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Introduction

The purpose of this paper is to present a general survey of Support Vec-
tor Machine (SVM) applications for time series prediction. This sur-
vey is based on publications and information found in technical 
books and journals as well as other informative data sources such as 

SVM technology-oriented websites such as http://www.support- vector.net
and http://www.kernel-machines.org. SVMs used for time series prediction 
span many practical application areas from financial market prediction to elec-
tric utility load forecasting to medical and other scientific fields. Table 1 sum-
marizes the number of SVM time series prediction publications in this survey 
paper with respect to application:

As noted in Table 1, the two predominant (published) research activities 
are financial market prediction and electric utility forecasting. There are several 
other applications listed-from control system applications, environment and 
weather forecasting and other applications involving non-linear  processes.

It should be noted that the focus of this survey is on the applications and 
the general numerical accuracy of the SVM techniques associated with time 
series prediction. Where applicable, notes are made in this survey with respect 
to the training methodologies used to “tune” the SVMs for specific applica-
tions. Although training time (numerical computation time) is an important 
design criteria, most of the applications listed in this survey use data sets that 
are mainly static or change slowly with time (such as stock forecasting using 
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daily closing prices). The reader is directed to the web based ref-
erences listed in the reference section of this survey to learn 
more about training techniques.

Traditionally SVMs, as well as other learning algorithms such 
as Neural Networks, are used for classification in pattern recog-
nition applications. These learning algorithms have also been 
applied to general regression analysis: the estimation of a function 
by fitting a curve to a set of data points. The application of SVMs 
to general regression analysis case is called Support Vector 
Regression (SVR) and is vital for many of the time series predic-
tion applications described in this paper. For comparison, Table 2 
below contrasts selected attributes and challenges associated with 
some of the most common classic methods, artificial neural net-
work (ANN) based time series prediction methods, and SVR:

A more detailed performance summary of intelligent “tools” 
(i.e., ANN based methods) for time series prediction, specifically 
financial market time series prediction applications, can be found 
in Table 1 of [48].

The primary objective of this paper is to provide a survey of 
SVM time series prediction literature and data sources accom-
panied by the following: 1) a brief summary of the broad range 

of application(s) using SVM time series prediction methods, 
2) a brief discussion of the observations generated from this 
survey with respect to the technical merits and challenges asso-
ciated with SVM time series prediction, and 3) a resource for 
the reader to locate and research SVMs and their applications.

Time Series Prediction Summary
The purpose of this section is to provide references and a gen-
eral outline for time series prediction theory. There are vast 
amounts of technical references, books, and journal articles 
detailing time series prediction algorithms and theory for both 
linear and non-linear prediction applications. The reader is 
encouraged to research classical publications such as Orfanidis 
[1] and Kalman [2] for more details. 

Fundamentally, the goal of time series prediction is to esti-
mate some future value based on current and past data samples. 
Mathematically stated:

 x̂ 1 t1D t 2 5 f 1x 1 t2 a 2 , x 1 t2 b 2 , x 1 t2 c 2 , c 2 , (1)

where, in this specific example, x̂ is the predicted value of a (one 
dimensional) discrete time series x.

The objective of time series prediction is to find a function 
f (x) such that x̂, the predicted value of the time series at a future 
point in time is unbiased and consistent. Where i is an index to a 
discrete time series value and N is the total number of samples. It 
should be noted that another measure of a predictor’s goodness 
is efficiency as related to bias. The Cramér-Rao bound provides 
the lower bound for the variance of unbiased estimators [1]. If the 
estimator achieves this bound, then it is said to be efficient. This 
analysis was not provided in any of the papers summarized in 
this  survey.

Estimators generally fall into two categories: linear and non-
linear. Over the past several decades, a vast amount of technical 
literature has been written about linear prediction: the  estimation 

TABLE 2 Summary of advantages and challenges of classical, ANN based, and SVR time series prediction methods. 

TIME SERIES 
PREDICTION METHOD ADVANTAGES CHALLENGES

AUTOREGRESSIVE FILTER CAN BE COMPUTATIONALLY EFFICIENT FOR LOW 
ORDER MODELS
CONVERGENCE GUARANTEED
MINIMIZES MEAN SQUARE ERROR BY DESIGN

ASSUMES LINEAR, STATIONARY PROCESSES
CAN BE COMPUTATIONALLY EXPENSIVE FOR 
HIGHER ORDER MODELS

KALMAN FILTER COMPUTATIONALLY EFFICIENT BY DESIGN
CONVERGENCE GUARANTEED
MINIMIZES MEAN SQUARE ERROR BY DESIGN

ASSUMES LINEAR, STATIONARY PROCESSES
ASSUMES PROCESS MODEL IS KNOWN

MULTI-LAYER PERCEPTRON NOT MODEL DEPENDENT 
NOT DEPENDENT ON LINEAR, STATIONARY 
PROCESSES 
CAN BE COMPUTATIONALLY EFFICIENT (FEED 
FORWARD PROCESS)

NUMBER OF FREE PARAMETERS LARGE
SELECTION OF FREE PARAMETERS USUALLY 
CALCULATED EMPIRICALLY
NOT GUARANTEED TO CONVERGE TO OPTIMAL 
SOLUTION
CAN BE COMPUTATIONALLY EXPENSIVE 
(TRAINING PROCESS)

SVM/SVR NOT MODEL DEPENDENT 
NOT DEPENDENT ON LINEAR, STATIONARY PROCESSES 
GUARANTEED TO CONVERGE TO OPTIMAL SOLUTION
SMALL NUMBER OF FREE PARAMTERS
CAN BE COMPUTATIONALLY EFFICIENT 

SELECTION OF FREE PARAMETERS USUALLY 
CALCULATED EMPIRICALLY
CAN BE COMPUTATIONALLY EXPENSIVE 
(TRAINING PROCESS)

TABLE 1 Number of SVM time series prediction publications 
listed by application.

APPLICATION

NUMBER OF 
PUBLISHED PAPERS 

SUMMARIZED IN 
THIS SURVEY

FINANCIAL MARKET PREDICTION 21
ELECTRIC UTILITY FORECASTING 17
CONTROL SYSTEMS AND SIGNAL 
PROCESSING

8

MISCELLANEOUS APPLICATIONS 8
GENERAL BUSINESS APPLICATIONS 5
ENVIRONMENTAL PARAMETER 
ESTIMATION

4

MACHINE RELIABILITY FORECASTING 3
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of a future value based on the linear combination of past and 
present values. Real world time series prediction applications 
generally do not fall into the category of linear prediction. 
Instead, they are typically characterized by non-linear models. 

Support Vector Machines for Time Series Prediction 
Support Vector Machines and Support Vector Regression are 
based on statistical learning theory, or VC theory (VC – 
 Vapnik, Chervonenkis), developed over the last several 
decades. Many books, journal publications, and electronic 
references currently exist. The reader is directed to Vapnik’s 
reference books [3, 4] and an introductory reference book 
by Cristianini/Shawe-Taylor [5] for further study. Brief, 
general descriptions of Vapnik’s learning theory and SVM 
regression can be found in references [6-8]. Finally, many 
publicly available websites exist (at the time this paper was 
written) that also offer an extensive amount of information 
and software for SVMs. See references [94-104].

