
Graph Drawing
0

Graph Drawing Tutorial

Isabel F. Cruz
Worcester Polytechnic Institute

Roberto Tamassia
Brown University

Graph Drawing
1

Introduction

Graph Drawing
2

Graph Drawing

■ models, algorithms, and systems for the
visualization of graphs and networks

■ applications to software engineering (class
hierarchies), database systems (ER-
diagrams), project management (PERT
diagrams), knowledge representation (isa
hierarchies), telecommunications (ring
covers), WWW (browsing history) ...

1

2

3

4

5
6

789

10

11

12

13

14
15

16 17
18

19

20

21

22

23

24 25 26

27
28

29

30

31 32

33

34

35

36 37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Graph Drawing
3

orthogonal drawing

bend

Drawing Conventions
■ general constraints on the geometric

representation of vertices and edges

polyline drawing

planar straight-line drawing

Graph Drawing
4

strong visibility representation

planar othogonal straight-line drawing

gf

a b c

e
d

g

f

a
b

d

e

c

Drawing Conventions

Graph Drawing
5

Drawing Conventions
■ directed acyclic graphs are usually drawn

in such a way that all edges “flow” in the
same direction, e.g., from left to right, or
from bottom to top

■ such upward drawings effectively
visualize hierarchical relationships, such
as covering digraphs of ordered sets

■ not every planar acyclic digraph admits a
planar upward drawing

Graph Drawing
6

Resolution

■ display devices and the human eye have
finite resolution

■ examples of resolution rules:
■ integer coordinates for vertices and

bends (grid drawings)

■ prescribed minimum distance between
vertices

■ prescribed minimum distance between
vertices and nonincident edges

■ prescribed minimum angle formed by
consecutive incident edges (angular
resolution)

Graph Drawing
7

Angular Resolution

 • The angular resolution ρ of a straight-
line drawing is the smallest angle
formed by two edges incident on the
same vertex

 • High angular resolution is desirable
in visualization applications and in the
design of optical communication
networks.

 • A trivial upper bound on the angular
resolution is

where d is the maximum vertex degree.

ρ ≤ 2π
d------

Graph Drawing
8

Aesthetic Criteria

■ some drawings are better than others in
conveying information on the graph

■ aesthetic criteria attempt to
characterize readability by means of
general optimization goals

Examples

■ minimize crossings
■ minimize area
■ minimize bends (in orthogonal drawings)
■ minimize slopes (in polyline drawings)
■ maximize smallest angle
■ maximize display of symmetries

Graph Drawing
9

Trade-Offs

■ in general, one cannot simultaneously
optimize two aesthetic criteria

Complexity Issues

■ testing planarity takes linear time
■ testing upward planarity is NP-hard
■ minimizing crossings is NP-hard
■ minimizing bends in planar orthogonal

drawing:
■ NP-hard in general
■ polynomial time for a fixed embedding

min # crossings max symmetries

Graph Drawing
10

Beyond Aesthetic Criteria

Graph Drawing
11

Constraints

■ some readability aspects require
knowledge about the semantics of the
specific graph (e.g., place “most
important” vertex in the middle)

■ constraints are provided as additional
input to a graph drawing algorithm

Examples

■ place a given vertex in the “middle” of
the drawing

■ place a given vertex on the external
boundary of the drawing

■ draw a subgraph with a prescribed
“shape”

■ keep a group of vertices “close” together

Graph Drawing
12

Algorithmic Approach

■ Layout of the graph generated according
to a prespecified set of aesthetic criteria

■ Aesthetic criteria embodied in an
algorithm as optimization goals. E.g.

■ minimization of crossings
■ minimization of area

Advantages
■ Computational efficiency

Disadvantages

■ User-defined constraints are not
naturally supported

Extensions

■ A limited constraint-satisfaction
capability is attainable within the
algorithmic approach
E.g., [Tamassia Di Battista Batini 87]

Graph Drawing
13

Declarative Approach

■ Layout of the graph specified by a user-
defined set of constraints

■ Layout generated by the solution of a
system of constraints

Advantages
■ Expressive power

Disadvantages

■ Some natural aesthetics (e.g., planarity)
need complicated constraints to be
expressed

■ General constraint-solving systems are
computationally inefficient

■ Lack of a powerful language for the
specification of constraints (currently
done with a detailed enumeration of
facts, or with a set notation)

Graph Drawing
14

Getting Started
with Graph Drawing

■ Book on Graph Drawing by G. Di Battista, P. Eades,
R. Tamassia, and I. G. Tollis, ISBN 0-13-301615-3,
Prentice Hall, (available in August 1998).

■ Roberto Tamassia’s WWW page
http://www.cs.brown.edu/people/rt /

■ Tutorial on Graph Drawing by Isabel Cruz
and Roberto Tamassia (about 100 pages)

■ Annotated Bibliography on Graph Drawing
(more than 300 entries, up to 1993) by Di
Battista, Eades, Tamassia, and Tollis. Computational
Geometry: Theory and Applications, 4(5), 235-282 (1994).

■ Computational Geometry Bibliography
www.cs.duke.edu/~jeffe/compgeom/biblios.html

(about 8,000 BibTeX entries, including most
papers on graph drawing, updated quarterly)

■ Proceedings of the Graph Drawing
Symposium (Springer-Verlag, LNCS)

■ Graph Drawing Chapters in:
CRC Handbook of Discrete and Computational Geometry
Elsevier Manual of Computational Geometry

Graph Drawing
15

Trees

Graph Drawing
16

Drawings of Rooted Trees

■ the usual drawings of rooted trees are
planar, straight-line, and upward
(parents above children)

■ it is desirable to minimize the area and
to display symmetries and
isomorphic subtrees

■ level drawing: nodes at the same
distance from the root are horizontally
aligned

■ level drawings may require Ω(n2) area

Graph Drawing
17

A Simple Level Drawing
Algorithm for Binary Trees

■ y(v) = distance from root
■ x(v) = inorder rank

■ level grid drawing
■ display of symmetries and of isomorphic

subtrees
■ parent in between left and right child
■ parents not always centered on children
■ width = n − 1

