virtual) view
specified over one or more (materialized) data sources
and for applications where the source schemas are con-
sidered to be (materialized) views defined on a (vir-
tual) target schema [LMSS95]. The former is some-
times referred to as the global-as-view approach in the
literature and the latter as the local-as-view approach.
In the former case, the mapping is a query or set of
queries on the source schema that creates an instance
of the target. In the latter case, the mapping is a query
on the target. A more detailed discussion of this issue
and its implications for the mapping can be found in
the full version of this paper [MHHO00].

3 Query Discovery Algorithm

We now present our mapping construction algorithm.
To keep the notation simple, we assume the source
and target schemas are representated in the relational
model. We discuss generalizations to other models, in-
cluding semi-structured models such as XML in Sec-
tion 3.4.

3.1 Notation

Before presenting our algorithm, we outline the nota-
tion we will be using.
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e Let Sq,..., S, represent the n source relations.

e Let T1,...,T,, represent the m target relations.

e We use the (possibly subscripted) symbol A to
denote source attributes. The domain of an at-

tribute A is denoted dom(A).

e We use the (possibly subscripted) symbol B to
denote target attributes.

Each attribute of the source will have associated
meta-data. The meta-data includes the attribute
name, the relation name, the schema name, the data-
base name, the domain name, statistics such as high
and low values of the attribute, and possibly additional
annotations provided by a DBA. Hence, the meta-data
is extensible. For an attribute A, p(A) denotes the
meta-data associated with A. Formally, 1(A) is a tuple
(1 (A), p2(A), ..., pm(A)) of values. For convenience,
we give names to some of these values. The attribute
name is denoted attrname(A) and the relation name
is denoted relname(A).

We will represent a value correspondence as a tuple
v; = {fi,pi), where f; is the correspondence function
denoting the value substitution and p; a filter.

When defining a correspondence function f;, the
DBA selects a number of source attributes (and, pos-
sibly, meta-data associated with those attributes) and
one target attribute. Let Attrs(f;) = {A1,..., Az}
be the set of all source attributes used in f;, and
Target Attr(f;) = B be the (one) target attribute. The
correspondence function, f;, can be expressed as fol-
lows.

fi vdom(Aq) x ... X dom(Aq) X u(A1) x...x p(Aq) = dom(B)

Example 3.1 The following correspondence indicates
that values of the Distance attribute of the target can be
formed by multiplying the Rate value by the Time value
and dividing by 1.6 to convert kilometers to miles.

f1: Rate x Time /1.6 — Distance

Example 3.2 The next correspondence indicates that
company codes are formed by concatenating the ticker
code with the relation name (the name of the stock
exchange).

f2 : concat(relname(Ticker), Ticker) — CompanyCode

Each value correspondence function f; has an asso-
ciated filter p; that determines which subset of values
from the source relations will be used by f;. If we de-
fine Attrs(p;) = {A1,..., A, } to be the set of all source
attributes used in p;, we can express p; as follows.

p; :dom(A1) X ... x dom(Ar) X p(A1) X ... x p(Ar) = boolean

By default, p; is the predicate True, indicating the
value correspondence is defined for all values in the
domain. Note that Attrs(p;) is not necessarily the



same as Attrs(f;). In the first example above, we
could define a p; Rate < 100 which indicates
that the correspondence only holds for small rate val-
ues. In the second example, we could have psy
Exchange(Country) = “Canada” which would indi-
cate that the correspondence only holds for stocks
listed on Canadian exchanges. Here, even though
the values involved in the correspondence come from
the data and meta-data of a single relation (Ticker),
the attributes of the correspondence will also in-
clude Exchange(Country). As described below, the
algorithm will determine a join path between Ex-
change and Ticker (for example, relname(Ticker) v
Exchange(Name)) to use when applying the filter.

Either the correspondence function or the filter may
include aggregate functions. The aggregate 1s taken as
a cue to perform a grouping in the schema mapping.
To determine the grouping attributes, we must con-
sider all the value correspondences for a target relation
as described in the next section.

3.2 The Core Algorithm

For each target relation T} we want to construct a
query qi that specifies what values to include in the
relation. To do this, we consider the value corre-
spondences Vj defining attribute values of Ty (i.e.,
Vi = {vi = (fi,pi) | Target Attr(f;) € Ti}).

The idea behind this algorithm is to divide the set
of value correspondences Vj into subsets of Vy, each of
which determines one way of computing the values of
Ti. Each of these candidate sets can be mapped into
a single candidate SQL query (that is, a query with
a single select-from-where-group-by clause). The
query g is then the horizontal composition (i.e., the
application of set operations such as UNION ALL) of
these candidate queries.