The Support Vector Machine (SVM), developed by Vapnik 
and others in 1995, is used for many machine learning tasks 
such as pattern recognition, object classification, and in the case 
of time series prediction, regression analysis. Support Vector 
Regression, or SVR, is the methodology by which a function 
is estimated using observed data which in turn “trains” the 
SVM. This is a departure from more traditional time series pre-
diction methodologies in the sense there is no “model” in the 
strict sense – the data drives the prediction.

Given a set of time series data x(t ), where t is a series of 
N discrete samples: t5 50, 1, 2, c, N216 , and y(t1D) is 
some predicted value in the future (t greater than or equal 
to N ). For a time series prediction algorithm, equation (1) 
defines a function f (x) that will have an output equal to the 
predicted value for some prediction horizon. By using 
regression analysis, equations (2) and (3) both define these 
prediction functions for linear and non-linear regression 
applications respectively:

 f 1x 2 5 1w # x 2 1 b (2)
 f 1x 2 5 1w # f 1x 2 2 1 b. (3)

If the data is not linear in its “input” space, the goal is to map 
the data x(t ) to a higher dimension “feature” space, via w(x) 
(referred to as a Kernel Function), then perform a linear regres-
sion in the higher dimensional feature space [11].

The goal is to find “optimal” weights w and threshold b as 
well as to define the criteria for finding an “optimal” set of 
weights. First is the “flatness” of the weights, which can be 
measured by the Euclidean norm (i.e. minimize 7  w 7 2). Second 
is the error generated by the estimation process of the value, 
also known as the empirical risk, which is to be minimized. 
The overall goal is then the minimization the regularized risk 
Rreg(  f   ) (where f  is a function of x(t )) as defined as:

 Rreg 1   
f 2 5Remp 1   

f 2 1 l
2
7  w 7 2. (4)

The scale factor l is commonly referred to as the regularization 
constant and this term is often referred to as the capacity control 
term. Its function is to reduce “over-fitting” of data and mini-
mize bad generalization effects. The empirical risk is defined as:

 Remp 1   
f 2 5 1

Na
N21

i50
L 1x 1 i 2 , y 1 i 2 , f  1x 1 i 2 , w 2 2 , (5)

where, i is an index to a discrete time series t5 50, 1,
2, c, N216 and y(i ) is the “truth” data (training set) of the 
predicted value being sought. L(.) is a “loss function” or “cost 
function” to be defined.

Two of the more common loss functions that are used are 
the e-insensitive loss function defined by Vapnik and the 
 quadratic loss function typically associated with Least Squares 
Support Vector Machine (LS-SVM). The details of the LS-SVM 
development can be found in [9, 10]. To solve for the optimal 
weights and minimize the regularized risk, a quadratic program-
ming problem is formed (using the e-insensitive loss  function):

 minimize 
1
2
7  w 7 21Ca

n

i51
L 1y 1 i 2 , f 1x 1 i 2 , w 2 2

 where 

L ( y 1 i 2 , f 1x 1 i 2 , w 2
 5 e 0 y 1 i 2 2 f 1x 1 i 2 , w 2 02e if  0 y 1 i 22f 1x 1 i 2 , w 2 0$ P

0 otherwise.
 (6)

Equation (9) is referred to as the regularized risk function. The 
constant “C” also includes the (1/N  ) summation normalization 
factor and e is the “tube size,” referring to the precision by which 
the function is to be approximated. It should be noted both e 
and C are both user defined constants and are typically computed 
empirically. It is inherently assumed that a function f (x) actually 
exists and the optimization problem is feasible; however, errors 
may have to be accepted to make the problem feasible. To 
account for errors, “slack variables” are typically introduced.

Solving for the optimal weights and bias values is an exercise 
in convex optimization, which is made much simpler by using 
Lagrange multipliers and forming the dual optimization prob-
lem given by (7):

Maximize:  2
1
2
 a

N

i, j51

1ai2a
*
i 2 1aj2a

*
j 2 8x 1 i 2 , x 1  j 2 9

2ea
N

i51

1ai2a
*
i 21a

N

i51
y 1 i 2 1ai2a

*
i 2

 Subject to: a
N

i21

1ai2a
*
i 2 5 0: ai, a

*
i [ 30, C 4. (7)

The solution for the weights is based on the Karush-Kuhn-
Tucker conditions that state at the point of the optimal solution, 
the product of the variables and constraints equal zero. Thus the 
approximation of the function f (x) is given as the sum of the 
optimal weights times the dot products between the data points as: 
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 f 1x 2 5 a
N

i51

1ai2a i
* 2 8x, x 1 i 2 91 b. (8)

Those data points on or outside the e tube with non-zero 
Lagrange multipliers a are defined as Support Vectors. As can 
be seen, the optimal weights associated with having non-zero 
Lagrange multipliers is typically less than the entire data set, 
meaning one does not need the entire data set to define f (x). 
The sparseness of this solution is one of several advantages of 
using this methodology.

To carry out the non-linear regression using SVR, it is nec-
essary to map the input space x(i) into a (possibly) higher 
dimension feature space w(x(i )).  Noting that the solution of 
the SVR relies on the dot products of the input data, a kernel 
function that satisfies Mercer’s conditions can be generated as:

 k 1x, x r 2 5 8f 1x 2 , f 1x r 2 9, (9)

which can be directly substituted back into equation (8) 
and the optimal weights w can be computed in feature 
space in exactly the same fashion. There are several kernel 
functions that satisfy Mercer’s conditions (required for the 
generation of kernel functions) such as Gaussian, polyno-
mial, and hyperbolic tangent. The use of kernels is the key 
in SVM/SVR applications. It provides the capability of 
mapping non-linear data into “feature” spaces that are 
essentially linear, where the optimization process can be 
duplicated as in the linear case. The use of Gaussian kernels 
appears to be the most prevalent choice, but typically 
empirical analyses are necessary in selection of an appropri-
ate kernel function. SVR and its derivation are described in 
detail in publications found in [11-27], especially Smola and 
Schölkopf [13]. 

The resulting SVR architecture is given below in Figure 1 
(reproduced here from Figure 2 in [13]).

There are several Quadratic Programming (QP) meth-
ods that can be used for training SVMs and most of the 
algorithms are publicly available (see the text references 
[3-5] and the general web based references found in [80-
87]). The Sequential Minimization Optimization (SMO) 
algorithm is one of the most popular methods used for 
solving the QP problem (developed by Platt in 1999—a 

description of the algorithm is given in detail in [5, 13]). 
This is the most popular among the var ious methods 
available that are described in the application summaries. 
It is beyond the scope of this survey paper to analyze and 
compare training algorithms, but the algorithms play an 
important role in the implementation of the SVR for 
practical  applications and are mentioned in the summaries 
of these applications.

Financial Data Time Series Prediction 
Using Support Vector Regression
Of all the practical applications using SVR for time series pre-
diction, financial data time series prediction appears to be the 
most studied along with electrical load forecasting. Twenty one 
research papers are listed in the references (in chronological 
order) detailing SVR applications for specifically predicting 
stock market index (time series) values and miscellaneous 
financial market time series data. The inherent noisy, non-sta-
tionary and chaotic nature of this type of time series data 
appears to lend itself to the use of non-traditional time series 
prediction algorithms such as SVR. Many different variations 
of SVR and combinations of SVRs with other learning tech-
niques are found for financial time series prediction and are 
summarized below. 