3
2
1
0

1 2 3 4 5 6 7 8 9

4

10 11

Graph Drawing
18

A Recursive Level Drawing
Algorithm for Binary Trees

[Reingold Tilford 1983]

■ draw the left subtree
■ draw the right subtree
■ place the drawings of the subtrees at

horizontal distance 2
■ place the root one level above and half-

way between the children
■ if there is only one child, place the root at

horizontal distance 1 from the child

Graph Drawing
19

Properties of Recursive
Level Drawing Algorithm

for Binary Trees

■ centered level drawing
■ “small” width
■ display of symmetries and of isomorphic

subtrees
■ can be implemented to run in O(n) time
■ can be extended to draw general rooted

trees (e.g., root is placed at the average
x-coordinate of its children)

Graph Drawing
20

Non Optimality of Recursive
Tree Drawing Algorithm

minimum width drawing

drawing constructed by the algorithm

■ minimizing the width is NP-hard if
integer coordinates are required

Graph Drawing
21

Area-Efficient Drawings of Trees

■ planar straight-line orthogonal upward
grid drawing of a binary tree with
O(n log n) area, O(n) width, and
O(log n) height
[Crescenzi Di Battista Piperno 92]
[Shiloach 76]

■ draw the largest subtree “to the right”
and the smallest subtree “below”

■ Example:

Graph Drawing
22

Area-Efficient Drawings of Trees

■ planar straight-line upward grid drawings
of AVL trees with O(n) area
[Crescenzi Di Battista Piperno 92]
[Crescenzi Penna Piperno 95]

Graph Drawing
23

Area-Efficient Drawings of Trees

■ planar polyline upward grid drawings
with O(n) area
[Garg Goodrich Tamassia 93]

Graph Drawing
24

Area Requirement of Planar
Drawings of Trees

■ Open Problem: determine the area
requirement of planar upward straight-
line drawings of trees

upward
level

Θ(n2)
[RT 83]

upward
polyline

Θ(n)
[GGT 93]

upward
straight-line

Ω(n) Ο(n log n)
[CDP 92]

upward
orthogonal

Θ(n log log n)
[GGT 93]

non-upward
orthogonal

Θ(n)
[L80, V91]

non-upward
leaves-on-hull

orthogonal

Θ(n log n)
[BK 80]

Graph Drawing
25

Size of Planar Drawings
of Binary Trees

■ the size of a drawing is the maximum of its
height and width

■ known bounds on the size of planar
drawings of binary trees:

■ Open Problem: can Θ(n1/2) size be
achieved for (nonupward) planar straight-
line drawings of binary trees?

upward, straight-line
level

Ο(n)
[RT 83]

upward, polyline Θ(n1/2)
[GGT93]

upward, straight-line
orthogonal,
AVL trees

Θ(n1/2)
[CGKT96]

upward, straight-line
orthogonal

Θ((n log n)1/2)
[CGKT96]

Graph Drawing
26

Planar Upward Straight-Line
Drawings of Binary Trees with

Optimal Size

■ recursive winding technique [CGKT96]:
■ let N be number of nodes in the tree,

and N(v) be the number of nodes in the
subtree rooted at v

■ for each node u, swap children to have
N(left(u)) ≤ N(right(u)

■ find the first node v on the rightmost
path such that:

N(right(v)) ≤ N − (N log N)1/2 < N(v)
■ draw the left subtrees on the path

from the root to v with linear width
(height) and logarithmic height
(width)

■ draw recursively the subtrees T' and
T" of v

Graph Drawing
27

Recursive Winding Drawing

■ recurrence relations for the width W(N)
and height H(N):

■ W(N) max{W(N'), W(N"), A} + O(log N)
■ H(N) max{H(N') + H(N") + O(log N), A}

 where:
■ A = (N log N)1/2

■ max(N', N") ≤ N − A

■ solution:
■ W(N)=H(N)= O(N log N)1/2

T'

T"

v

Graph Drawing
28

Tip-Over Drawings of Rooted Trees

■ Tip-over drawings are upward planar
orthogonal drawings such that the children
of a node:

■ are arranged either horizontally or
vertically

■ share portions of the edges to the parent.

■ Widely used in organization charts.
■ Allow to better fit the drawing in a

prescribed region.

accounts sales

personnel purchasing

training

recruiting

Boston

St Louis

CEO

Graph Drawing
29

Inclusion Drawings of Rooted
Trees

■ Inclusion drawings display the parent-
child relationship by the inclusion between
isothetic rectangles.

■ Closely related to tip-over drawings.
■ Used for displaying compound graphs (e.g.,

the union of a graph and a tree)
■ Allow to better fit the drawing in a

prescribed region

international domestic

Europe Australia

Western

Eastern

USA

Canada

air reservations

Graph Drawing
30

Area of Tip-Over and Inclusion
Drawings

■ Eades, Lin and Lin (1992) study of the area
requirement of tip-over and inclusion
drawings of rooted trees.

■ The dimensions of the node labels are given
as part of the input.

■ Minimizing the area of the drawing is:
■ NP-hard for general trees
■ computable in polynomial time for

balanced trees with a dynamic
programming algorithm

■ Similar results for the following problems:
■ minimizing the perimeter of the

drawing.
■ minimizing the width for a given height
■ minimizing the height for a given width

Graph Drawing
31

How to Draw Free Trees

■ Free trees are connected graphs without
cycles and do not represent hierarchical
relationships (e.g., spanning trees)

■ Level drawings of rooted trees yield radial
drawings of free trees:

■ root the free tree T at its center (node
with minmax distance from the leaves),
which gives a rooted tree T'

■ construct a level drawing ∆' of T'
■ use a geometric transformation

(cartesian → polar) to obtain from ∆' a
radial drawing ∆ of T

Graph Drawing
32

Planar Undirected Graphs

Graph Drawing
33

Planar Drawings and Embeddings

■ a planar embedding is a class of
topologically equivalent planar drawings

■ a planar embedding prescribes
■ the star of edges around each vertex
■ the circuit bounding each face

■ the number of distinct embeddings is
exponential in the worst case

■ triconnected planar graphs have a unique
embedding

Graph Drawing
34

The Complexity of Planarity
Testing

■ Planarity testing and constructing a planar
embedding can be done in linear time:

■ depth-first-search
[Hopcroft Tarjan 74]
[de Fraysseix Rosenstiehl 82]

■ st-numbering and PQ-trees
[Lempel Even Cederbaum 67]
[Even Tarjan 76]
[Booth Lueker 76]
[Chiba Nishizeki Ozawa 85]

■ The above methods are complicated to
understand and implement

■ Open Problem:
■ devise a simple and efficient planarity

testing algorithm.