We present the algorithm for a single target rela-
tion 7" and, thus, V = V} includes all value correspon-
dences. When more that one target relation exists,
we repeat the algorithm for each Vi possibly reusing
computations from previous targets.

We divide the algorithm’s tasks into four phases
(see Figure 3). In the first phase, the value correspon-
dences in V are partitioned into sets {c¢1,...,¢c,} that
contain at most one correspondence per attribute of
T. We call each such set a potential candidate set. In
essence, each c; represents one possible way of map-
ping the attributes of T'. A potential candidate set is
complete if 1t includes a value correspondence for ev-
ery attribute in the target. Potential candidate sets
are not necessarily disjoint since the same value map-
ping can appear in multiple potential candidate sets.

For clarity of exposition, we describe this phase of
the algorithm as searching every potential candidate
set derived from V independently (though the compu-
tations can be reused across subsets). Although this
implies a large search space, potential candidate sets
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are generated on demand from the next phase of the al-
gorithm (i.e., pipelined). The order in which potential
sets are passed to the next phase is, thus, important.
As a heuristic, we give preference to complete poten-
tial sets whose value correspondences use the smallest
set of source relations. Also, if a particular potential
candidate set ¢; is selected for use in the schema map-
ping, we can heuristically prune potential candidates
that are proper subsets of ¢; since they are unlikely to
also appear in the mapping.

Example 3.3 Consider the following wvalue corre-
spondences (and assume some filter p; has been defined
for each).

fl SlA—)TC fg SQA—>TD f3 SQB—>TC
The collection of complete potential candidate sets is
P = {{vi,va},{v2,vs}}. The singleton sets {vi},
{v2}, {vs} are also potential candidate sets.

It is important to note that we consider potential
candidate sets that are not complete. There are two
reasons for this. First, as shown in Example 2.3, in
the final query mapping, there may not be a value
correspondence for every target attribute. Second, we
will be using our algorithm incrementally on perhaps
incomplete sets of correspondences. We want to per-
mit a user to specify a partial set of correspondences,
and have Clio derive a possible mapping. Using the
mapping, example tuples in the target can be derived.
These tuples can be used by a user to understand how
the data is fitting into the target.

The result of the first phase of the algorithm is a col-
lection P = {e1,...,¢q}, where each ¢; C V represents
a different possible way of mapping the attributes in
the target relation 7T'.

In the second phase of the algorithm, we prune from
the set of potential candidate sets those sets that can-
not be mapped into a good query. In particular, if the
value correspondences in the potential candidate set
map values from several source relations, we need to
find a vertical composition (i.e., a way of joining the
tuples) of those relations. This composition will sat-
isfy the criteria established in Section 2.3. We search
for foreign key paths between these relations.” Often
there will be at most one such path. If, however, there
are multiple paths, we favor the path for which the es-
timated difference in size of the outer and inner join is
the smallest.? This heuristic favors (outer-)join paths
that produce the fewest dangling tuples. For any am-
biguities that remain, we ask the user to choose one
of the available join paths. To help in this process,
we show the user example target tuples produced by

! Actually, the search is done only once for all potential candi-
dates and the results of the search reused over different potential
candidates.

2Note that this measure can be evaluated using common
meta-data such as the number of distinct values of an attribute.
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Figure 3: Mapping Algorithm

each of the alternative paths. In the absence of for-
eign key paths, we could employ data mining tech-
niques to determine if there is an (approximate) for-
eign key relationship between the relations in question
[Bel97, KMRS92] or permit the user to suggest ap-
propriate join paths. If no acceptable join path can be
found, the potential candidate set is removed from fur-
ther consideration. Any potential candidate set that
survives this pruning is a candidate set.

The result of this second phase is a set G C P of
candidate sets. Value correspondences in a candidate
set either map attributes from only one source relation,
or map attributes from multiple source relations and
a join path among those relations is known.

In the third phase of the algorithm, we attempt to
find a subset T of the candidate sets (I' C G) that
covers all value correspondences in V (that is, every
value correspondence in V appears at least once in
I'). We permit correspondences to participate in mul-
tiple candidates within a cover, but we do not con-
sider a set of candidates I' if we can remove a candi-
date set and still have a cover. For instance, in Ex-
ample 3.3, g = {{Uli UQ}: {UQ: U3}a {Ul}a {UZ}a {U3}}'
Possible covers include Ty = {{vi},{vs,vs}} and
[y = {{vi, v}, {va,vs}} since all defined value cor-
respondences appear at least once.