Trafalis and Ince [28] compared SVR to more traditional 
Neural Network architectures including the feed forward mul-
tilayer perceptrons using back propagation and radial basis func-
tions for the prediction of stock price indices. Using the 
e-insensitive loss function and several different quadratic opti-
mization algorithms, the authors demonstrated the SVR’s supe-
rior performance over the other NN based applications for a 
very small time window of three samples and a very small 
 prediction horizon of one sample. 

Tay and Cao [29] studied the use of SVR for predicting 
five specific financial time series sources including the S&P 
500 and several foreign bond indices. The results were com-
pared to a feed-forward MLP using back propagation for a 
prediction horizon of five samples (days). The data was 
“pre-processed” by applying an exponential moving-aver-
age window and outliers (identified as data beyond two 
standard deviations) were replaced with relatively close val-
ues. The data was broken down into three sets: training set, 
validation set, and test set (typical for neural network train-
ing methodologies). The SVR significantly outperformed 
the BP NN. They conclude that the ability of the SVR to 
appropriately fit the data (as compared to over-fitting issues 
related to MLP based NNs), is one key reason for better 
performance. They published several other related SVR 
applications for financial data time series prediction [31, 
32, 33, 39]. An alternative architecture using a “mixture of 
experts (ME)” approach is presented in [31]. This is a two 
stage approach with the first stage being a self-organizing 
feature map (SOM) and the second stage containing a set 
of SVR “experts”. The parameters for the kernel functions 
used, such as C and e, were essentially derived empirically FIGURE 1 SVM architecture.

Output ∑    l k (x, xi) + b

Weights

( · ) ( · ) ( · )

Test Vectors x

7 4 1

1

Dot Product (Φ(x) · Φ(xi)) = k(x, xi)

Mapped Vectors Φ(xi), Φ(x)
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and the overall approach was shown to 
have not only better prediction perfor-
mance as compared to a single SVR 
approach, but also superior convergence 
speed. In [32], Tay and Cao proposed a 
modified version of SVR for financial 
ser ies prediction called C-ascending 
SVMs. The goal of this approach is to weight the most cur-
rent (in time) e-insensitive errors and de-weight the more 
distant ones – analogous to the discounted least squares 
approach. Both linear and exponential weighting functions 
were tested against several stock indices including the S&P 
500. They conclude that better performance (for five sam-
ple prediction horizon) can be obtained using this method 
as compared to a standard SVR implementation. They pro-
posed another adaptive approach and modification to the 
SVM – the e-Descending Support Vector Machine [33]. 
Instead of the regularization constant changing with time, 
the tube width was varied with time and was weighted 
exponentially with the most recent data points being penal-
ized the most. Every training data point will use a different 
tube size e. For both simulated data (weighted sinusoids) 
and financial data sets (stock indices including S&P 500), a 
better overall performance in NMSE was found using the e
-DSVM with a five sample prediction horizon. In [39], 
Cao and Tay proposed the Adaptive SVM (ASVM) which 
modifies both the tube size e (see [33]) and the regulariza-
tion constant C (see [32]). Increasing e will decrease the 
number of support vectors (support vectors in SVR are the 
points on or outside the e tube – the larger e, the smaller 
the number of support vectors). The decrease in support 
vectors represents a more sparse solution, with a tradeoff in 
prediction accuracy. The more recent time samples were 
given more weight and had greater influence on the solu-
tion. As compared to a weighted back propagation MLP, 
the ASVM showed better performance for five selected 
stock indices.

Van Gestel et al. [30] proposed the use of an LS-SVM used 
in a Bayesian evidence framework. Both a point time series 
prediction and volatility models for financial stock index pre-
diction are developed in this paper. A marginal improvement in 
MSE, MAE, and Negative Log Likelihood (NLL) was found 
using this method compared to other traditional methods such 
as auto regressive models using US short term T-bill and 
DAX30 market data.

Yang et al. [34] proposed a non-fixed and asymmetrical 
margin, along with the use of momentum, to improve the 
SVR’s ability to predict the financial time ser ies. The 
e-insensitive loss function is modified to have different 
“upside” and “downside” margins (eu and ed) based on the 
standard deviation of the input data. The “margin” is the lin-
ear combination of this standard deviation and the momen-
tum term. By applying these time varying parameters to the 
loss function, the authors showed that the MAE for one step 
ahead prediction of the Hang Seng Index (HSI) and Dow 

Jones Industrial Average (DJIA) was improved vs. using stan-
dard AR and RBF models. It is worth pointing out that they 
presented a similar discussion of the use of asymmetrical 
margin determination for SVR based on the standard devia-
tion of the data in [35]. A more thorough discussion of this 
approach can be found in H. Yang’s thesis [37]. In [44], the 
same authors propose a two phase SVR training method for 
detecting outliers in the data, thus reducing the prediction 
error (RMSE and MAE in this case). In contract to, the 
“upside” (eu) and “downside” (ed) margins are adaptable. 
They extend their asymmetric margin approach in [34] to 
be adaptable relative to the slack variables (also time depen-
dent). The results showed a small increase in prediction per-
formance at the price of retraining the SVR.

Abraham et al. [36] compared the one-step ahead time 
ser ies prediction performance of an ANN using the 
 Levenberg-Marquardt algorithm, SVM, Takagi-Sugeno neu-
ro-fuzzy model and a Difference Boosting Neural Network 
(DBNN). Only a brief description of SVM for classification 
applications was provided. For one step ahead prediction of 
the Nasdaq-100 index and the NIFTY index, the SVM per-
formed marginally better. In [41], Abraham and Yeung 
extended the work in [36] by combining the outputs of the 
four approaches (ANN using the Levenberg-Marquardt 
algorithm, SVM, Takagi-Sugeno neuro-fuzzy model and a 
Difference Boosting Neural Network (DBNN)). The com-
bining of the four outputs is done in two ways: 1) a direct 
approach by using source selection using the lowest absolute 
error of the four methods as the decision criteria and 2) by 
using a Genetic Algorithm (GA) to optimize the RMSE, 
MAP, and MAPE (see [41] for fitness function specifics of 
the GA). Again using the Nasdaq-100 index and the NIFTY 
index, the one-step-ahead prediction of these intelligent 
paradigm approaches showed that the direct approach out-
performed the GA approach.

Ongsritrakul and Soonthronphisaj [38] combined several 
approaches including MLPs, decision trees, and SVRs to pre-
dict gold price. The decision tree feeds “factors” into the SVR 
time series prediction process which then serves as input to a 
linear regression model, an MLP, and an SVR to predict the 
gold price. The MSE, MAD, and MAPE were computed for 
the three models and the SVR appears to outperform the other 
two models.

Liang and Sun [40] proposed an adaptive method for modi-
fying the kernel function during the training of an SVR. Using 
a Gaussian RBF kernel, the authors proposed to modify the 
kernel function based on the method of information geometry. 
Using a conformal mapping, a new method was introduced 

Signal processing, control and communications systems 
applications face an additional challenge of being highly 
sensitive to computation timing, as expected in real 
time signal processing applications. 
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which improves the precision of forecasting. An optimal parti-
tion algorithm (OPA) was used to modify the kernel, making 
the kernel data dependent. Results using S&P 500 time series 
data as well as Shanghai Stock Exchange (CISSE) data were 
presented and compared to an unmodified SVR. 