Graph Drawing
35

Planar Straight-Line Drawings

■ [Hopcroft Tarjan 74]: planarity testing and
constructing a planar embedding can be
done in O(n) time

■ [Fary 48, Stein 51, Steinitz 34, Wagner 36]:
every planar graph admits a planar
straight-line drawing

■ Planar straight-line drawings may need
Ω(n2) area

■ [de Fraysseix Pach Pollack 88, Schnyder 89,
Kant 92]: O(n2)-area planar straight-line
grid drawings can be constructed in O(n)
time

Graph Drawing
36

Planar Straight-Line Drawings:
Angular Resolution

■ O(n2)-area drawings may have ρ = O(1/n2)

■ [Garg Tamassia 94]:
■ Upper bound on the angular resolution:

■ Trade-off (area vs. angular resolution):

■ [Kant 92] Computing the optimal angular
resolution is NP-hard.

1

n

ρ O
dlog

d3

 
 
 

=

A Ω cρn()=

Graph Drawing
37

Planar Straight-Line Drawings:
Angular Resolution

■ [Malitz Papakostas 92]: the angular
resolution depends on the degree only:

■ Good angular resolution can be achieved
for special classes of planar graphs:

■ outerplanar graphs, ρ = O(1/d)
[Malitz Papakostas 92]

■ series-parallel graphs, ρ = O(1/d2)
[Garg Tamassia 94]

■ nested-star graphs, ρ = O(1/d2)
[Garg Tamassia 94]

■ Open Problems:
■ can we achieve ρ = O(1/dk) (k a small

constant) for all planar graphs?
■ can we efficiently compute an

approximation of the optimal
angular resolution?

ρ Ω 1
7d------ 

 =

Graph Drawing
38

Planar Orthogonal Drawings:
Minimization of Bends

■ given planar graph of degree ≤ 4, we want to
find a planar orthogonal drawing of G with
the minimum number of bends

Graph Drawing
39

Minimization of Bends in Planar
Orthogonal Drawings

■ [Tamassia 87]
■ O(n2 log n)-time bend minimization for

fixed embedding
■ [Di Battista Liotta Vargiu 93]

■ polynomial-time bend minimization for
degree-3 and series-parallel graphs

■ [Tamassia Tollis 89]
■ O(n)-time approximation with O(n) bends

■ [Garg Tamassia 93]
■ minimization of bends is NP-hard
■ approximation with O(opt + n1 − ε) bends

is NP-hard
■ rectilinear planarity testing is

NP-complete

Graph Drawing
40

Network Flow Model

■ a unit of flow is a 90° angle
■ a vertex (source) produces 4 units

■ a face f (sink) consumes 2 deg(f) − 4
units (deg(f) + 4 for the external face)

■ Edges transport flow across faces

1

1

2

1

1 1

1

21

1

Graph Drawing
41

Flow Network

■ vertex-face arcs: flow ≥ 1, cost = 0

2

2

2

2

3

2
2

1
1

1

1

1 1

1

1

1

1

1

11

Graph Drawing
42

Flow Network

■ face-face arcs: flow ≥ 0, cost = 1

1

1

1

1
1

1

1

2

Graph Drawing
43

Complete Flow Network

4

4 4

2

14

1 2 3

Graph Drawing
44

Correctness of Flow Model

■ supply of sources = demand of sinks ↔
Euler’s formula

■ flow conservation at vertex ↔
Σ angles around vertex = 360°

■ flow conservation at face ↔
(# 90° angles) − (# 270° angles) = 4

■ cost of flow ↔ # bends
■ flow in N ↔ drawing of G
■ minimum cost flow ↔ optimal drawing

Theorem [Tamassia 87] Computing the
minimum number of bends for an
embedded graph G is equivalent to
computing a minimum cost flow in
network N, and takes O(n2log n) time

Open Problem: reduce the time
complexity of bend minimization.

Graph Drawing
45

Constrained Bend Minimization

■ the network flow model allows us to
minimize bends subject to shape
constraints

■ prescribed angles around a vertex
■ prescribed bends along an edge
■ upper bound on the number of bends on

an edge
■ the above shape constraints on the

drawing can be expressed by setting
appropriate capacity constraints on the
edges of the network

■ E.g., we can prescribe a maximum of 2
bends on a given edge e by setting equal to
2 the capacity of the face-face arcs
associated with e

Graph Drawing
46

Characterization of
Bend-Minimal Drawings

■ A drawing has the minimum number of
bends if and only if there is no oriented
closed curve C such that

■ vertices are intersected by C entering
from angles ≥ 180°

■ (# edges crossed by C from 90° or 180°)
< (# edges crossed by C from 270°)

■ If such a curve exists, “rotating” the
portion of the drawing inside C reduces
the number of bends

C

Graph Drawing
47

Proving the Optimality of a
Drawing

■ potential Φ on each face

■ vertices cannot be traversed by C
■ C traverses edge from 270° ⇒ ∆Φi = −1
■ C traverses edge from 90° ⇒ ∆Φi = +1
■ bends removed going ‘‘inward’’ and

inserted going ‘‘outward’’ ∆Bi + ∆Φi = 0
■ C is a closed curve ⇒ Σi ∆Φi = 0
■ Hence, Σi ∆Βi = 0

