
XStream: a Signal-Oriented Data Stream
Management System

Lewis Girod 1, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan
Hari Balakrishnan, Samuel Madden

Computer Science and Artificial Intelligence Laboratory, MIT
32 Vassar St, Cambridge, MA, 02139, USA

1ldgirod@csail .mit .edu

Abstract- Sensors capable of sensing phenomena at high data
rates on the order of tens to hundreds of thousands of samples
per second are now widely deployed in many industrial, civil
engineering, scientific, networking, and medical applications. In
aggregate, these sensors easily generate several million samples
per second that must be processed within milliseconds or seconds.
The computation required includes both signal processing and
event stream processing. XStream is a stream processing system
for such applications.

XStream introduces a new data type, the signal segment, which
allows applications to manipulate isochronous (regularly spaced
in time) collections of sensor samples more conveniently and
efficiently than the asynchronous representation used in previous
work. XStream includes a memory manager and scheduler op-
timizations tuned for processing signal segments at high speeds.
In benchmark comparisons, we show that XStream outperforms
a leading commercial stream processing system by more than
three orders of magnitude. On one application, the commercial
system processed 72.7 Ksamples/sec, while XStream processed
97.6 Msamples/sec.

I. INTRODUCTION

XStream is a stream processing system that is designed
to efficiently support high-rate signal processing applications.
The motivating applications for this system come from a va-
riety of industrial, scientific, and engineering domains. These
applications use embedded vibration, seismic, pressure, mag-
netic, acoustic, network, and medical sensors to sample data
that are on the order of millions of samples per second in
aggregate. Such high-rate sample streams need to be processed
and analyzed within milliseconds or at most seconds of being
produced, using a mix of event stream and signal process-
ing operations. Example operations include selecting out time
ranges and samples of interest, applying signal processing
transforms to them, correlating them with other signals, time-
aligning them with other signals, and applying a variety of
application-specific aggregate operations on the signals.

Existing stream processing engines (SPEs) [1], [2], [3], [4],
[5], [6] provide some of the features needed to express these
applications, but suffer from two limitations. First, they do
not scale to the rates that many signal processing applications
need to support (often several million samples per second)
on conventional PC-class machines. Second, existing SPEs
do not provide an operator set that is adequate for signal
processing for example, operations like FFTs and Wavelets

are not provided, and must be implemented as user-defined
functions in external languages.

To understand these two limitations more concretely, we
discuss a synthetic benchmark, STATFILTER. This query com-
putes statistics over streams of audio data that have been regu-
larly sampled in time (are isochronous). This benchmark con-
sists of two sequentially connected filter operators. The first
operator calculates the standard deviation of the last 4096
samples, and passes the window onward if it is greater than
a threshold a. The second operator works similarly, passing
only windows whose average value is less than Q.

Let's consider how such an application might be imple-
mented in a conventional SPE. First, the streams carry one
tuple for each input sample, with <sample, timestamp>
as the schema. The first filter collects the next 4096 tuples in
a window, and must either stride through the data or strip the
timestamps out to compute the standard deviation. For each
window that satisfies the predicate over standard deviation, the
tuples in that window are passed, one at a time, as an output
stream to the second filter. The second filter again collects a
window of 4096 tuples and conditionally outputs tuples from
windows that satisfy the average predicate.

In contrast, the streams in the XStream implementation are
tuples containing chunks of sample data called signal seg-
ments, or SigSegs. Rather than performing per-operator win-
dowing, the SigSegs are formatted into blocks of 4096 samples
by a special re-window operator. Timing information is sum-
marized as part of each SigSeg data type. Per tuple timestamps
are not necessary because all samples are separated by the
same amount of time. Each filter is invoked once per tuple,
but since each tuple contains a SigSeg, it processes the entire
block at once. When a SigSeg is passed to the next operator,
the entire SigSeg of tuples is passed by reference, reducing
overhead further.
XStream achieves a 1000 x performance gain for this type of

query, relative to a commercial SPE: the commercial system
processed 72.7 Ksamples/sec, while XStream processed
97.6 Msamples/sec. This gain is the result of several design
choices that enhance XStream's performance for signal-
oriented queries, in particular an ADT designed to efficiently
manipulate signal data, a set of operators, a memory manager,
and a scheduler optimizes for that ADT. We expand on these
results in Section IV.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1180 ICDE 2008

Raw Data Stream Data after "windowing" into SigSegs
Sensor on 1 OOms
(4400 samples) Sensor off 2000 sample SigSeg

1 Second
Off time reflected in sequence gap

Fig. 1. Example illustrating how a raw data stream, with 100 ms of data
every second, sampled at 44 KHz, is packaged into 2000-element SigSegs.

In a recent position paper at CIDR [7], we outlined the
basic system architecture and functional query language of a
system that makes it easy to express signal-oriented streaming
applications. In this paper, we describe the details of XStream,
focusing on the features that achieve high performance. These
performance gains result from design choices arising from
three important observations:

1) Isochronous data is the common case: We have observed
that many sensor-based streaming applications produce high-
rate data isochronously (e.g., once per microsecond). Rep-
resenting and processing these data streams as timestamped
tuples is inefficient, since the timestamp of each sample is
implicit from its position in the stream. Many block-oriented
signal processing operators such as FFTs perform optimally
when operating on densely packed arrays. For such operators,
processing data interleaved with timestamps presents a major
hurdle. Additionally, conventional streaming operators such as
temporal joins suffer when working at the granularity of indi-
vidual samples, because of the sheer number of comparisons
that must be made. To address this, we define a new abstract
data type which we call a signal segment, or SigSeg. A SigSeg
encapsulates a finite sequence of isochronous samples into an
array-like data structure with associated timing metadata, as
shown in Fig. 1. XStream applications manipulate SigSegs as
first-class objects.