Kim [42] used an SVM for prediction of the Korea com-
posite stock price index (KOSPI), not an SVR. By selecting 
twelve “technical indicators” (i.e. features), he used the SVM to 
predict the direction of the daily price change in the stock 
price. This is a slightly different application in the sense that the 
SVM only predicts daily direction, not the actual index price 
itself (an SVR application). As compared to a three layer MLP 
using back propagation and a case-based reasoning (CBR – in 
this application, a nearest-neighbor approach implementation), 
the SVM approach provided better results than the other two 
approaches in predicting index direction of change. 

Bao et al. [43] proposed the use of SVR using the 
e- insensitive loss function, an RBF kernel function and predict, 
five days (samples) ahead, the stock price of Haier, Inc. (Shang-
hai Stock Exchange). The procedure and normalization of the 
data is very similar to the work of Cao and Tay. 

Similar to Kim [42], Huang et al. [45] proposed the use of 
an SVM for predicting the direction of the NIKKEI 225 index 
based on several inputs including interest rates, CPI, and other 
market attribute data. They compared this performance to lin-
ear discriminate analysis (LDA), quadratic discriminant analysis 
(QDA), and an Elman back propagation neural network 
(EBNN). In addition, they proposed a “combining model” that 
weights the output of the SVM with the other classification 
methods to produce a prediction. The authors stated that, indi-
vidually, the SVM performed the best (highest “hit” ratio) and 
the “combined model” performed slightly better than the SVM.

Bao et al. [46] proposed a Fuzzy Support Vector Machines 
Regression (FSVMR) method for predicting the stock com-
posite index of the Shanghai Stock Exchange. They stated that 
for two state classification problems, some of the input data 
points are corrupted by noise and should be (possibly) discard-
ed while others that are marginal but important should be 
assigned to a class. Using a e-insensitive loss function and an 
RBF kernel function, the FSVMR was trained using a cross-
validation method to find the variable parameters. They showed 
that the NMSE using this approach was effective than stand 
alone SVR approaches.

Cao et al. [47] used an SVR using the e-insensitive loss 
function to make one step ahead predictions for the British 
Pound and American Dollar exchange rate. By selecting the 
optimal parameters empirically using a validation data set, the 
authors stated that this method performed well, but resulting 
offsets (time shifts) moves the regression curve to the right 
(noted by the author for future study). The last financial paper 
by Quek and Ng [48] described a Genetic Complementary 
Learning (GCL) method for stock market prediction. Although 
the focus of this paper is on GCL, Quek made financial time 
series performance measurements against other traditional NN 
approaches including the SVM, and SVM performed as well as 

other methods with respect to the root mean square error 
(RMSE) except the proposed GCL method. There is a com-
prehensive table in this reference that shows twenty alternative 
methods for stock prediction methodologies that have been 
published within the last ten years.

General Business Applications Using Support 
Vector Regression for Time Series Prediction
Following are summaries of five papers that describe the use 
of SVR for time series prediction relative to the following 
general business applications: (1) Electricity Price Forecasting, 
(2) Credit Rating Analysis, (3) Customer “Churning” – Auto 
Insurance Market Prediction, (4) Financial Failure of 
Dotcoms – Financial Analysis, and (5) Production Value Pre-
diction of the Taiwanese Machinery Industry.

Sansom et al. [49] compared the performance of an SVR vs. 
an MLP for predicting Australian national Electricity Market 
Prices one week ahead (seven samples). Using 90 days of 
 electricity forecasting prices, they showed that an SVR outper-
formed an MLP in training time, but obtained similar results in 
accuracy (MAE) which may have been due to the way training 
data was selected and used.

Huang et al. [50] investigated the use of an SVM to estimate 
corporate credit ratings. This is not a traditional SVR applica-
tion, but an SVM classification problem. They used two data 
sets, Taiwan and US corporate rating data, for training both an 
SVM with 21 variables as input and an ANN using back prop-
agation. The authors stated that the SVM outperformed the BP 
results for both data sets.

Hur and Lim [51] compared an SVM for predicting cus-
tomer “churn” ratio for auto insurance market prediction. In 
this application, “churn” represents a customer changing from 
one auto insurance company to another due to the increased 
accessibility of customers to “on-line” insurance vendors. As in 
the business application for Huang et al. [50], this application 
does not use an SVR methodology. Fifteen variables were 
selected as input to an SVM, and the SVM was trained to pre-
dict the “churn” ratio (see [51]). SVM was shown to outper-
form ANN.

Bose and Pal [52] analyzed the fate of failed dotcoms using 
an SVM (as in Huang et al. [50] and Hur and Lim [51]), not an 
SVR. The goal is to train the SVM to determine if the dotcom 
would succeed (a “1” classification) or fail (a “0” classification) 
based on using twenty four “financial ratios” such as total debt 
to total assets ratio, net income to total assets ratio, etc. as the 
vector input to the SVM. The SVM parameters were deter-
mined empirically and the results show that it was easier to 
classify a survived dotcom company than a failed one.

Pai and Lin [53] discussed the use of an SVR for predicting 
the one-step ahead production values of the Taiwanese machin-
ery industry. They compared the performance of the standard 
SVR using the e-insensitive loss function and Gaussian kernel 
to a Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA) method and a general regression neural network 
(GRNN). The SARIMA model (developed by Box and 
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 Jenkins) was used to model long time period 
variations such as seasonal dependencies. 
Using the MAE, MAPE, RMSE and NMSE 
as performance metrics, they showed that 
the SVR approach outperformed the other 
two methods, especially in the MAE and 
MAPE metrics. 

Environmental Parameter Estimation Using Support 
Vector Regression for Time Series Prediction
SVR has been used for the prediction of environmental 
parameters such as air quality parameters rainfall estimation 
and detection, and weather forecasting. The following sec-
tion summarizes the four papers for environmental parame-
ter estimation:

Lu et al. [54] proposed the use of SVR to forecast air quali-
ty parameters. The determination of short term air quality 
relies on the use of non-linear regression methods such as 
SVR. The input data was respirable suspend particles (RSP) as 
collected with other major pollutants such as nitrogen oxides, 
etc. Using SMO for training and a Gaussian kernel function 
with arbitrarily selected parameters, the SVR performance 
(MAE) for predicting one week ahead outperformed an RBF 
network using the same data set. A sensitivity analysis was pro-
vided for the free parameters (regularization constant, kernel 
constants, etc.) and there was no set heuristic for determining 
these parameters.

Wang et al. [56] extended their environmental pollution 
prediction work from [54] and compare an SVR approach 
to an adaptive radial basis function (ARBF) network and an 
ARBF using principle component analysis (PCA). Again, 
they tried to forecast respirable suspended particulate (RSP) 
concentrations with a 72 hour forecast horizon. The free 
parameters of the SVR were determined empirically using 
MAE, RMSE, and Wilmott’s index of agreement (WIA) as 
metrics for indicating the most accurate predictions. For the 
presented data, the SVM outperformed the ARBF network 
and the ARBF/PCA network for the three day ahead pre-
diction horizon. They implied, as in [54], the challenge 
remains to find a suitable heuristic to determine the free 
parameters of the SVR.

Trafalis et al. [55] applied both SVR and Least Squares 
(LS) SVR methodologies to predict rainfall estimation and 
the presence of rain using WSR-88D radar data (also known 
as NEXRAD). For the rainfall rate estimation problem, the 
LS-SVR using a polynomial kernel (refer to [55] as well as 
work from Suykens [9, 10] for more information on LS-
SVR) outperformed the SVR using a Gaussian RBF kernel 
and a linear regression technique in the MSE. For the detec-
tion of rainfall (SVM type classification problem), they men-
tioned that the SVR slightly outperformed the LS-SVR for 
the detection (classification of rain existence) of rain in a geo-
graphic grid. The authors pointed out that the use of the LS-
SVR loses the sparseness quality of the representation of the 
solution as compared to the SVM, noting that the solution of 

the optimization problem of the LS-SVR is essentially a 
matrix calculation.