1234

4321
0 5

Graph Drawing
48

Visibility Representation

■ vertices → horizontal segments
■ edges → vertical segments
■ can be constructed in O(n) time
■ preliminary step for drawing algorithms

Graph Drawing
49

From Visibility Representations to
Orthogonal Drawings

Graph Drawing
50

Heuristic Algorithm for Bend
Minimization

1. Construct visibility representation
2. Transform visibility representation

into a preliminary drawing
3. Apply bend-stretching transformations
4. Compact orthogonal representation

Runs in O(n) time and can be parallelized

At most 2n + 4 bends if G is biconnected
(2.4n + 2 otherwise)

O(n2) area

Graph Drawing
51

Planar Directed Graphs

Graph Drawing
52

Upward Planarity Testing

■ upward planarity testing for ordered sets
has the same complexity as for general
digraphs (insert dummy vertices on
transitive edges)

■ [Kelly 87, Di Battista Tamassia 87]:
upward planarity is equivalent to
subgraph inclusion in a planar st-digraph
(planar acyclic digraph with one source and
one sink, both on the external face)

■ [Kelly 87, Di Battista Tamassia 87]:
upward planarity is equivalent to upward
straight-line planarity

Graph Drawing
53

Complexity of Upward
Planarity Testing

■ [Bertolazzi Di Battista Liotta
Mannino 91]

■ O(n2)-time for fixed embedding
■ [Hutton Lubiw 91]

■ O(n2)-time for single-source digraphs
■ [Bertolazzi Di Battista Mannino

Tamassia 93]
■ O(n)-time for single-source digraphs

■ [Garg Tamassia 93]
■ NP-complete

Graph Drawing
54

How to Construct Upward Planar
Drawings

■ Since an upward planar digraph is a
subgraph of a planar st-digraph, we only
need to know how to draw planar st-digraphs

■ If G is a planar st-digraph without transitive
edges, we can use the left/right numbering
method to obtain a dominance drawing:

left (x) right (y)

0

1

2

3

4

5

6

7

8
9

10

0

5

7

9

2

6

1

3

8

4
10

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Graph Drawing
55

Properties of Dominance Drawings

■ Upward, planar, straight-line, O(n2) area
■ The transitive closure is visualized by the

geometric dominance relation

■ Symmetries and isomorphisms of
st-components are displayed

Graph Drawing
56

More on Dominance Drawings

■ A variation of the left/right numbering yields
dominance drawings with optimal area

■ Dummy vertices are inserted on transitive
edges and are displayed as bends (upward
planar polyline drawings)

Graph Drawing
57

Planar Drawings of Graphs and
Digraphs

■ We can use the techniques for dominance
drawings also for undirected planar graphs:

■ orient G into a planar st-digraph G'

■ construct a dominance drawing of G'

■ erase arrows ...

Graph Drawing
58

General Undirected Graphs

Graph Drawing
59

Algorithmic Strategies for Drawing
General Undirected Graphs

■ Planarization method
■ if the graph is nonplanar, make it

planar! (by placing dummy vertices at
the crossings)

■ use one of the drawing algorithms for
planar graphs

e.g., GIOTTO [Tamassia Batini Di Battista 87]
■ Orientation method

■ orient the graph into a digraph
■ use one the drawing algorithms for

digraphs
■ Force-Directed method

■ define a system of forces acting on the
vertices and edges

■ find a minimum energy state (solve
differential equations or simulate the
evolution of the system)

e.g., Spring Embedder [Eades 84]

Graph Drawing
60

A Simple Planarization Method

use an on-line planarity testing algorithm
1. try adding the edges one at a time, and

divide them into “planar” (accepted) and
“nonplanar” (rejected)

2. construct a planar embedding of the
subgraph of the planar edges

3. add the nonplanar edges, one at a time, to
the embedding, minimizing each time the
number of crossings (shortest path in dual
graph)

Graph Drawing
61

Topological Constraints in the
Planarization Method

■ a limited constraint satisfaction capability
exists within the planarization methods

■ Example: draw the graph such that the
edges in a given set A have no crossings

■ in Step 1, try adding first the edges in A
■ in Step 3, put a large “crossing cost” on

the planar edges in A, and add first the
nonplanar edges in A (if any)

■ Example: draw the graph such the vertices
of subset U are on the external boundary

■ add a fictitious vertex v and edges from
v to all the vertices in U

■ let A be the set of edges (u,v), with u in U
■ impose the above constraint

Graph Drawing
62

GIOTTO
[Tamassia Di Battista Batini 88]

■ time complexity: O((N+C)2log N)

pl
an

ar
iza

tio
n

be
nd m

in
im

iza
tio

n

Graph Drawing
63

Example

1

2

3

4

5
6

789

10

11

12

13

14
15

16 17
18

19

20

21

22

23

24 25 26

27
28

29

30

31 32

33

34

35

36 37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Graph Drawing
64

Constraint Satisfaction
in GIOTTO

■ topological constraints
■ vertices on external face
■ edges without crossings
■ grouping of vertices

■ shape constraints
■ subgraphs with prescribed orthogonal

shape
■ edges without bends

■ topological contraints have priority over
shape contraints because the algorithm
assigns first the topology and then the
orthogonal shape

■ grouping is only topological
■ no position constraints
■ no length contraints

Graph Drawing
65

Advantages and Disadvantages of
Planarization Techniques

Pro:
■ fast running time
■ applicable to straight-line, orthogonal and

polyline drawings
■ supported by theoretical results on planar

drawings
■ works well in practice, also for large

graphs
■ limted constraint satisfaction capability

Con:
■ relatively complex to implement
■ topological transformations may alter

the user’s mental map
■ difficult to extend to 3D
■ limted constraint satisfaction capability

Graph Drawing
66

The Spring Embedder
[Eades 1984]

■ replace the edges by springs with unit
natural length

■ connect nonadjacent vertices with
additional springs with infinite natural
length

■ recall that the springs attract the
endpoints when stretched, and repel the
endpoints when compressed