If there is more than one cover, Clio ranks them in
reverse order of the number of candidate sets in the
cover. Since the number of candidates in a cover is
the number of candidate SQL queries needed to com-
pute the mapping, we prefer smaller covers which will
produce simpler mappings. When two or more cov-
ers have the same number of candidate sets, we prefer
those that use the largest number of target attributes
in all candidate sets and, thus, minimize the number
of “null” values in the target. The ranked covers are
presented as alternative mappings for the user to eval-
uate.

The final step is to build the query ¢ from the se-
lected cover. For each candidate set c; in the selected
cover, we create a candidate SQL query such that all
correspondence functions f; mentioned in ¢; appear in
the SELECT clause, all source relations are mentioned
in the FROM clause, and all predicates p; appear as a
conjunction in the WHERE clause. Any join path deter-
mined in the second step for this candidate set will be
used to determine the appropriate source relations for
the FROM clause. The join predicates are also added to
the WHERE clause. For each candidate set that includes
aggregate functions (in either the correspondence or
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the filter), we select grouping attributes. All attributes
(or functions on attributes) in the select clause that are
not within the aggregate are selected as the grouping
attributes. If the aggregate is in the correspondence
function, the aggregate is placed in the select clause. If
the aggregate is in the filter, the aggregate is placed in
the HAVING clause. (We provide an example using ag-
gregation in Section 4.) All candidate SQL queries are
then combined into one large query using the multiset
UNION ALL.

As in query optimization, the search space we con-
sider in this algorithm is exponential. Nevertheless, we
are able to provide heuristics that can guide the search
towards likely covers and, thus, a correct schema map-

ping.

3.3 Making the Algorithm Incremental

Often, users will provide value correspondences incre-
mentally and wish to see partial results before adding
additional correspondences. We therefore provide an
incremental version of the above algorithm. The al-
gorithm takes as input a cover I'; and a single change
AV to the set of input value correspondences V. The
change AV can be the addition (denoted +wv) or the
deletion (denoted —v) of a single value correspondence
v. As output, the user is presented with a ranked set
of possible next covers that are produced by the ap-
plication of AV to I';. The cover selected by the user
becomes the next cover I';41.

The incremental algorithm is divided into three
phases (see Figure 4). The first phase does the work
of the first and second phases of the batch algorithm
presented in the previous section. Given a 4w, the al-
gorithm tries to insert v into all candidate sets of T;.
If the addition of v changes the set of source relations
of a candidate set, a new join condition is sought (us-
ing the current join condition, if any, as seed for this
search). The same heuristics discussed in the previ-
ous section to obtain a vertical composition are used
here. If no candidate set in the cover can accept v, a
new candidate set is created. For a deletion —wv, the
algorithm removes v from all candidate sets where it
appears. Candidate sets that become empty, are re-
moved from the cover. The result of this first phase is a
set of changes AT that can be applied to the candidate
sets in the current cover T';.

The second phase of the algorithm applies each
change in AT to I';, producing a set of tentative cov-
ers I';41. Since the first phase limits the number of
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Figure 4: Incremental Mapping Algorithm

changes per candidate set to at most one change, the
number of possible new covers is bounded by the num-
ber of candidate sets in the cover. This set of new
covers are ranked as described in the previous section
and presented to the user. The user selects one cover
as the next ['j41.

The third phase of this algorithm is identical to the
fourth phase of the previous algorithm. Given a cover
I';, this phase produces an SQL query.

3.4 Nested-Sets in Target Relations

In addition to flat relational schemas, Clio can produce
mappings to nested relational targets. Such mappings
can be used to populate semi-structured schemas, in-
cluding XML Schemas [W3C99]. For example, assume
one of our target relations is DeptInfo (number, name,
staff:set of row(ename, eaddress)) where staff is a
set of rows containing the name and address of each
staff member. Given source relations Department (dno,
dname) and Professors(ssn, name, address, salary,
dno), we could expect users to map values from
Department into the outer-level of DeptInfo and val-
ues from Professors into staff. This mapping im-
plies a join condition between the source relations
Department and Professor.

Clio considers each target relation as an instance of
a collection (or set) of row types. These row types can,
in turn, contain collections of other row types. Cand:-
date sets represent a possible mapping of the attributes
of a particular collection and are maintained for each
target collection (including nested collections). This
forms a tree of candidate sets. For instance, in the
example above, there is one candidate set that defines
the mapping for DeptInfo and a candidate set under
it that defines the maping for staff.

Join conditions for nested candidate sets include the
extra step of finding (if needed) a way of joining the
source relations of a particular candidate set with the
source relations of each nested candidate set under it.
In the example above, no join condition is needed for
the candidate set of staff. However, a join condi-
tion between the source relations of that candidate set
(Employee) and the source relation (Department) of
the candidate set of the parent is needed.