Prem and Srinivasa Raghavan [57] applied SVR in use 
with the Network Weather Services – a “grid” of computa-
tional nodes used for weather prediction. Their goal was to 
optimize the network parameters such that the final weather 
forecast output is the most accurate given the constraints of 
the computational architecture and network topology (i.e., 
QoS). By accurately predicting the need for different 
resources required, the overall system can adapt more effi-
ciently and provide better forecasting results (essentially, this 
is a dynamic scheduling problem for providing and main-
taining Weather Prediction Services). As compared to other 
AR methods, the SVR outperformed the other methods, 
especially in multi-step ahead prediction of CPU time and 
network bandwidth.

Electric Utility Load Forecasting Applications Using 
Support Vector Regression for Time Series Prediction
A non-linear prediction problem found in power systems 
research is the forecasting of electrical power consumption 
demands by consumers. There are many beneficial aspects to 
the accurate prediction of electrical utility load forecasting 
including proper maintenance of electrical energy supply, the 
efficient utilization of electrical power resources, and the proper 
administration and dissemination of these resources as related 
to the cost of these resources to the consumer. Seventeen 
research papers concerning electricity load forecasting are 
 summarized below:

Chang et al. [58] proposed an SVR approach for the 
EUNITE Network Competition which is the prediction of 
daily maximal electrical load of January 1999 based on tem-
perature and electricity loading data from 1997 to 1998. It is 
interesting to note that there is clearly a periodic component 
within the data set due to the seasonal variation of consumer 
electricity demand, “holiday” effects (use of less electricity 
during major holidays), and the impact of weather on elec-
tricity demand. Their inputs were several attributes, including 
binary attributes for indicating which day of the week it is, is 
it a holiday, etc. From these attributes, they formulated the 
predicted max load, which is a numerical value. They con-
cluded that the use of the temperature data did not work as 
well because of the inherent difficulty in predicting tempera-
ture and they also concluded that this SVR approach was fea-
sible for determining an accurate prediction model. Chen 
et al. [62] approach described in [58] was the winning 
approach for the EUNITE Network Competition. The paper 
describes the SVM implementation. With respect to the 

Of all the practical applications using SVR for time series 
prediction, financial data time series prediction 
appears to be the most studied along with electrical 
load forecasting. 
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design details, it is interesting to note that the use of tempera-
ture in their model actually decreases the accuracy of their 
predictions, which they state as sensitivity to the variance of 
the output to improper temperature estimations. They experi-
mented with inputs excluding the previous (in time) load data 
and found poorer performance (note that the inputs to the 
SVR are not only time series load data).

Mohandes [59] compared the results of a standard SVR 
using a sigmoid kernel function and the e-insensitive loss func-
tion to a standard autoregressive model of order one for short 
term forecasting electrical load forecasting (short term meaning 
less than one week prediction horizon). The preprocessing of 
the data included the elimination of annual periodicity and lin-
early increasing trends from the data. The author showed that 
the performance of the SVR, with respect to the RMSE, was 
much lower than the AR method, especially as the number of 
training points was increased.

The electricity supply industry (ESI), generator companies, 
and other electrical utility load entities depend on load fore-
casting to maximize revenues. So, Sansom and Saha [60] pro-
posed the use of an SVM and not SVR for forecasting the 
wholesale (spot) electricity prices and compares performance 
to a linear regression (as a sum of sine waves) and an ANN 
trained using back propagation. In their research, the inputs to 
these prediction methodologies were a set of 14 “attributes” 
including spot price at different previous time samples, require 
capacity, etc. Using the SVM approach appeared to work well 
as compared to the other methodologies, but the authors stated 
that this approach, under certain circumstances where selected 
data points (attributes) were removed from the problem, per-
formed far worse than the other approaches with respect to 
MAE. They mentioned that the superior SVM performance 
with all the data may have been “luck” and recommended fur-
ther research.

Tian and Noore [61] proposed the use of an SVM to pre-
dict a wide span of forecast horizons (hourly and several days 
ahead) of electrical load using measurements from Berkeley, 
California. Their modeling also takes into account temperature 
and humidity as factors into training the SVM as well as a nor-
malization of the data to a range of 30, 1 4. As compared to a 
cosine radial basis function neural network and a feed forward 
neural network, the SVM approach using electrical load, tem-
perature and humidity outperformed the other methods in 
MSE, RMSE, and Durbin-Watson d statistic. 

Dong et al. [63] discussed the use of SVM to predict “land-
lord energy consumption” – the electrical load necessary for 
large commercial buildings to operate normally (use of air con-
ditioning, elevators, etc.). Their work considers other factors 

associated with the electrical load forecast-
ing problem such as temperature, humidity, 
and global solar radiation. Their selection of 
an RBF kernel is based on stated shortcom-
ings of other kernel functions such as poly-
nomial or sigmoid (complexity as example). 
The authors stated that this approach is 

superior to other NN based approaches in performance and 
small model parameter selection.

Bao et al. [64] proposed the use of a self-organizing map 
(SOM) along with an SVM to predict short term electrical 
load forecasts based on EUNITE competition data. The pur-
pose of the SOM is to cluster training data, based on time sam-
ple (i.e. day) and correlate the same weather conditions found 
on the training day(s) to the present day’s weather conditions. 
In terms of performance, the authors stated that this hybrid 
approach outperforms the SVM by itself. It should also be 
noted that smoothing (preprocessing) the data, in their case, 
worsened the MAPE performance.

Pai and Hong [65] proposed a Recurrent Support Vector 
Machine with Genetic Algorithms (RSVMG) for the fore-
casting of electrical loads. The Genetic Algorithms (GA’s) 
were used to determine the free parameters of the SVMs, spe-
cifically the regularization constant (C), the tube size (e), and 
the Gaussian kernel parameter s. A recurrent SVM (RSVM) 
was detailed as one of their approaches, which uses a standard 
MLP with back propagation combined with the SVM archi-
tecture. The output of the ANN was fed back (recurrent) to 
the inputs of the MLP prior to the SVM architecture. The 
authors compared the RSVMG approach to the SVMG 
model and the ANN model and results show, with respect to 
MAE, the superior performance of using the GA approach to 
select model parameters as well as the introduction of feed-
back (recursion) into the NN architecture. 

Ji et al. [66] proposed the use of mutual information (MI - 
the computation of Shannon’s entropy) to select the “best” 
input variables, i.e., the data points that maximize MI. Then, an 
LS-SVM is trained to make the prediction up to six samples 
ahead. The first two-thirds of the data set (Poland Electricity 
Dataset) were used to train the LS-SVM. There were two 
methodologies compared, “direct” forecast where the predic-
tion horizon is calculated directly from N samples and “recur-
sive” forecast where one-step ahead prediction is calculated up 
to the desired prediction horizon (six samples in this case). The 
authors stated that direct prediction performed better in MSE 
than recursive.