2) Scheduler and tuple passing overhead is a bottleneck:
Left unchecked, scheduling and tuple passing overhead can
easily dwarf the costs of the actual computations performed
on the data stream. We demonstrate this in Table I (Sec-
tion IV-A), in which our performance benchmarks show that
engine overhead is often multiple orders of magnitude greater
than the actual cost of data processing operators, even in a
commercial SPE. We design XStream's engine to minimize
the engine overhead. The XStream memory manager takes
advantage of isochrony to manage SigSegs efficiently, allowing
applications to pass, append, and subdivide SigSegs with low
overhead. In particular, it avoids expensive copying operations
whenever possible, while supporting dynamic manipulation of
signal data. In addition, passing data in SigSegs rather than
individual tuples substantially reduces the context switching
overhead in the scheduler. The XStream runtime also includes
a novel design for a "depth-first" scheduler that dispatches
tuples to operators in a (mostly) depth-first traversal of the
wiring diagram, avoiding expensive scheduling decisions.

3) A unified query language enables whole-program opti-
mization: Implementing the SigSeg ADT and associated sig-

nal processing functions in existing SPEs relies heavily on
the use of user-defined functions (UDFs). However, because
these UDFs are written and compiled separately from queries,
query optimizers cannot "see inside" UDFs. If, on the other
hand, we write the entire application in a single language, we
gain the ability to perform global optimizations. For example,
the compiler can fuse UDFs or specialize them to the specific
contexts in which they are invoked. Such a framework makes
it easy to ensure type-safety, and removes the necessity for
awkward type conversions and parameter marshaling when
calling UDFs.

This paper focuses on the first two points mentioned above.
An overview of the WaveScript language was given in a po-
sition paper [7]; a detailed evaluation of the compiler opti-
mizations and programmer productivity benefits are subjects
of on-going work.

A. Contributions
This paper describes and evaluates the implementation of

XStream. It makes the following contributions:
. The SigSeg ADT, which enables high performance ma-

nipulation of signal-oriented data, and a memory manager
that supports (large) SigSegs efficiently.

. A scheduler that dispatches tuples to operators in a
(mostly) depth-first traversal of the query plan, avoiding
expensive scheduling decisions.

. A detailed experimental evaluation of several mi-
crobenchmarks analyzing XStream, including a compar-
ison to a commercial SPE.

We begin with a few motivating applications, and then de-
scribe the implementation of SigSegs and the XStream en-
gine in Section III. We evaluate XStream by presenting mi-
crobenchmarks of engine performance in Section III, and a
detailed evaluation of the XStream engine with benchmark
comparisons to a commercial SPE in Section IV.

II. MOTIVATING APPLICATIONS

To motivate our design decisions, we summarize three ap-
plications that we have implemented using XStream: pipeline
leak detection, network monitoring, and acoustic localization.
All three applications process high-rate input data (many kilo-
hertz to megahertz), whose aggregate in a deployment would
be several million samples per second. Although space con-
straints preclude covering these implementations in detail, we
quote performance numbers from our XStream-based imple-
mentations, using the benchmarking setup described in Sec-
tion IV.

1) Pipeline Monitoring: Pipeline monitoring uses vibration
and/or acoustic sensors deployed along water pipelines to de-
tect incipient ruptures. Cracks in pipes cause small disrup-
tions that can be detected at multiple sensors to determine
the approximate locations of leaks. When deployed in the wa-
ter distribution networks underneath cities, these technologies
might save millions of dollars a year by preventing leaks and
outages [8], [9]. Typical data rates are tens to hundreds of

1181

Fig. 2. DETECTAUDIO workflow.

kilohertz from each sensor; deployments typically consist of
about ten sensors each. Wavelet analysis is used to identify
signatures characteristic of leak reflections, which are located
based on time difference of arrivals. Our XStream implemen-
tation of processed vibration data at 4.3 Msamples/sec.

2) Network Monitoring: Recently, several groups have ap-
plied signal processing methods to network monitoring [10],
[11]. In our application we analyze wireless bit errors at differ-
ent receivers in an 802.1 ig network, in an effort to reconstruct
the original packets from multiple corrupted copies. In the
analysis, we align the (possibly corrupted) bit-streams from
multiple observations of each packet, and compute pairwise
correlations. The most correlated receivers for each source
are identified by clustering, and receivers from different clus-
ters are selected to maximize the likelihood of reconstructing
corrupted packets. Our XStream implementation processed a
packet stream at 241.5 Kpackets/sec.

3) Acoustic Localization: In a typical acoustic localization
application, several small arrays of omni-directional micro-
phones are placed in the environment surrounding a target.
Typical data rates are 48 kSamples/sec from each channel,
with each array hosting 4 or more channels. These systems
typically run a low-cost local detection stage, followed by
a more expensive multi-node localization and classification
stage. These systems apply to a number of domains, including
animal tracking [12], [13], signal enhancement for improved
event recognition [14], and military applications such as sniper
identification [15]. Our XStream implementation processed 4
channel audio data at 7.5 Msamples/sec.

A. DETEcTAUDIO and PIPELINE Benchmarks

To provide a more realistic performance assessment for
XStream, we developed two benchmarks based on our
motivating applications: DETECTAUDIO and PIPELINE. In
this section we describe these algorithms in more detail.

Fig. 2 shows a block diagram of our XStream implemen-
tation. The sensor inputs consist of four independent audio
channels, receiving 16-bit audio data from a microphone array
at 48 KHz. The application passes one of the channels to a
streaming event detector. This data stream is windowed into
blocks of 32 samples each, and each window is passed to a Fast
Fourier Transform (FFT) to compute a frequency map. The
algorithm then calculates a "detection score" by computing a
weighted sum of the magnitudes of the frequency bins.
The resulting summary signal is passed to a Constant False

Alarm Rate (CFAR) algorithm [14]. The CFAR algorithm as-
sumes a Gaussian noise model N(,u, u2) and computes on-
line estimates of the model parameters ,u and (X. Detection is

Senso 0 <Samples> Rewindow <Samples>L

_TrimPeak(MIN) ! <Peak, Rest> I 'Filter I|<Rest>i................-...<Rest>LeakDetect «Pe k, Re t,

<Peak2, Re t2 p <P eak, ReR IrkPe st>t-t

I<leak, <up trans time>_

Fig. 3. PIPELINE workflow.

triggered whenever the summary signal exceeds a threshold Q
standard deviations above the current noise estimate.
Whenever an event is detected, the time range corresponding

to the event is passed as the control input to a sync operator.
All four channels of raw signal data are fed into the inputs of
the sync operator; for every detection range submitted on the
control input, sync emits a tuple containing a SigSeg from
each input channel corresponding to the requested detection
range.