■ start with an initial random placement of
the vertices

■ let the system go ... (assume there is
friction so that a stable minimum energy
state is eventually reached)

Graph Drawing
67

Example

■ initial configuration

■ final configuration

Graph Drawing
68

Other Force-Directed Techniques

■ [Kamada Kawai 89]
■ the forces try to place vertices so that

their geometric distance in the
drawing is equal to their
graph-theoretic distance

■ for each pair of vertices (u,v) use a
spring with natural length dist(u,v)

■ [Fruchterman Reingold 90]
■ system of forces similar to that of

subatomic particles and celestial
bodies

■ given drawing region acts as wall
■ n-body simulation

■ [Davidson Harel 89]
■ energy function takes into account

vertex distribution, edge-lengths, and
edge-crossings

■ given drawing region acts as wall
■ simulated annealing

Graph Drawing
69

Examples
■ drawings of the same graph constructed

with the technique of [Davidson Harel 89]
using three different energy functions

Graph Drawing
70

Advantages and Disadvantages of
Force-Directed Techniques

Pro:
■ relatively simple to implement
■ heuristic improvements easily added
■ smooth evolution of the drawing into the

final configuration helps preserving the
user’s mental map

■ can be extended to 3D
■ often able to detect and display symmetries
■ works well in practice for small graphs

with regular structure
■ limted constraint satisfaction capability

Con:
■ slow running time
■ few theoretical results on the quality of the

drawings produced
■ diffcult to extend to orthogonal and

polyline drawings
■ limited constraint satisfaction capability

Graph Drawing
71

Constraints in Force-Directed
Techniques

■ position constraints can be easily
imposed

■ we can constrain each vertex to remain
in a prescribed region

■ other constraints can be satisfied provided
they can be expressed by means of forces,
e.g,

■ “magnetic field” to impose orientation
constraints [Sugiyama Misue 84]

■ dummy “attractor” vertex to enforce
grouping

Graph Drawing
72

Springs for Planar Graphs

■ use springs with natural length 0, and
attractive force proportional to the length

■ pin down the vertices of the external face
to form a given convex polygon (position
constraints)

■ let the system go ...

■ the final configuration is a state of
minimum energy: min Σ

e
[length(e)]2

■ equivalent to the barycentric mapping
[Tutte 60]:

p(v) = 1/deg(v) Σ
(v,w)

p(w)

Graph Drawing
73

General Directed Graphs

Graph Drawing
74

Layering Method for Drawing
General Directed Graphs

■ Layer assignment: assign vertices to layers
trying to minimize

■ edge dilation
■ feedback edges

■ Placement: arrange vertices on each layer
trying to minimize

■ crossings
■ Routing: route edges trying to minimize

■ bends
■ Fine tuning: improve the drawing with

local modifications

[Carpano 80]

[Sugiyama Tagawa Toda 81]

[Rowe Messinger et al. 87]

[Gansner North 88]

Graph Drawing
75

Example

■ [Sugiyama Tagawa Toda 81]

Graph Drawing
76

Declarative Approaches

Graph Drawing
77

Declarative Approach

 • These approaches cover a broad range of
possibilities:

 • Tightly-coupled: specification and algorithms
cannot be separated from each other.

 • Loosely coupled: the specification language is a
separate module from the algorithms module.

 • Most of the approaches are somewhere in between ...

Tightly-coupled approaches

 Advantages:
 • The algorithms can be optimized for the particular

specification.

 • The problem is well-defined.

 Disadvantages:
 • Takes an expert to modify the code (difficult

extensibility).

 • User has less flexibility.

Graph Drawing
78

Loosely-coupled approaches

Advantages:

 • Flexible: the user specifies the drawing using
constraints, and the graph drawing module executes
it.

 • Extensible: progressive changes can be made to the
specification module and to the algorithms module.

Disadvantages:

 • Potential “impedance mismatch” between the two
modules.

 • Efficiency: more difficult to guarantee.

Graph Drawing
79

Languages for Specifying Constraints

 • Languages for display specification

 • ThingLab [Borning 81]

 • IDEAL [Van Wyk 82]

 • Trip [Kamada 89]

 • GVL [Graham & Cordy 90]

 • Grammars

 • Visual Grammars [Lakin 87]

 • Picture Grammars [Golin and Reiss 90]

 • Attribute Grammars [Zinßmeister 93]

 • Layout Graph Grammars
 [Brandenburg94] [Hickl94]

 • Relational Grammars
 [Weitzman &Wittenburg 94]

 • Visual Constraints

 • U-term language [Cruz 93]

 • Sketching [Gleicher 93] [Gross94]

 Visual

 Used in GD af

 Used in GD and Visual

Graph Drawing
80

ThingLab [Borning 81]

■ Graphical objects are defined by example, and
have a typical part and a default part.

■ Constraints are associated with the classes
(methods specify constraint satisfaction).

■ Object-oriented (message passing,
inheritance).

■ Visual programming language.

Ideal [Van Wyk 82]

■ Textual specification of constraints.
■ Graphical objects are obtained by

instantiating
abstract data types, and adding constraints.

■ Uses complex numbers to specify coordinates.

GVL [Graham & Cordy 90]

■ Visual language to specify the display of
program data structures.

■ Pictures can be specified recursively (the
display of a linked list is the display of the
first element of the list, followed by the
display of the rest of the list.

Graph Drawing
81

Layout Graph Grammars
[Brandenburg 94] [Hickl 94]

■ grammatical (rule-based method) for
drawing graphs

■ extension of a context-free string
grammar

■ underlying context-free graph grammar
■ layout specification for its productions

■ by repeated applications of its productions,
a graph grammar generates labeled graphs,
which define its graph language

■ class of layout graph grammars for which
optimal graph drawings can be constructed
in polynomial time:

■ H-tree layouts of complete binary trees
■ hv-drawings of binary trees
■ series-parallel graphs
■ NFA state transition diagrams from

regular expressions

Graph Drawing
82

Picture Grammars
[Golin & Reiss 90, Golin 91]

 • Production rules use constraints.