Zhang [67] discussed the use of SVM for short-term load 
forecasting. The author stated that most linear models such as 
Kalman filtering, AR, and ARMA models are not typically suf-
ficient to model the nonlinearities associated with short term 
load forecasting processes. The use of SVR, with both electrical 
load data and corresponding weather time series data, appears 
to outperform other NN based techniques including a back-
propagation neural network. The author also used cross valida-
tion to select the free parameters of the RBF kernel function as 

SVMs used for time series prediction span many 
practical application areas from financial market 
prediction to electric utility load forecasting to medical 
and other scientific fields.
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well as the regularization constant. The 
MAPE of the SVM approach was lower 
than that of the BPNN. 

Li et al. [68] proposed the use of both 
SVR and a “Similar Day Method” to predict 
the next day forecasting of electrical loads. 
The purpose of the “Similar Day Method” was to identify days 
where the sampled data (electrical load, weather, etc.) is similar 
to the present day and use this information to “amend” the 
result given by the SVR result. This essentially “corrects” the 
output of the SVR. The authors stated that this method is an 
effective short term load forecasting method as compared to 
using SVM alone.

Pai and Hong [69] discussed the use of SVM for short term 
load forecasting using a simulated annealing (SA) algorithm, 
which is based on the annealing process of material physics, to 
select the SVM parameters. The simulated annealing algorithm 
combined with SVR is called SVMSA. Essentially, initial values 
of s, C, and e (the free parameters associated with the kernel 
function and the loss function) are set and the SA algorithm 
selects a “provisional” state by randomly adjusting these free 
parameters. A repetition of this procedure is executed until a 
final state is found where the MAPE of the SVM is found to 
be at some acceptable level. This technique is compared to the 
ARIMA and general regression neural network (GRNN) [53] 
and for Taiwanese electricity load data, this technique signifi-
cantly outperformed the two other methods.

Wu and Zhang [70] presented a hybrid of several 
approaches for forecasting electrical load. Based on the 
assumption that the electrical load data exhibits both chaotic 
and periodic behavior, they employed wavelet transforms as 
well as an average mutual information (AMI) algorithm (based 
on chaos theory) along with a Least Squares Support Vector 
Machine (LS-SVM) to predict the maximal electrical load of 
EUNITE competition data. Based on other EUNITE publi-
cations of prediction results, this technique was claimed by the 
authors to be superior in performance relative to MAPE and 
maximal error (ME). The authors concluded that the selection 
of LS-SVM parameters is “tough” (i.e., assumed selected 
empirically).

Espinoza et al. [71] discussed an alternative solution to solv-
ing Least Square Support Vector Machines using electrical load 
forecasting as an example application (note Suykens is a 
 co-author for this publication). The goal was not to solve the 
LS-SVM in dual space, but rather in primal space using eigen 
value decomposition. The authors also stated that typically there 
are large data sets associated with these kinds of applications 
and using a sparse representation of the data could provide 
computational benefits. The entropy maximization was pro-
posed as one possible technique for generating subsamples of 
the data. Using an RBF kernel function and cross-validation 
technique for parameter selection, the authors showed that the 
maximum MSE found was less than 3% for one hour and 24 
hour ahead prediction. The authors present a more detailed 
version of [71] in [73].

Similar to the work by Pai and Hong [65], Hsu et al. [72] 
described an alternative genetic algorithm based approach to 
selecting SVR parameters (GA-SVR). Using the real- valued 
genetic algorithm (RGA), They designed a GA-SVR using the 
same data as used in the EUNITE Network competition as 
described in Chang et al. [58, 62]. The GA was used to adap-
tively select the regularization parameter and the sigma value of 
the Gaussian kernel function. Using MAPE (the same metric 
used for the EUNITE competition), RMSE, and Max Error 
metrics, the authors showed that the use of a genetic algorithm 
to adaptively select the parameters of the SVR outperformed 
the winners of the EUNITE competition [58, 62]. 

He et al. [74] proposed a novel hybrid algorithm for short 
term electrical load forecasting. They proposed using an 
ARIMA model to estimate the linear portion of the electrical 
load time series data and an SVM to estimate the nonlinear 
residual, where the residual is the difference between the load 
data and the linear estimation. The underlying assumption was 
that the system model can be divided (equally) into a sum of 
a linear and non-linear representation. Using MAPE as the 
accuracy criteria, the single sample prediction horizon results 
were several percentage points better than the time series 
model by itself.

Machine Reliability Forecasting Applications Using 
Support Vector Regression for Time Series Prediction
Three papers are summarized below for the prediction of 
machine reliability from mechanical vibration time series sig-
nals, automotive related reliability measures, and engine reliabil-
ity via prediction of MTBF using SVR. The prediction of 
machine reliability is typically non-linear and several traditional 
(ARIMA as an example) and ANN approaches have been stud-
ied regarding this application; however, the use of SVR for this 
particular application has not been widely studied.

Yang and Zhang [75] compared the use of an SVR and LS-
SVM vs. a back propagation neural network (BPNN), an RBF 
network, and a GRNN for predicting vibration time series sig-
nals related to the mechanical condition of machinery. For 
short term prediction (one step ahead prediction), the SVR 
using a Gaussian kernel outperformed all of the other methods 
including the LS-SVM. For long term prediction (24 samples), 
the RBF network performed better with respect to the NMSE 
as compared to the two SVM methods. Hong et al. [76] 
 discussed the use of SVMG and RSVMG [65] models for 
 predicting the “period reliability ratio” for the automotive 
industry based on time series data containing vehicle damage 
incidents and the number of damages repaired. For one-step 
ahead forecasting, the RSVMG model outperformed ARIMA, 
BPNN, ICBPNN and SVMG (no feedback) methods with 

General business applications of SVR span credit rating 
analysis to auto insurance market prediction to production 
rate prediction.
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respect to the RMSE. The key to this approach was the use of 
both a genetic algorithm and the use of feedback (recurrent 
network architecture) to aid in the selection of the free param-
eters of the SVR. Hong and Pai [77] compared the SVR to 
three other models (Duane, ARIMA, and GRNN) for the pre-
diction of engine failure. The authors noted that the prediction 
of engine failure is critical in both the repair and design process 
of mechanical engines. The data set used as input was the 
engine age at the time of unscheduled maintenance actions and 
the outputs of the different models were the predicted engine 
age of the next unscheduled maintenance action per mainte-
nance period. The authors noted that the use of SVR exceeds 
performance with respect to the NRMSE for all other models.

Control System and Signal Processing 
Applications Using Support Vector 
Regression for Time Series Prediction
There are several research papers using SVR for time series 
prediction in the fields of control systems and signal processing. 
These applications include: mobile position tracking, Internet 
flow control, adaptive inverse disturbance cancelling, narrow-
band interference suppression, antenna beamforming, elevator 
traffic flow prediction, and dynamically tuned gyroscope drift 
modeling. These diverse applications face the same nonlinear 
prediction challenges as all of the other applications described 
in this survey. In addition, some of these applications face an 
additional challenge of being highly sensitive to computation 
timing, as expected in real time signal processing applications. 
Summarized below are eight publications related to control 
theory and SVR time series prediction:

Suykens et al. [78] provided a detailed summary with real 
world (simplified) examples of non-linear control system theory 
using Least Squares Support Vector Machines (LS-SVM). 
Important discussion topics related to closed loop control theory 
such as local stability analysis were included. Several real world 
examples were given: state space estimation for non-linear sys-
tem, inverted pendulum problem, and a ball and beam example. 