Fig. 3 shows a diagram of the PIPELINE benchmark. Most
of the work is done by the haarwavelet operator, which
finds the energy in particular frequency bands. PIPELINE com-
bines several standard WaveScript operators (e.g., rewindow,
zip, haarwavelet and trimpeak) with LeakDetect,
a custom operator that determines the presence of a leak in
the pipeline.

III. XSTREAM IMPLEMENTATION

Fig. 4 shows the XStream architecture. This paper focuses
on the right-hand side of the diagram: the XStream engine
that efficiently implements the SigSeg ADT and schedules a
compiled query plan with low overhead. The implementation
of SigSegs and the scheduler are described in detail in the
following sections.

A. The SigSeg ADT
As in most streaming databases, all data in XStream is

represented as streams of tuples with pass-by-value seman-
tics. These streams are used to pass data between XStream
operators; typically a data source operator creates a stream as
it reads data from sensors, the network, or a file, and feeds
it into a query plan. Individual operators process this stream
and in turn generate new streams.
The main addition to the data model is that tuples may

contain SigSegs, which are used to pass signal data between
operators. Conceptually, SigSegs provide an array-like inter-
face that provides access to a subsection of a signal. SigSegs
also conform to a pass-by-value semantics, although (as we
describe in Section III-B), for efficiency reasons the imple-
mentation passes them by reference with copy-on-write. Ele-
ments of SigSegs are assumed to be regularly spaced in time,
though individual tuples in a stream may arrive completely
asynchronously. (Hence, the data model of a stream processor
like Aurora [1] or STREAM [2] which have no SigSegs-
can be fully modeled as a stream of XStream tuples.) Each
SigSeg also contains a reference to a timebase, an object that
specifies the rate and phase of the signal. Tuples in XStream do

1182

Errors
WavseSrpt Rsl

Program

Type Inference XStream Engine
(D G , Query Plan Scheduler Threads

CZ Partial Evaluate] dla
U/) :~~~~~~~~~,, - - - --- -

o Query Plan daTa

I~~~~*_I-- I t J-__
-7 -

E OptimizeE

Generate C Memory Manager Timebase Service

L-------- Int Query- Plan -_-_-__________-__ -_-_______________________ __-_-----

Installs Query Plan

SigSeg SigSeg

....eyi ...Bufe

Underlying Data Buffer
- Reference counted pointer

W Logical sample range
--- - List pointer

Fig. 5. The Refcount-Lazy data structure.

Fig. 4. The XStream architecture.

not intrinsically contain timestamps, though many application
schemas do include timestamps.

SigSegs make it possible to pass windows of data between
operators as first class objects. This, combined with the iso-
chrony of SigSegs, offers three benefits:

. First, since SigSegs carry windows of data between oper-
ators, individual operators are not required to define their
own window at their input.

* Second, operations that buffer data or change the window-
ing of data are very efficient. The rewindow operator
uses copy-free subset and append operations to transform
the windowing of a stream of SigSegs.

. Third, since SigSegs are isochronous, storage overhead is
dramatically reduced by eliminating explicit per-sample
timestamps, and enabling operators to index into a SigSeg
by timestamp in constant time.

To achieve this, SigSegs add three additional methods to the
standard array API:

. subseg(si'gseg, start, len): returns a new SigSeg repre-
senting a sub-range of the input sigseg.

. append(sigseg, sigseg): returns a new SigSeg represent-
ing the union of two adjacent SigSegs.

. timebase(sigseg): returns the SigSeg's timebase, used to
relate a signal index to a timestamp.

B. Memory Manager and SigSegs

The principal goal of the XStream memory manager is an
efficient implementation of the SigSeg API capable of scaling
to data rates of millions of samples per second. In particular,
the memory manager must provide efficient ways to:

* Create SigSegs at a data source (e.g., a microphone or
pressure sensor) or from intermediate results of compu-
tation (e.g., output of an FFT).

. Pass SigSegs between operators in the query plan.
* Manipulate SigSegs using append and subseg.
. Materialize SigSegs into contiguous data buffers to sup-

port algorithms with non-sequential access patterns.

1) Design alternatives and tradeoffs: To motivate our de-
sign choices in this implementation, we present four succes-
sive versions, each making an incremental change over the
previous, and yielding a performance improvement.
We first consider CopyAlways, a naive implementation

in which SigSegs contain a copy of the signal data. In this
version, SigSegs are passed between operators by copying, and
append and subseg are also implemented by copying. This
strategy is a good basis for comparison, with simple semantics
even in the presence of concurrency.

To establish the overhead of copying, we compared the
cost of creating a copy of a SigSeg to two common signal
processing operations: FFT and X. X. We found that while
copy cost is insignificant compared to heavier algorithms such
as a 256 point FFT, the cost of making a copy consistently
dwarfs X. X by a factor of 10. This suggests that a lighter-
weight method of passing SigSegs is required to support fine-
grained modularity in the query plan.

Our second implementation, Re fCount, is a straightfor-
ward extension to CopyAlways that stores signal data in
a reference-counted buffer. Re fCount implements standard
copy-on-write semantics: mutating a SigSeg normally requires
copying, but can be optimized to be in-place if no other
SigSegs share the same data block. The append operation
poses more of a challenge. We consider three possible
implementations of append:

. RefCount-Copy, which maintains a contiguous buffer
on append by allocating a new block and copying.

. RefCount-Realloc, which uses realloc () to ex-
tend the allocation of the "earlier" buffer without copying,
and then appends data from the "later" buffer.