 • Terminals are:

 • shapes (e.g., rectangle, circle, text)

 • lines (e.g., arrow)

 • spatial relationships between objects are
operators in the grammar (e.g., over, left_of)

 • More expressive relationships : tiling.

 • Complexity of parsing has been studied.

FIGURE→ over (rectangle1, rectangle2)

Where
 rectangle1.lx == rectangle2.lx

 rectangle1.rx == rectangle2.rx

 rectangle1.by == rectangle2.ty

rectangle: (rx,ty)

(lx,by)

rectangle1

rectangle2

Graph Drawing
83

Relational Grammars
[Weitzman & Wittenburg 93, 94]

 • Generalization of attribute string grammars
that allow for the specification of geometric
positions in 2D and 3D, topological connectivity,
arbitrary semantic relations holding among
information objects.

Article → Text Text Text Number Image

 • Constraints are solved with DeltaBlue (U. of
Washington) for non-cyclic constraints.

 (Defrule (Make-Article The-Grammar)
 (0 Article)
 (1 Text)

(2 Text (Author-Of 2 1))
 . . .

 :OUT
 (
 . . .

 (spaced-below 2 1)
 (spaced-below 3 1)
 (set-font 1 10pt :bold)
 (set-font 1 8pt :italic)

 . . .
))

Graph Drawing
84

Visual Grammars
[Lakin 87]

 • Contex-free grammar.

 • Symbols are visual, and are visually annotated.

 • The interpretation of the visual symbols is left
to the implementation.

bar-list →

*bar-list*textline

Graph Drawing
85

Expressing Constraints by Sketching

 • Briar [Gleicher 93]

 Constraint-based drawing program:
 • Direct manipulation drawing techniques.

 • Makes relationships between graphical objects
persistent

 • Performance concerns in solving constraints.

 • Spatial Relation Predicates [Gross 94]

 • Applications include retrieval of buildings from an
architecture database.

(CONTAINS BOX CIRCLE)
(CONTAINS BOX TRIANGLE)
(IMMEDIATELY-RIGHT-OF CIRCLE TRIANGLE)
(SAME-SIZE CIRCLE TRIANGLE)

Graph Drawing
86

COOL
[Kamada 89]

■ framework for visualizing abstract objects
and relations.

■ constraint-based object layout system
■ rigid constraints
■ pliable constraints
■ conflicting constraints can be solved

approximately

original textual representation

Analyzer

Visual Mapping

COOL

relational structure representation

visual structure representation

target pictorial representation

layout library

Graph Drawing
87

ANDD
 [Marks et al]

■ layout-aesthetic concerns subordinated to
perceptual-organizational concerns

■ notation for describing the visual
organization of a network diagram

■ alignment, zoning, symmetry, T-shape,
hub shape

■ layout task as a constrained optimization
problem:

■ constraints derived from a visual-
organization specification

■ optimality criteria derived from layout-
aesthetic considerations

■ two heuristic algorithms:
■ rule-based strategy
■ massive parallel genetic algorithm

Graph Drawing
88

Visual Graph Drawing
[Cruz, Tamassia Van Hentenryck 93]

■ a visual approach to graph drawing can
reconcile expressiveness with efficiency

■ Goals
■ Visual specification of layout

constraints: the user should not have to
type a long list of textual specifications

■ Visual specification of aesthetic criteria
associated with optimization problems

■ Extensibility: the user should not be
limited to a prespecified set of visual
representations.

■ Flexibility: the user should not have to
give precise geometric specifications.

Graph Drawing
89

U-term Language
[Cruz 93, 94]

 • Visual constraints.

 • Simplicity and genericity of the basic constructs.

 • Ability to specify a variety of displays: graphs,
higraphs, bar charts, pie charts, plot charts, . . .

 • Compatibility with the framework of an object-
oriented database language, DOODLE.

 • Recursive visual specification.

T

GRID
ON

DEFAULTLISTF-LANG

5 [v]

Vis Lan

H/V

Overlap

Graph Drawing
90

Efficient Visual Graph Drawing
[Cruz Garg 94] [Cruz Garg Tamassia 95]

■ graph stored in an object-oriented database
■ drawing defined “by picture” using

recursive visual rules of the language
DOODLE [Cruz 92]

■ a set of constraints is generated by the
application of the visual rules to the input
graph

■ various types of drawings can be visually
expressed in such a way that the resulting
set of constraints can be solved in linear
time, e.g.,

■ drawings of trees (upward drawings, box
inclusion drawings)

■ drawings of series-parallel digraphs
(delta drawings)

■ drawings of planar acyclic digraphs
(visibility drawings, upward planar
polyline drawings)

Graph Drawing
91

 Tree Layout

right

W
L [h]

max(H
L , H

R) [v]

right

L R

W
R [h]

1 [v]

2
[h

]

WL + 1 [h]

1 [v]
T

HH

V

GRID
ON

COMP

Vis Lan

TREE DEFAULT

LabelLabel

T:binTree[root→N:node;
left→L:binTree;
right→R: binTree]

H
R [v]

H
L [v]

F-LANG

Graph Drawing
92

Characteristics of the Previous Tree
Drawings

■ Level Drawings
■ Upward
■ Planar
■ Nodes at the same distance from the root

are horizontally aligned.
■ Display of symmetries.
■ Display of isomorphic subtrees.

Graph Drawing
93

Change a few things . . .

T:binTree[root→N:node;
left→L:binTree;
right→R: binTree]

T

HH

V

GRID
ON

Vis Lan

Higraph DEFAULT

LabelLabel

F-LANG

W
L [h]

max(H
L , H

R) + 1

L RW
R [h]

1 [h]

1
[h

]

1 [v]

H
R [v]

H
L [v]

1 [h]

Graph Drawing
94

Efficient Visual Graph Drawing
[Cruz & Garg 94]

 • Recognize classes of graphs and drawings that
can be expressed with DOODLE and evaluated
efficiently.

 • Devise algorithms and data structures for
performing drawings in linear time (optimal
time):

 • Trees (upward drawing, box inclusion drawing).