Gezici et al. [79] proposed the use of SVR to improve 
the position estimation of users of wireless communications 
devices. Multi-path, non-line-of-sight propagation, and mul-
tiple access interference are the main sources of geo-location 
error. They proposed the use of a two step process to esti-
mate the position of the mobile user. First, an SVR (e
-insensitive loss function and Gaussian kernel function) is 
used to predict an initial location. This process is followed 
by a Kalman-Bucy (K-B) filter to refine the geo-location. 
Although this application used the K-B filter for position 
estimation, it is not a specific time series prediction applica-
tion (rather, a tracking problem). However, the processes 

described in this paper could be used to 
predict time series data specifically.

Huang and Cheng [80] proposed two 
different algorithms for admission control 
and traffic scheduler schemes for internet 
web servers. The process of web client ser-

vicing is usually first come first serve, a technique that is not 
well suited to handle “bursty” loads, which, in turn, can nega-
tively impact cost of internet sales vendors in the form of lost 
transactions. The authors proposed a prediction mechanism to 
forecast total maximum arrival rate and maximum average 
waiting time for priority groups using SVR and a fuzzy logic 
system. Using an event driven simulator, the authors showed 
significant increase in average throughput for two different pri-
ority task groups using SVR vs. the fuzzy logic system and the 
legacy first come first serve paradigm. 

Liu et al. [81] discussed methods to control plant 
responses and plant disturbances, treated as separate process, 
using LS-SVM. The goal was to combine the plant output, 
which includes the plant disturbance, with the output of 
the LS-SVM (plant model approximation) to produce an 
estimate of the disturbance and fed back this estimate 
through an “inverse” LS-SVM to negate the disturbance via 
the input of the actual plant. For a non-linear modeled 
plant and a one-step-ahead prediction horizon, the authors 
successfully demonstrated the use of both SVR and an 
adaptive method for determining the free parameters of the 
SVM. The key aspect of this approach was the use of a 
Bayesian Evidence Framework for the adaptive selection of 
LS-SVM free parameters.

Yang and Xie [82] proposed the use of SVR to reduce the 
effects of high-power narrowband interference (NBI) in spread 
spectrum systems. Adaptive filters used to solve this problem 
were time-domain nonlinear LMS adaptive filters (TDAF) and 
frequency-domain nonlinear LMS adaptive filters (FDAF) 
which both have sensitivity to noise in estimating NBI. For this 
specific application, cross validation methods were too time-
costly to train the SVR and to determine the SVR free param-
eters. Using a Gaussian kernel function, the authors noted that 
NBI suppression using SVR is a viable approach for NBI sup-
pression where computational time is a more critical aspect of 
this application.

Ramon et al. [83] used an SVR approach to adaptively 
change antenna beam patterns (beamforming) in the presence 
of interfering signals arriving at an arbitrary angle of arrival. 
This particular application requires the use of complex variables 
(real and imaginary components of the objective function asso-
ciated with the signal weighting for the individual antenna ele-
ments) for the solution which required separate Lagrange 
multipliers for the real and imaginary components of the solu-
tion. Because this is an adaptive beam forming problem, there is 
also a computational time constraint. The authors used an alter-
native optimization method: the iterative reweighted least 
squares (IWRLS). Using a modified cost function (quadratic 
for data and linear for “outliers”), the authors demonstrated a 

SVR has been used for the prediction of environmental 
parameters such as air quality parameters rainfall 
estimation and detection, and weather forecasting.
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significant decrease in bit error rate (BER) as compared to a 
minimum mean square error based algorithm.

Luo et al. [84] proposed the use of an LS-SVM for the pre-
diction of elevator traffic flow. ANNs have been used to study 
this problem and the LS-SVM was used here to improve the 
control system’s ability to predict traffic flow in order to 
improve elevator service quality. Using three different groups of 
elevator traffic data, the authors demonstrated the feasibility of 
the LS-SVM for predicting traffic flow. There is a significant 
computational tradeoff between the sparseness of the LS-SVM 
solution compared to a standard SVR using other non- 
quadratic loss functions and the computational complexity 
associated with the training of the LS-SVM.

Xu et al. [85] compared the use of an SVR using accumu-
lated generated operation (AGO) based on grey theory to an 
RBF neural network, a grey model, and a standard SVR to 
predict the drift of a dynamically tuned gyroscope. The AGO 
algorithm was used to pre-process the drift data in order to 
reduce noise and complexity of the original data set. Then, the 
SVM was trained and an inverse AGO algorithm (IAGO) was 
applied after the SVM training to compute the model. A 
B-spline kernel function was used for this application. As com-
pared to the RBF network, the AGO-SVM approach showed 
superior performance in both the MAE and NMSE by almost 
an order of magnitude. 

Miscellaneous Applications Using Support 
Vector Regression for Time Series Prediction
There are eight other research papers describing the use of 
SVR for time series prediction that were not specifically 
associated with any of the discussed categories in this survey. 
One paper pertains to a biological neuron application, two 
papers describe the use of SVR to Kalman filtering meth-
ods, an application of switching dynamics associated with 
unsupervised segmentation, two papers on SVM application 
to natural gas load forecasting, transportation travel time 
estimation, and the use of particle swarm optimization 
(PSO) used in conjunction with SVR. The references [87, 
88, 89] do not actually use SVR to directly solve a time 
series prediction problem, but rather embed the use SVR 
into their respective approaches. The work presented in the 
last paper is not specifically a financial time series prediction 
application, although financial time series data was used to 
evaluate an alternative SVM training methodology. These 
eight publications are summarized below. 

Frontzek et al. [86] used SVR to learn the dynamics of bio-
logical neurons of Australian crayfish. To model this biological 
neural network, they used time series data of a pyloric dilator 
neuron and SVR, with the e-insensitive loss function and a 
Gaussian kernel function, for one-step ahead prediction of 
these time series data and compared results to an RBF network. 
The authors concluded that the Gaussian kernel function out-
performed other kernels, the SVR approach “learned” faster 
than the RBF networks, and more data points (i.e. support vec-
tors) produced better results. 

Ralaivola and d’Alche-Buc [87] discussed the modeling of 
non-linear dynamic systems using SVR in conjunction with 
Kalman filters. The discussion is based on the transformation 
of the non-linear time series equation into a linear equation 
by the use of kernel functions. The authors proposed the use 
of SVR to map the transformed data from the feature space 
back into the input space, noting that they use one SVR for 
each dimension of the input space (with the kernel trans-
formed data as inputs to the SVR). Using both a one-step-
ahead prediction horizon as well as a 100 sample prediction 
horizon for  Mackey-Glass time series data and laser time 
series data from the Santa Fe competition (see [87] for 
details), the authors showed results using both polynomial and 
Gaussian kernel functions and state that this approach could 
be comparable to other Kalman filtering approaches processes 
such as Extended Kalman Filters (EKF) or Unscented Kalman 
Filters (UKF).

Ralaivola and d’Alche-Buc [88] extended their work from 
[87] and proposed the Kernel Kalman Filter (KKF) where the 
non-linear input space is transformed to a higher dimension 
feature space by the use of kernels described in [87]. This 
 Kalman filtering method was used for both the filtering and 
smoothing functions. The authors proposed the use of an 
Expectation-Maximization (EM) approach to determine the 
free parameters of the model, including the kernel parameters. 
Using Mackey-Glass data, Ikeda series data (laser dynamics), 
and Lorenz attractor data, the authors state the KKF accuracy 
in the RMSE sense are superior to the MLP and SVR predic-
tion methods for both one-step-ahead prediction as well as 
multiple step ahead prediction.