. RefCount-Lazy, which relaxes the requirement that
the underlying buffers are contiguous, instead taking a
lazy approach to materialization. Each SigSeg maintains
a list of reference counted pointers to data blocks sorted
by time. In-place destructive appends are fast since they
simply splice lists.

Our experiments with the acoustic monitoring application
quickly ruled out the first design, which suffered an unac-
ceptable slowdown from appends within the sync operator
(Fig. 6). The second design also suffers from the overhead of

1183

Comparison Of Memory Managers
I I I~~

6000
0
C-)a)
U)
a)
Q-
E
CZU)

Q-

0

I
0

F--

5000 F

4000

3000 -

2000 P

1 000

0 50 100 150 200 250 300 350 400 450

Batch Size/Channel (KBytes)

Fig. 6. Comparison of memory managers as batch size increases. Some error

bars are not visible due to low variance.

a system call to realloc () for each append. More prob-
lematically, since reallocating a block can alter its memory

address and SigSegs in different threads can share blocks, this
requires locking on every access to a SigSeg.
We finally converge on RefCount-Lazy, which offers

quick appends and avoids unnecessary materialization. As
shown in Fig.5, this method uses two levels of reference
counting. A SigSeg is a reference counted pointer to a

seglist, consisting of SigSeg metadata (start time and length)
and a linked list of reference counted pointers to ranges of
underlying data buffers.
RefCount-Lazy makes an important design choice by

deferring the creation of contiguous data buffers until it is nec-

essary. When a non-sequential access pattern is required, the
SigSeg must be materialized into a single contiguous buffer
but in the workloads we have examined this is rare in compar-

ison to calls to append. Sequential iteration can be achieved
efficiently without materialization using an iterator abstraction.
Furthermore, in many workloads (e.g., the sync operator in
DETECTAUDIO) data is temporarily buffered using append,
but an insignificant fraction is ever materialized.

2) Evaluation: We evaluate our memory manager using the
DETECTAUDIO benchmark described in Section I1-A. Our
benchmark uses the same machine and method described in
Section IV (maximum offered load, 2.8 GHz Xeon, 1 MB
L2), except that data is not pushed all at once, but in fixed
size batches, to control the amount of buffering in sync.

Fig. 6 shows the system throughput in kilosamples per sec-

ond as a function of batch size (per audio channel). We observe
that CopyAlways and RefCount-Copy perform poorly as

batch size increases. This is because each append to the end
of the accumulator in sync copies the appended data, con-

suming time proportional to the accumulator size and hence
the number of previous appends. The total time for 0(n)
appends is therefore 9(n2). This slowdown is unacceptable
for realistic workloads: we observe that the throughput begins
to drop substantially in both implementations beyond a batch
size of 200 KB, which corresponds to buffering roughly a

couple of seconds' worth of 48 KHz audio.
While RefCount -Realloc does not perform as

badly (its memory operations take linear time for sync),
the overhead of realloc () and locking results in a
larger constant factor compared to RefCount-Lazy.
RefCount-Lazy performs the best, with throughput up
to four times higher than the simple reference-counting
approach, and an order of magnitude better than naive
copying. Encouragingly, the lazy approach also has an almost
flat performance curve that scales extremely well to high
data rates, unlike the other strategies that exhibit decaying
throughput with higher offered load.

C. Scheduler
The XStream scheduler determines the order of execution

of operators in the query plan. This section describes various
alternative designs, including some previously proposed, to
show how the choice of scheduler can dramatically affect
performance.

1) Design goals: A good scheduler must allow XStream
applications to achieve high throughput by keeping overheads
to a minimum. These overheads include the cost of switching
from one operator to another, passing data between them,
and queuing overheads. Scheduling at the coarse granularity
of SigSegs helps reduce the scheduling overhead, relative to
scheduling at the level of individual samples. Though bulky
SigSegs are passed by reference, memory for tuples (which
contain references to SigSegs) must still be allocated and deal-
located as they get copied between operators. A good sched-
uler should also minimize the overall memory footprint of
the running application; for example, a scheduler that relies
on queues before every operator is likely to consume more
memory than one that does not. Memory consumption is im-
portant because being able to hold the "working set" in the
cache is crucial for high-rate processing. Moreover, schedulers
that cause memory consumption to vary dramatically cause
applications to run slower because resizing the heap incurs
significant overhead.

2) Design alternatives and tradeoffs: We investigate three
schedulers here: FIFO-Slice, RTC ("run-to-completion")
and DF ("depth-first"). FIFO-Slice maintains per-operator
queues of data waiting to be processed by the corresponding
operator. Every timeSliceDur seconds, the scheduler
picks the least recently dequeued input queue, determines
which operator it belongs to, and processes as many tuples
from that queue is possible until timeSliceDur expires
or the queue becomes empty. If timeSliceDur is set to
0, then FIFO-Slice schedules one tuple per operator at a
time (which of course incurs high scheduling overhead). We
use the term FIFO for this special case.
The RTC scheduler shifts the granularity of processing from

queues to operators. Here, when an operator is scheduled, all
input queues feeding that operator are drained and the tuples
are iterated upon by the operator before the next operator
is scheduled. In addition, the RTC scheduler determines if the
operator has emitted any tuples. If so, it chooses one of the

1184

RefCount-Lazy x><
RefCount-Realloc o
RefCount-Copy A

CopyAlways E

successor operators to execute immediately afterwards, while
the other successor operators are enqueued for execution in
the scheduler's queue of pending operators. If not, the operator
has completed, and the scheduler is free to pick the next, least
recently scheduled operator with pending tuples to run. Both
F I FO- S i ce and RTC should exhibit good instruction cache
locality.
The DF scheduler starts by pushing a set of tuples from

an input stream through an operator and then directly invokes
the successor operator in the query plan whenever the operator
emits a tuple. Thus, the DF call graph is a depth-first traversal
of the query plan. This scheme does not require an operator
scheduled next to allocate and deallocate memory for tuples
(unlike in the previous cases, where tuples need to be copied)
because synchronously executing operators can pass tuples
by reference. But some queuing is unavoidable because the
query plan is rarely a linear processing chain, and backtracking
to an operator in the depth-first traversal requires data to be
queued. Because a XStream query plan may contain cycles,
the DF scheduler maintains the stack of the execution so far
and enqueues those operators which would close the loop on
to the scheduler queue for later execution. Once the depth-first
traversal for a set of tuples has completed, the DF scheduler
selects the least recently processed operator with enqueued
data to run next.