Given a nested cover I', we can use a modified ver-
sion of the procedure described in Section 3.2 to pro-
duce an SQL mapping query. The reasoning is sim-
ilar to that used for flat relations and incorporates
explicit knowledge about when nesting preserves the
desired information. A nested query is added to the
FROM clause of the candidate set’s query for each of
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its nested candidate sets. To generate these nested
queries, a recursive call is made to this procedure us-
ing the nested candidate sets as input. In the example
used in this section, the expected output query is the
following query.

SELECT DI.dno as number, DI.dname as name,
EmpTable.EmpSet as staff
FROM DeptInfo DI,
(SELECT SET OF(ROW(E.name, E.address)) AS EmpSet
FROM  Employee E
WHERE E.dno = DI.dnumber) AS EmpTable

4 A Data Warehousing Example

We use an example based on a proposed software en-
gineering warehouse for storing and exchanging infor-
mation extracted from computer programs [BGH99].
Such warehouses have been proposed both to en-
able new program analysis applications, including data
mining applications [MG99], and to promote data ex-
change between research groups using different tools
and software artifacts for experimentation [HMPRIT].
Figure 5 depicts a portion of a warehouse schema for
this information. This schema has been designed to
represent data about a diverse collection of software
artifacts that have been extracted using different soft-
ware analysis tools. The warehouse schema was de-
signed to be as flexible as possible. As a result, it
uses a very generic representation of software data as
labeled multi-graphs. Conceptually, software artifacts
(for example, functions, data types, macros, etc.) form
the nodes of the graph. Associations or references be-
tween artifacts (for example, function calls or data
references) form the edges. Two of the main tables
for artifacts and references are depicted in the figure.
Both tables are specialized with subtables containing
specific types of software artifacts and references.

As new software analysis tools are developed, the
data from these tools must be mapped into this inte-
grated schema. In Figure 5, we also give a relational
representation of facts extracted from the Rigi parser
[MOTU93]. This schema may be supported by a wrap-
per built on top of Rigi [RS97]. Foreign keys are de-
picted by dashed lines. To map the Rigi data into the
warehouse, the correspondences of Figure 6 may be
used. In the Schema S, function and data type names
are sufficient to disambiguate values within a software
system. Within the warehouse, the information must
be combined with meta-data describing the software
system (for example, the program name and version).
In Rigi, the program name and version are given in a
header of a text file containing the set of all facts for



Source Schema (S) Warehouse Schema (G)
Function ‘Narf‘]‘;‘File ‘LineNo‘ Artifact ‘ J}(\i‘ Type‘ SystemName ‘ Version ‘ Owner ‘

DataRef ‘ Fct‘ anType‘ Parameter‘

DataType‘Nﬂ; ‘ File ‘ LineNo‘

References‘ Artifact| ReferentArtifact| ReferenceType Source‘

Figure 5: Schema of Rigi Source Database and a Software Engineering Warehouse

the program. The wrapper exposes this information
using the meta-data functions dbname and dbversion.
The correspondence f; is given below and the other
correspondences are defined similarly. The function
Id is a Skolem Function that produces a unique id for
each unique set of values on which it is invoked [HY92].
Note that correspondences f; and f5 map the relation
name into the ReferenceType value, effectively trans-
forming schema to data.

fi1: Id(dbname(), dbversion(), Calls(Caller))
— References(Artifact)

The grouping algorithm of Clio uses the foreign
key information in the source to create several candi-
date subsets. One contains the four correspondences
{f1, f2, f3, fa}. Note that there are two foreign key
join paths between the source relations involved in
these correspondences. The first populates the Source
attribute of the target with the File attribute of the
caller function (Mapping Si). The second populates
the Source attribute of the target with the File at-
tribute of the called function (Mapping S2).

S1: SELECT Id(dbname() ,dbversion(),C.Caller),
Id(dbname() ,dbversion(),C.Callee),
relname(C), Id(dbname() ,dbversion(),F.File)

FROM Calls C, Function F
WHERE C.Caller = F.Name

S5: SELECT Id(dbname() ,dbversion(),C.Caller),
Id(dbname() ,dbversion(),C.Callee),
relname(C), Id(dbname() ,dbversion(),F.File)

FROM Calls C, Function F
WHERE C.Callee = F.Name

If we cannot distinguish these paths using the data,
both will be presented to the user. The user is given
some example values to help evaluate which of the join
paths is correct (Figure 7). Based on the data, the user
can pick the desired mapping. In this example, the
user would choose the first since the source location of
a program call is the location of the caller function.