 • Series-parallel digraphs (delta drawing).

 • Planar acyclic digraphs (visibility drawing,
upward planar polyline drawing).

 • Next:

 • Extend above results to other classes of graphs
and drawings.

 • Constraint viewpoint: framework for evaluating
constraints efficiently.

 • Incorporate these algorithms into a declarative
graph drawing system that uses DOODLE.

Graph Drawing
95

More examples

■ Series-parallel graphs / delta-drawings
[Bertolazzi, Cohen, Di Battista, Tamassia &
Tollis, 92]

G

G1

G1

G2

G2u

a

c

b

d
Example

Series Parallel
composition compositionBase case

Graph Drawing
96

MW

SOURCE

SINK , U1 [v]

1 [v]

ME

SOURCE

SINK

UU

U
MW

UU

G1

X

Y

connects (x,y)

deltaGraph

MW

D [v]

D [v]
ME

D [h]

SOURCE

SOURCE

D [h]

D [v]

D [v]

MW

ME

SINK
SOURCE

SINK

SINK

1[h]

Y

X

series (x,y)

parallel (x,y)

sp-digraph (G1)

Graph Drawing
97

Drawings of Planar DAGs

■ planar upward drawing

■ visibility drawing

■ tessellation drawing

Graph Drawing
98

Tessellation Drawing
TessellationDrawing

v: sourceVertex [leftFace→ f : face ;
rightFace → g: face]

v: sourceVertex

f
TE

LE
g

TERE

F-Language

ORIGIN

TessellationDrawing

v: vertex [leftFace→ f : face ;
rightFace → g: face]

v: vertex

f
TE

LE RE

F-Language

g

TE

f: face

RE

TessellationDrawing

RE

TE

BE

v2

v1

f: face [α→ v2: vertex ;
bottomVertex → v1: vertex]

F-Language

G
raph

 D
raw

in
g

99

Tessellation Drawing

e:edge

TessellationDrawing

MN

MS

v2

f

TE
MW

v1

g

TE
ME

max (1
, ∆) [h

,v]

e: edge [from→ v1 : vertex;
 to → v2 : vertex;

 leftFace→ f: face;
 rightFace→g: face]

RE

F-Language

RE

Graph Drawing
100

Visibility Drawing

VisibilityDrawing

v: sourceVertex [leftFace→ f : face ;
rightFace → g: face]

v: sourceVertex

F-Language

ORIGIN

f

F 0.5 [h]
0.5 [h]

LE RE

g
F

VisibilityDrawing

v: vertex [leftFace→ f : face ;
rightFace → g: face]

v: vertex

F-Language

f

F 0.5 [h]
0.5 [h]

LE RE

g
F

Graph Drawing
101

Visibility Drawing

f: face

f: face

F

VisibilityDrawing

e:edge

VisibilityDrawing

v2

f

F MW

v1

g

F

MEmax (
1, ∆) [h

,v]

e: edge [from→ v1 : vertex;
 to → v2 : vertex;

 leftFace→ f: face;
 rightFace→g: face]

RE

F-Language

RE

MS

MN

Graph Drawing
102

Upward Polyline Drawing

PolylineDrawing

v: sourceVertex [leftFace→ f : face ;
rightFace → g: face]

v: sourceVertex

f

F

LE
g

F
RE

F-Language

ORIGIN

C

PolylineDrawing

v: vertex [leftFace→ f : face ;
rightFace → g: face]

v: vertex

F-Language

f

F

LE
g

F
RE

C

Graph Drawing
103

Upward Polyline Drawing

f: face

f: face

F

PolylineDrawing F-Language

1 [v]

1 [v]

LB

UB

e:edge

PolylineDrawing

MN

MS

v2

f

F

MW

v1

g

F

ME

max
 (1

, ∆) [
h,v

]

e: edge [from→ v1 : vertex;
 to → v2 : vertex;

 leftFace→ f: face;
 rightFace→g: face]

RE

F-Language

REC

C

Graph Drawing
104

Challenges and Open Problems
(Declarative Approach):

 • New approach, therefore much left to
explore, in particular:

 • New specification languages.

 • Reducing the “impedance mismatch.”

 • Design of user interfaces, and
evaluation in different environments/
applications.

 • Identification of levels of complexity in
drawing graphs (e.g., with graph
grammars, constraint languages).

 • Expressiveness of the specification
languages, in particular of declarative
and visual languages.

 • Refinement of the diagram server
hierarchy, so that we can have a true
“tool box” for the declarative, loosely-
coupled approach.

Graph Drawing
105

Systems

Graph Drawing
106

Some Graph Drawing Systems

■ Graph Drawing Server
(Brown University, USA)

■ loki.cs.brown.edu:8081/graphserver/

■ Roberto Tamassia(rt@cs.brown.edu)

■ GDToolkit
(University of Rome III)

■ www.dia.uniroma3.it/people/gdb/wp12/
GDT.html

■ Giuseppe Di Battista
(dibattista@iasi.rm.cnr.it)

■ Graphlet
(University of Passau, Germany)

■ www.fmi.uni-passau.de/Graphlet/

■ Michael Himsolt
(himsolt@fmi.uni-passau.de)

■ GraphViz
(AT&T Research)

■ www.research.att.com/sw/tools/graphviz/

■ Sthephen North (north@research.att.com)

	Drawing Conventions
	Advantages and Disadvantages of Force-Directed Techniques
	Pro:
	relatively simple to implement
	heuristic improvements easily added
	smooth evolution of the drawing into the final configuration helps preserving the user’s mental map
	can be extended to 3D
	often able to detect and display symmetries
	works well in practice for small graphs with regular structure
	limted constraint satisfaction capability

	Con:
	slow running time
	few theoretical results on the quality of the drawings produced
	diffcult to extend to orthogonal and polyline drawings
	limited constraint satisfaction capability

	Constraints in Force-Directed Techniques
	position constraints can be easily imposed
	we can constrain each vertex to remain in a prescribed region

	other constraints can be satisfied provided they can be expressed by means of forces, e.g,
	“magnetic field” to impose orientation constraints [Sugiyama Misue 84]
	dummy “attractor” vertex to enforce grouping

	Graph Drawing
	models, algorithms, and systems for the visualization of graphs and networks
	applications to software engineering (class hierarchies), database systems (ER- diagrams), projec...