3) Evaluation: We evaluate the performance of our sched-
ulers on the DETECTAUDIo application described in Section
II-A. We perform two sets of experiments: a scalability exper-
iment that measures the performance of the schedulers under
increasing offered load and a peak-performance experiment
that measures end-to-end performance of different XStream
applications. These experiments use the same machine and
methodology described in Section IV.

Fig. 7(a) displays the results of scalability experiments, as
the offered load increases beyond the maximum processing
capacity of each scheduler. The figure shows a drop-off in
the sustained throughput as the offered load increases. We
determined that this degradation is due to the buildup in in-
put queues when the system is overloaded. As queue sizes
increase, a large amount of memory must be allocated and
deallocated to keep up, which causes the heap maintained by
the GNU C library's malloc implementation to grow and
shrink, placing a heavy burden on Linux's virtual memory
manager. Smaller amounts of allocation and deallocation could
be handled entirely within a heap cache, or even the CPU
cache.

To solve this problem, we augment our schedulers with
source rate control, which synchronously admits a maximum
of tupleBurst tuples from each source, waits until all the
operators reach completion, and then repeats. This has the
effect of limiting the total amount of memory used by the
XStream engine at any time. Fig. 7(b) shows that admission
control causes each scheduler's response to increased load to
be flat rather than collapsing. (Alternatively, we could have
limited the maximum size of the input queues and used back-
pressure to throttle the rate of allocation/deallocation in the

system.)
We assume that the admission-controlled results represent

the true peak performance of the scheduler algorithms. As
expected, the F IFO scheduler performs the worst, topping out
around 4.5M samples/second. The FIFO-Slice scheduler
with slice = 28 ,us (labeled FIFO-TS in the figure) performs
11% better. The RTC performs 20% better than FIFO, while
DF is faster by about 51%.
We now look at the relative peak performance of the sched-

ulers. After the FIFO scheduler finishes running an operator
on an input tuple, it is highly likely to switch to a different
operator. The overhead of switching results in some "cache-
busting" both the instruction cache (operator code) and the
data cache (input queues and operator state) on the CPU ex-
perience churn. Both FIFO-Slice and RTC mitigate this
problem; in fact, RTC drains all the queues and automatically
transitions to the one of the successors, so performs a little
better than FIFO-Slice. The DF scheduler has poor cache
locality, but is able to more than compensate for it by avoiding
the expensive allocation, deallocation, and copying associated
with emitting tuples into input queues. In fact, in a pure engine
benchmark (EngineBench) consisting of a 1000 pass-through
operators, the DF scheduler can be 5.8x faster than the other
schedulers.
To confirm our intuition regarding the CPU cache behavior,

we profiled the cache usage of these schedulers, and found
that the execution of EngineBench using the FIFO scheduler
resulted in - 47x the rate of misses in the LI data cache
compared to RTC. Also, it produces 20x the LI instruction
cache misses relative to RTC. DF has about 50% of the in-
struction cache miss rate as FIFO and a similar data cache
miss rate because it switches rapidly between operators.
We would like to point out that, although the DF scheduler

performs best in the majority of the benchmarks, there are
some rare cases where it does not. Some applications involve
"heavy-hitter" operators which generate a lot of output, which
must be scheduled sparingly and whose output must be con-
sumed quickly. In such scenarios, schemes like FIFO which
schedule the operators in the query plan more uniformly than
DF I, have a better chance of avoiding memory allocation
"spikes" which we have determined to be detrimental to per-
formance. We show one such case in Section IV-B.

IV. EVALUATION

In the previous section, we described the implementation
of XStream and presented some results to illustrate the per-
formance of each individual component. In this section, we
present data to specifically quantify the performance gains that
stem from our system design. We demonstrate these perfor-
mance gains within the XStream framework and also provide
some comparative results for both the Borealis [16] engine
and a commercial system, to show that the same ideas can
produce a similar gain in other stream processing systems.

1DF's decisions are dictated by the query plan connectivity.

1185

7000

6000

5000

4000 -----

3000

2000 -

1000 -

0

-F~~~~~~~~~~~~~~~~~

0 3000 6000 9000 12000
Offered load (Ksamples/sec)

(a)

FIFO
FIFO-TS (lms) x

RunToComplete -K
DepthFirst -E--

150 0 3000 6000 9000 12000
Offered load (Ksamples/sec)

(b)

15000

Fig. 7. Scheduler performance with increasing offered load, without rate control (a), and with rate control (b).

All performance tests were run on a dual CPU 2.8 GHz
Pentium 4, with 1 MB L2 cache per processor and 1 GB RAM.
We selected a simple method for measuring the performance
of a running application: we ran the system on a pre-recorded
data file at maximum offered load and measured the elapsed
wall time before the complete file was processed. In order to
get a consistent performance measurement, we set up our tests
to pre-load the complete test datafile into the file system cache,
before the timer started.

A. SPE Performance
We evaluate the performance of XStream relative to two ex-

isting streaming database engines: Borealis, a research project,
and a mature commercial system whose name we anonymize
as Commercial. The benchmarks are driven by a data source

which reads from a nine second long, 44.1 KHz sound file
of a speaker counting from one to five. The file is in a CSV
(comma-separated values) format, to maximize compatibility;
we separate the burden of loading, parsing, and marshaling the
audio data from the file from the actual costs of processing it.
To focus exclusively on the benefits of SigSegs, we elimi-

nate the effects of scheduling by using benchmark applications
whose query plans are small and simple. Additionally, we

include the results obtained from running a modified version
of XStream, XStream-NoSigSeg, which operates on individual
tuples and does not use XStream's advanced memory manage-

ment.
The first benchmark, PASSCHAIN, evaluates the scheduling

and data passing costs, and consists of a chain of ten operators,
each simply passing the data along to the next operator.
The second benchmark, STATFILTER, tests the handling of

windows of data, and consists of two sequentially connected
filter operators. The first operator calculates the standard devi-
ation of the last 4096 samples, and passes the window onward
if it is greater than a threshold a. The second operator works
similarly, passing only the windows whose average value < .