A second candidate subset contains the four corre-
spondences {fs, fs, f7, fa}. Note that Clio chooses to
use f3 in both candidates since there is a good foreign
key path to use for both candidates. These two corre-
spondences form a cover. Clio combines the Mapping
S1 and the mapping produced for this second candi-
date subset to produce the following complete schema
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Figure 8: Aggregate filter in a value correspondence.
mapping. Since Clio favors grouping correspondences
from the same relation, the other covers possible in
this example are eliminated.

S: SELECT Id(dbname(),dbversion(),C.Caller),
Id(dbname() ,dbversion(),C.Callee),
relname(C), Id(dbname() ,dbversion(),F.File)

FROM Calls C, Function F WHERE C.Caller = F.Name
UNION ALL
SELECT Id(dbname(),dbversion(),D.Fct),
Id(dbname () ,dbversion(),D.DataType),
relname (D), Id(dbname() ,dbversion(),F.File)
FROM DataRef D, Function F WHERE D.Fct = F.Name

To extend this example, consider the correspon-
dence and filter used to define the Class table (a sub-
table of the Artifact table). Although the Rigi facts
from Figure 7 represent C programs, the warehouse
may contain tables like Class for storing information
about object-oriented classes. C programs might be
“reverse engineered” into Ct+ programs by grouping
together into a class all functions that access a par-
ticular data type or set of data types. For brevity,
we assume the Class table has a single Id attribute
indicating the data type of the class (Figure 8).3

fa i Id{dbname(),dbversion(),DataType(Name))— Class(Id)
pa : count(DataRef(Fct)) > 5

The correspondence f, maps data types to the Class
table. The user also provides a filter p, restricting the
mapping to data types referenced by more than 5 func-
tions. Clio discovers the join paths between DataRef
and DataType. Given the aggregate function in the
filter, the discovered mapping includes a group by and
is depicted below.

Sa: SELECT Id(dbname() ,dbversion(),T.Name)
FROM DataType T, DataRef R
WHERE T.Name = R.DataType
GROUP BY Id(dbname() ,dbversion(),T.Name)
HAVING count(R.Fct) > 5

3While we are over-simplifying the reasoning behind reverse
engineering methodologies, we are being faithful to the way
these groups can be represented in SQL [MG99].
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Source Schema (S) Warehouse Schema (G)

Function Name File LineNg References | Artifact ReferentArtifact ReferenceType Source

sock_wmalloc| sock.c | 317
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sock wfree | free skb sock wfree free skb calls skbuff.c

Figure 7: Discovered alternative schema mappings are used to derive example target data. The facts depicted are example
facts from Rigi’s analysis of the Linux software system. The files sock.c and skbuff.c contain the socket management and
socket buffer support, respectively, for the network subsystem of Linux.

Additional real world examples, including an ex-
ample of using Clio to produce a mapping to an XML
schema, are included in the full version of this paper

[MHHO0].

5 Related Work

We have already described the differences between
classical schema integration [RR99], which is primar-
ily a schema design problem, and the schema mapping
problem we have addressed here.

Related language-based approaches provide tools
for the specification and implementation of data and
schema translations. The YAT conversion language
[CDSS98] permits the specification of data and schema
matching and restructuring operations. The corre-
spondence rules of [ACM97] are another example.
These tools also include the schema matching tech-
niques of [MZ98] for simplifying the specifications of
matching rules. Our techniques complement and ex-
tend these language-based approaches to consider the
general problem of query discovery. Finally, the search
problem we consider is closely related to the problem
of finding the set of all views that can be used to an-

swer a query [LMSS95, DPT99].

6 Conclusions

In this paper, we identified a new problem, targeted
schema mapping, that is of critical importance to sev-
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eral increasingly common classes of applications. We
distinguished schema mapping from the well-known
problem of schema integration, and discussed the sim-
ilarities and differences between the two. By using
queries to represent a mapping, we allow DBMSs to
play an expanded role as data transformation engines,
as well as data stores. Additionally, we find expanded
uses for many techniques from query optimization, as
we apply them to the new task of query discovery or
mapping creation. Qur framework for schema map-
ping uses value correspondences that describe how to
populate a single attribute of the target schema. Given
a set of value correspondences, we must discover the
mapping query needed to transform source data to tar-
get data. We presented our algorithm for this often
complex task, and introduced Clio, a tool that helps
users create a schema mapping. Finally, we showed
through extensive examples based on real applications
how Clio would process a set of value correspondences
to arrive at the mapping query.
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