Chang et al. [89] proposed applying an SVR to an unsuper-
vised learning problem, specifically the unsupervised segmenta-
tion of time series data. Unsupervised segmentation can be 
applied to many time series applications such as speech recog-
nition, signal classification, and brain data. The authors used the 
SVR as one component of a “competing” SVM architecture 
which is based on an “annealed competition of experts” (ACE) 
methodology. They were specifically, predicting weighting coef-
ficients based on error terms. Simulated chaotic time series data, 
Mackey-Glass data, and Santa-Fe data were used as input to this 
methodology and the proposed architecture appears feasible for 
the prediction of non-linear time series data.

Liu et al. [90] applied SVR to natural gas load forecasting 
including factors related to natural gas loading such as weather 
related parameters (i.e., temperature, etc.), day of the week, hol-
idays, etc. The results of using SVR to predict seven day ahead 
load forecasts were compared to a multi-layer perceptron ANN 
using a self-organizing feature map (SOFM) and the SVR out-
performed the hybrid ANN approach by several percentage 
points in the MAPE. The same authors examined natural gas 
load forecasting [91] using a Least Squares Support Vector 
Machine and compared to an ANN using SOFM. The LS-
SVM implementation had similar performance characteristics 
as found in [90]. A commercial software package (Natural Gas 
Pipeline Simulation and Load Forecasting – NGPSLF) based 
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on LS-SVM was developed and implemented specifically for 
this application.

Wu et al. [92] used an SVR to analyze and predict travel 
time for highway traffic. Travel time prediction is essential for 
travel information systems, including the estimation of en-route 
times. Using a Gaussian kernel function and a standard SVR 
implementation, their SVR showed improved RME and 
RMSE results as compared to two other travel time prediction 
methods: current travel time prediction and historical mean 
prediction methods.

Zhang and Hu [93] proposed the use of Particle Swarm 
Optimization (PSO) for selecting certain features of data to 
reduce the inputs to an SVM (essentially data pruning). Also, 
the PSO was used to optimize the SVM free parameters as 
well. Using a financial time series data set as input (CBOT-US), 
the authors showed that the PSO feature selection procedure 
was comparable to other genetic feature selection algorithms in 
terms of minimizing the prediction error. The main advantage 
demonstrated with this approach is the great improvement in 
computation time as compared to the other methodologies.

Discussion
In the wide spectrum of time series prediction applications using 
SVR techniques, the fundamental reason for considering SVR 
as an approach for time series prediction is the non-linear aspect 
of the prediction problem. This non-linear aspect of the applica-
tions is common throughout all of the discussed applications. 
There are several broad observations and generalizations that can 
be made based on the brief summaries presented in this paper.

Traditional (and more sophisticated) model-based tech-
niques generally do not perform as well as the SVR in predict-
ing time series generated from non-linear systems. This is based 
on the fact that the SVR “lets the data speak for itself ” whereas 
the model-based techniques typically can not model the non-
linear processes well.

Traditional Artificial Neural Network (ANN) based tech- ❏

niques such as Multi-Layer Perceptrons do not necessarily 
perform as well as the SVR. This can be due to their inher-
ent limitation in not being able to guarantee a global mini-
mum for the optimization of the network. By design, the 
SVR guarantees this global minimum solution and are typi-
cally superior in their ability to generalize.
There is no predetermined heuristic for the choice of sever- ❏

al parameters and designs for the SVR – it appears to be 
very application specific (as well as individual designer spe-
cific). This appears to be one of the largest challenges in 

maturing this technology, as many of the 
papers presented offer different approaches 
for improving SVR performance through 
the adaptation of free parameters.

There are several choices for solving the  ❏

convex optimization problem inherent in 
the solution of the SVM.
There are no measures of prediction  ❏

uncertainty (i.e. covariance) associated 
with the predictions (note Relevance 
Vector Machines address this issue, see 
[105] as example).

For further information regarding this (and other) SVR 
based techniques, the authors encourage readers to start with 
the introductory papers, texts, and especially the publicly avail-
able websites [94-104]. These websites serve a valuable purpose 
in advancing and disseminating this viable technology to the 
scientific community and can act as a viable resource and data-
base for current SVM/SVR applications. 

Challenges Associated with Using 
SVR for Time Series Prediction
From the technical literature reviewed in this paper, there 
appears to be several challenges associated with the use of SVR 
in prediction of highly non-linear time series prediction appli-
cations. Below is a summary of some of these technical chal-
lenges and issues:
1) Selection of kernel function: The choice of kernel function 

appeared somewhat arbitrary, although the vast majority of 
the applications listed above use the Gaussian kernel. Some 
efforts empirically determine that the use of the Gaussian 
kernel is superior to other kernel functions, but in general, 
there appears to be no formal proof of optimality.

2) Free parameter selection: Some research has been done with 
respect to adaptively changing the free parameters associ-
ated with SVR training to improve prediction results, 
including the use of sophisticated genetic-based algo-
rithms. Again, there is no “optimal” method for adaptation 
of the SVR parameters.

3) Use of SVR in “real time” applications: For the vast amount 
of the applications mentioned in this paper, all but two of 
them required some sort of “real time” computational 
demands. There is very little mention of the computa-
tional cost of deriving the results, most likely due to the 
static nature of the datasets being analyzed.

4) Managing the trade space complexity of technical advantages: The 
technical tradeoffs and nuances between the design of the 
SVR system, the sparseness of the solution, the accuracy of 
the solution, and the computational efficiency in finding the 
solution have not been summarily defined in any of the 
papers reviewed. Several of these aspects have been analyzed 
together, but not all of them as a whole. 

5) Selection of SVR optimization techniques: Several QP opti-
mization packages exist (publicly available) to train the 
SVR and the SMO algorithm appears to be the most 

The prediction of machine reliability is typically non-
linear and several traditional (ARIMA as an example) 
and ANN approaches have been studied regarding this 
application; however, the use of SVR for this particular 
application has not been widely studied. 
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popular. The reader is referred to the web based references 
of this survey paper for more information on a selected 
set of training methodologies.

6) Determining when to use the Least Squares SVM technique: 
LS-SVM approaches are sometimes more efficient to 
implement at the expense of sparseness of the solution. 
LS-SVM did not always outperform the SVR approaches 
in some of the listed applications.

7) Selection of performance metrics and benchmarks: There are no 
sets of metrics and benchmarks for SVR approaches, 
although several publicly available data sets are used to 
compare performances. RMSE and MAPE are the most 
typical metric for goodness of the solution.

Conclusion
Support Vector Machines/Support Vector Regression (SVR) are 
powerful learning mechanisms that have been developed and 
matured over the last 15 years. They provide a method for pre-
dicting and forecasting time series for a myriad of applications 
including financial market forecasting, weather and environmen-
tal parameter estimation, electrical utility loading prediction, 
machine reliability forecasting, various signal processing and 
control system applications, and several other applications 
detailed in this survey paper. Non-traditional time series predic-
tion methods are necessary for these types of applications due to 
the highly non-linear aspects of the data and processes. 

In conclusion, SVR research continues to be a viable 
approach in the prediction of time series data in non-linear sys-
tems. Many methods and alternatives exist in the design of 
SVRs and a great deal of flexibility is left to the designer in its 
implementation. This survey presents a summary of these meth-
ods with their associated applications’ papers references.
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