The final benchmark, SILENCEFILTER, evaluates the perfor-
mance of joins. The sound source feeds into a silence detector

and a silence filter. The silence detector accepts the stream of
sound samples from the data source and outputs the ranges of
timestamps of samples considered to contain speaker voice. A
window of data is considered to be non-silent if its standard
deviation is > -y. The silence filter joins the original sound
stream with the ranges of timestamps produced by the silence
detector, to produce a stream of audio containing concatenated
"non-silent" audio.
We note that the SILENCEFILTER application is a simplified

version of the workflow of DETEcTAUDIO (see Section Il-A),
only with a single audio channel, and without the use of FFT.
We use this version because FFT is hard to express in the
query languages of some of the systems we evaluate.
The results in Table I show an average of three trials, with

negligible variance. We disabled any debugging output during
the execution of the applications, and prewarmed the filesys-
tem cache by running the benchmark six times, but recording
only the last three results. We also recorded the amount of time
each system spent loading the file, and subtract that from the
total time-to-completion of each benchmark.
The results achieved by XStream-NoSigSeg, in compari-

son to XStream, demonstrate the drastic benefits of using the
SigSeg ADT (note that the units for the XStream column
are in millions). They also validate our engine's performance
with respect to other systems: XStream-NoSigSeg performs

Units: samples/s |

File loading 4.2 sec 8.1 sec 0.2 sec 2.24 sec
PASSCHAIN 177.7K 5.47K 71.4M 92.8K
STATFILTER 72.7K 7.05K 97.6M 57.9K

SILENCEFILTER 4.58K 142.8 64.5M 75.1K

TABLE I
THROUGHPUT OF SPEs ON MINI BENCHMARKS (FIRST Row OF

NUMBERS IS FILE LOAD TIME).

1186

C')
C')

E
CZ)
cn

a-
0)I
-o

.C_

on par with the commercial SPE. XStream loads the file faster
because the commercial SPE's input file parser is more elab-
orate. We suspect that Commercial does better than XStream
on PASSCHAIN because of its internal query optimizations,
such as operator merging. On the other hand, the numbers in
Table I clearly indicate the advantages of the sync operator
over generic joins, even in a system which uses tuple-by-tuple
stream processing.
Our results show that XStream outperforms the commercial

system by a factor of more than 400 in simple message pass-
ing, a factor of more than 1340 in windowing and statistics op-
erations, and a factor of 14000 (four factors of magnitude) in
time-based joins. XStream outperforms Borealis by more than
four factors of magnitude in simple benchmarks, and more
than five factors of magnitude in temporal joins. Why does
our system outperform the existing systems so drastically?
XStream uses the isochrony of signal data to store a single

timestamp per SigSeg. The competing systems store a times-
tamp per every tuple. In addition to the timestamp, some of
the systems attach extraneous metadata to every tuple. For
example, Borealis attaches a 53 byte header to every sample
it passes around, greatly increasing the chance of cache misses.
XStream takes advantage of memory management optimiza-

tions: passing signal data by reference (via SigSegs), and using
a single copy of any piece of signal data throughout the system.
The other systems suffer from the overhead of extraneous
memory management and copying.
XStream implements sync, an efficient form of time-based

join which operates on time ranges as opposed to samples.
Other systems join on a sample-by-sample basis, which is
considerably more costly in terms of the number of timestamp
comparisons.

B. Performance Benefits of SigSegs
In this section, we present data to specifically quantify the

performance gains that stem from using SigSegs. We have
found that SigSegs affect performance in four ways: (1) they
eliminate per-sample processing which incurs a high schedul-
ing overhead, (2) they represent data in column-major order,
thus compacting it for a lower cache footprint, (3) they reduce
the memory footprint by eliminating redundant time-stamp
information, and (4) they enable sync, an optimized j oin
construct.

To separately quantify each of these factors, we imple-
mented special versions of our PIPELINE and DETECTAUDIO
applications in which we enable each improvement in turn,
with the results shown in Fig. 8. These versions are named
as follows:

. SAMPLES: passes each sample between operators as a
separate <time,value> tuple.

* WINDOWSTRIDE: passes whole windows of <time,
value> tuples between operators. We implemented this
only for PIPELINE.

. WINDOWS: same as above, but re-orders to column-order
before heavy operators (e.g., f ft).

. SEGS: the SigSeg-based version.

To show the differential impact of sync and join opera-
tors, we created additional versions of DETECTAUDIO: one
version that cuts off the query plan directly before sync,
and another that implements the complete DETECTAUDIO ap-
plication, substituting join for sync in the WINDOW and
SAMPLES cases. We now describe each of these cases in detail,
starting from SAMPLES and adding optimizations.

1) Window-passing optimization: Processing high-rate data
one sample at a time places incurs a large queuing and schedul-
ing overhead. In our first optimization, an operator that would
emit N individual tuples now packs those tuples into a SigSeg
and thus passes them by reference in a single emit call. Note
that although we use a SigSeg to enable sharing and pass-by-
reference, the SigSeg is defined on <time, value> tuples
so the data is interleaved with timestamps. This optimization
is analogous to the synopsis sharing optimization of Stanford
STREAM [2].
Comparing the results in Fig. 8 (PIPELINE), we see

that there is an increase in performance from SAMPLES to
WINDOWSTRIDE, with some variation among schedulers.
Since the Depth-First scheduler bypasses inter-operator
queues wherever it can, it far outperforms the others on
SAMPLES where queue and scheduler costs dominate. The
window-passing optimization is a clear win: Depth-First
improves by 1.4x, while the other schedulers improve by a
factor of 3.

2) Column-order optimization: When we implement signal
processing operations such as haarwavelet over windows
of <time, value> tuples, we have the option to process the
data by "striding" through the row-major data, or to first copy
the data into a column-major vector. In our tests, WINDOW-
STRIDE executes haarwavelet directly on row-major data
while WINDOWS first copies the data into column order, and
then copies it back into tuple form. By comparing WINDOW-
STRIDE to WINDOWS, we can see that re-ordering the data
yields a 2x improvement for all schedulers except DF, which
yields 1.7 x. This effect is caused by a larger memory footprint
and by cache exhaustion, as discussed in Section Ill-C.

3) Cost of interleaved time-stamps: While operators such
as haarwavelet are more heavily influenced by cache per-
formance, the performance of the system in general is af-
fected by the memory footprint. Maintaining sampled data
as <time, value> is very inefficient. We can see the ef-
fect of maintaining interleaved time-stamps by comparing the
performance of SEGS and WINDOWS. In this implementation,
timestamps are 64 bit integers doubling the memory foot-
print of PIPELINE (since samples are double) and tripling
that of DETECTAUDIO (since samples are float). Averaging
over all schedulers, eliminating time-stamps yields a 1.6 x
improvement in PIPELINE, and a 1.8x improvement in DE-
TECTAUDIO.

Note that different scheduling disciplines also affect per-
formance. In particular, disciplines that attempt to drain the
queue of an operator run the risk of increasing the memory
footprint if the operator emits more data than it consumes.
This explains the performance penalty incurred by RTC; in

1187

-5000 8000-o 0 Fifo * FifoLargeSlice * RTC * DF|

4510000 ~ ~~~ ~ ~ ~ ~ ~ ~ ~~~~~~~00

(D 4000| ;|E 3500

Samples WindowStride Windows Segs Samples Windows Segs Samples+Join Windows+Join Segs+Sync

Fig. 8. Relative performance of different approaches to data modeling and schedulers. Each bar shows the average rate over 10 trials, with error bars
representing 95% confidence intervals.

this case, the haarwavelet operator produces outputs for
each of the sliding windows, increasing the memory footprint
and overwhelming the L2 cache. Although this effect is present
in both SEGS and WINDOWS, it is more pronounced in WIN-
DOWS because of its increased footprint.

4) Comparison of sync and joinn: To assess the perfor-
mance of sync, we implemented two versions of the DETEC-
TAUDIo application, one using our sync operator, and the
other performing a symmetric streaming hash join on time-
stamp. In order to clearly show the added cost of these oper-
ators, we also show the baseline performance of DETECTAu-
DIO with the query plan terminated before sync. Comparing
the two graphs, we see that the addition of sync reduces
throughput to 0.9x of the original, vs. a reduction to 0.2x
using join.

This problem is most likely due to the large increase in
memory footprint from buffering data in the join. Because
sync buffers data through the SigSeg mechanism, these
buffers are stored efficiently and may be shared, resulting in a
smaller increase in memory footprint whereas the timestamp
overhead in the hash join increases the memory usage by
a factor of 5. The choice of scheduler also has a significant
impact on memory costs: schedulers that enter the data into
the hash tables more rapidly (e.g., RTC and Depth-First)
end up expanding the tables more than FIFO, which tends to
service the input queues more evenly.

V. RELATED WORK

There has been considerable previous work on conventional
stream processing [1], [2], [3], [4], [5], [6]. XStream differs
from these systems in two main ways. First, it provides a
single language, WaveScript, to express both traditional stream
processing and signal processing functions. This offers ad-
vantages over both SQL-based systems where UDFs are typ-
ically written in a different language, and tools like MAT-
LAB, Simulink and LabVIEW [17], [18], [19] which are
good for writing standalone signal processing applications but
do not include satisfactory streaming and relational support.
Second, it supports windows as first-class entities, as opposed
to conventional systems where windows are tied to particular
operators in the query plan. Flexible support for windows

enables queries like time alignment to be naturally expressed
and efficiently executed.

Sequence databases like SEQ [20] support time-series data
as first class objects. However, these systems are targeted at
simple queries that analyze trends in data over time, and are
less suited to expressing complex signal processing functions.
The same is true of Tribeca [21], and Gigascope [22], which
are both streaming database systems for networking applica-
tions that share our objective of handling high data rates.

There is a well-established literature on high-performance
compiler optimization in stream processing and dataflow lan-
guages [23], [24]. Most of this work is predicated on a syn-
chronous data flow model where operators produce and con-
sume deterministic amounts of data at each time step, enabling
static operator scheduling. In contrast, XStream has an asyn-
chronous dataflow model similar to streaming databases. This
limits static optimizations somewhat, but is essential to handle
real-world signal processing operators that produce data at
varying rates (e.g., the DETEcTAUDIO prefilter). Moreover,
XStream exploits isochrony to reap some of the performance
benefits of synchronous dataflow, helping bridge the gap be-
tween the two models.

Stanford STREAM employs a technique called synopsis
sharing [2] to eliminate redundant materialization of windows
shared between adjacent operators. Our reference counted
SigSegs are similar in spirit but much more flexible than
synopsis sharing, which does not support random access,
efficient merging or range extraction operations on time
windows. 1O-Lite [25] is a buffering scheme to avoid
redundant copying across process boundaries in high
performance systems like web servers. It is instructive
that our memory manager, developed in the entirely different
context of signal processing, has a similar design.
The XStream scheduler builds on lessons from previous

work on operator scheduling in streaming systems [26], [27]
and shares high level ideas with these systems, notably tuple
batching and iterate merging. However, those efforts are
concerned with providing latency and memory consumption
guarantees when tuples arrive unpredictably, while our design
is more focused on minimizing overhead and scaling perfor-
mance to very high data rates.

1188

Our paper shares high-level ideas with a previous short
position paper [7]. That paper made the case for integrating
relational and signal processing functions in a data stream
processing system for high-rate applications. It sketched the
high-level details of a language and mentioned the run-time
component, but left the design and implementation of the
system and language for future work. In addition to describing
these details, this paper describes how XStream applications
from three different domains are written in WaveScript and
evaluates their performance.

VI. CONCLUSION

This paper described the architecture and implementation
of XStream, a system that combines event stream and sig-
nal processing. XStream aims to improve both programmer
productivity, by making it easy to develop user-defined pro-
cessing functions, and achieve high performance, processing
several million samples per second on a standard PC. XStream
incorporates a new basic data type to represent isochronous
signal segments and uses the WaveScript language to express
queries and write custom operators. The XStream runtime uses
an efficient SigSeg memory manager and a depth-first operator
scheduler to achieve high performance.
We described three real-world applications and measured

their performance, obtaining both end-to-end results and a
detailed experimental analysis of the various components of
the XStream engine. These results showed the benefits of our
system architecture and data model. They are also encouraging
in comparison to traditional SPEs: our benchmark measure-
ments show that, XStream is between 400 and 14000 times
faster than a commercial SPE. On similar conventional PC
hardware, XStream applications are able to implement non-
trivial real applications running at speeds between 4.8 and
7 million samples per second. Thus, our architecture is well-
suited for high-rate processing for an important emerging class
of signal-oriented streaming applications.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion under Awards Number CNS-0520032 and CNS-0720079.

REFERENCES

[1] D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, "Monitoring streams a new
class of data management applications," in VLDB, 2002.

[2] A. Arasu, B.Babcock s.SBabu, J. Cieslewicz, M. Datar, K Ito,
R. Motwani, U. Srivastava, and J. Widom, "Stream: The stanford data
stream management system," in Book Chapter, 2004.

[3] s. Chandrasekaran, 0. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah, "Telegraphcq: Continuous dataflow processing
for an uncertain world," in CIDR, 2003.

[4] (2007) Streambase corporate homepage. [Online]. Available: http:
//www.streambase.com/

[5] (2007) Coral8 corporate homepage. [Online]. Available: http://www.
coral8.com/

[6] (2007) Aleri corporate homepage. [Online]. Available: http://www.aleri.
com/

[7] L. Girod, K. Jamieson, Y Mei, R. Newton, S. Rost, A. Thiagarajan,
H. Balakrishnan, and S. Madden, "The case for WaveScope: A signal-
oriented data stream management system (position paper)," in Proceed-
ings of Third Biennial Conference on Innovative Data Systems Research
(CIDR07), 2007.

[8] I. Stoianov, D. Dellow, C. Maksimovic, and N. Graham, "Field validation
of the application of hydraulic transients for leak detection in trans-
mission pipelines," in Proceedings of the International Conference on
Advances in Water Supply Management. CCWI-Computing and Control
for the Water Industry, London, UK, September 2003.

[9] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, "PIPENET:
A wireless sensor network for pipeline monitoring," in IPSN '07: Pro-
ceedings of the sixth international conference on Information processing
in sensor networks. New York, NY, USA: ACM Press, 2007.

[10] A. Lakhina, M. Crovella, and C. Diot, ""diagnosing network-wide traffic
anomalies"," in SIGCOMM, Portland, OR, August 2004.

[11] Y-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Volker, and
S. Savage, "Jigsaw: Solving the puzzle of enterprise 802.11 analysis,"
in SIGCOMM, Pisa, Italy, August 2006.

[12] H. Wang et al., "Acoustic sensor networks for woodpecker localiza-
tion," in SPIE Conference on Advanced Signal Processing Algorithms,
Architectures and Implementations, Aug. 2005.

[13] A. Ali, T. Collier, L. Girod, K. Yao, C. Taylor, and D. T. Blumstein, "An
empirical study of acoustic source localization," in IPSN '07: Proceed-
ings of the sixth international conference on Information processing in
sensor networks. New York, NY, USA: ACM Press, 2007.

[14] V. Trifa, "A framework for bird songs detection, recognition and
localization using acoustic sensor networks," Master's thesis, Ecole
Polytechnique Federale de Lausanne, 2006.

[15] A. Ledeczi et al., "Countersniper system for urban warfare," ACM
Transactions on Sensor Networks, vol. 1, no. 2, pp. 153-177, Nov. 2005.

[16] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, "The design of the borealis stream processing
engine," in CIDR, 2005.

[17] (2007) Matlab product homepage. [Online]. Available: http://www.
mathworks.com/products/matlab/

[18] (2007) Simulink product homepage. [Online]. Available: http://www.
mathworks.com/products/simulink/

[19] (2007) Labview product homepage. [Online]. Available: http://www.ni.
com/labview/

[20] P. Seshadri, M. Livny, and R. Ramakrishnan, "The design and imple-
mentation of a sequence database system," in VLDB, 1996.

[21] M. Sullivan and A. Heybey, "Tribeca: A system for managing large
databases of network traffic," in Proceedings of the USENIX Annual
Technical Conference, New Orleans, LA, June 1998.

[22] C. Cranor, T. Johnson, 0. Spataschek, and V. Shkapenyuk, "Gigascope:
a stream database for network applications," in SIGMOD, 2003.

[23] W. Thies, M. Karczmarek, and S. Amarasinghe, "Streamit: A language
for streaming applications," in ICCC, April 2002.

[24] R. Stephens, "A survey of stream processing," Acta Informatica, vol. 34,
no. 7, pp. 491-541, 1997.

[25] V. S. Pai, P. Druschel, and W. Zwaenepoel, "10-Lite: a unified I/O
buffering and caching system," ACM Transactions on Computer Systems,
vol. 18, no. 1, pp. 37-66, 2000.

[26] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker, "Operator scheduling in a data stream manager," in
VLDB, 2003.

[27] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, "Operator
scheduling in data stream systems," The VLDB Journal, vol. 13, no. 4,
pp. 333-353, 2004.

1189