	A Simple Planarization Method
	use an on-line planarity testing algorithm
	1. try adding the edges one at a time, and divide them into “planar” (accepted) and “nonplanar” (...
	2. construct a planar embedding of the subgraph of the planar edges
	3. add the nonplanar edges, one at a time, to the embedding, minimizing each time the number of c...

	Constraint Satisfaction in GIOTTO
	topological constraints
	vertices on external face
	edges without crossings
	grouping of vertices

	shape constraints
	subgraphs with prescribed orthogonal shape
	edges without bends

	topological contraints have priority over shape contraints because the algorithm assigns first th...
	grouping is only topological
	no position constraints
	no length contraints

	GIOTTO [Tamassia Di Battista Batini 88]
	time complexity: O((N+C)2log N)

	Advantages and Disadvantages of Planarization Techniques
	Pro:
	fast running time
	applicable to straight-line, orthogonal and polyline drawings
	supported by theoretical results on planar drawings
	works well in practice, also for large graphs
	limted constraint satisfaction capability

	Con:
	relatively complex to implement
	topological transformations may alter the user’s mental map
	difficult to extend to 3D
	limted constraint satisfaction capability

	Topological Constraints in the Planarization Method
	a limited constraint satisfaction capability exists within the planarization methods
	Example: draw the graph such that the edges in a given set A have no crossings
	in Step 1, try adding first the edges in A
	in Step 3, put a large “crossing cost” on the planar edges in A, and add first the nonplanar edge...

	Example: draw the graph such the vertices of subset U are on the external boundary
	add a fictitious vertex v and edges from v to all the vertices in U
	let A be the set of edges (u,v), with u in U
	impose the above constraint

	Constrained Bend Minimization
	the network flow model allows us to minimize bends subject to shape constraints
	prescribed angles around a vertex
	prescribed bends along an edge
	upper bound on the number of bends on an edge

	the above shape constraints on the drawing can be expressed by setting appropriate capacity const...
	E.g., we can prescribe a maximum of 2 bends on a given edge e by setting equal to 2 the capacity ...
	Example

	COOL [Kamada 89]
	framework for visualizing abstract objects and relations.
	constraint-based object layout system
	rigid constraints
	pliable constraints
	conflicting constraints can be solved approximately

	Declarative Approaches
	Introduction
	ANDD [Marks et al]
	layout-aesthetic concerns subordinated to perceptual-organizational concerns
	notation for describing the visual organization of a network diagram
	alignment, zoning, symmetry, T-shape, hub shape

	layout task as a constrained optimization problem:
	constraints derived from a visual- organization specification
	optimality criteria derived from layout- aesthetic considerations

	two heuristic algorithms:
	rule-based strategy
	massive parallel genetic algorithm

	Layout Graph Grammars [Brandenburg 94] [Hickl 94]
	grammatical (rule-based method) for drawing graphs
	extension of a context-free string grammar
	underlying context-free graph grammar
	layout specification for its productions

	by repeated applications of its productions, a graph grammar generates labeled graphs, which defi...
	class of layout graph grammars for which optimal graph drawings can be constructed in polynomial ...
	H-tree layouts of complete binary trees
	hv-drawings of binary trees
	series-parallel graphs
	NFA state transition diagrams from regular expressions

	Visual Graph Drawing [Cruz, Tamassia Van Hentenryck 93]
	a visual approach to graph drawing can reconcile expressiveness with efficiency
	Goals
	Visual specification of layout constraints: the user should not have to type a long list of textu...
	Visual specification of aesthetic criteria associated with optimization problems
	Extensibility: the user should not be limited to a prespecified set of visual representations.
	Flexibility: the user should not have to give precise geometric specifications.
	orthogonal drawing

	Drawing Conventions
	general constraints on the geometric representation of vertices and edges
	polyline drawing
	planar straight-line drawing

	Efficient Visual Graph Drawing [Cruz Garg 94] [Cruz Garg Tamassia 95]
	graph stored in an object-oriented database
	drawing defined “by picture” using recursive visual rules of the language DOODLE [Cruz 92]
	a set of constraints is generated by the application of the visual rules to the input graph
	various types of drawings can be visually expressed in such a way that the resulting set of const...
	drawings of trees (upward drawings, box inclusion drawings)
	drawings of series-parallel digraphs (delta drawings)
	drawings of planar acyclic digraphs (visibility drawings, upward planar polyline drawings)
	strong visibility representation
	planar othogonal straight-line drawing

	Drawing Conventions
	directed acyclic graphs are usually drawn in such a way that all edges “flow” in the same directi...
	such upward drawings effectively visualize hierarchical relationships, such as covering digraphs ...
	not every planar acyclic digraph admits a planar upward drawing

	Drawings of Planar DAGs
	planar upward drawing
	visibility drawing
	tessellation drawing

	Tessellation Drawing
	Tessellation Drawing
	Visibility Drawing
	Resolution
	display devices and the human eye have finite resolution
	examples of resolution rules:
	integer coordinates for vertices and bends (grid drawings)
	prescribed minimum distance between vertices
	prescribed minimum distance between vertices and nonincident edges
	prescribed minimum angle formed by consecutive incident edges (angular resolution)

	Aesthetic Criteria
	some drawings are better than others in conveying information on the graph
	aesthetic criteria attempt to characterize readability by means of general optimization goals

	Examples
	minimize crossings
	minimize area
	minimize bends (in orthogonal drawings)
	minimize slopes (in polyline drawings)
	maximize smallest angle
	maximize display of symmetries

	Trade-Offs
	in general, one cannot simultaneously optimize two aesthetic criteria

	Complexity Issues
	testing planarity takes linear time
	testing upward planarity is NP-hard
	minimizing crossings is NP-hard
	minimizing bends in planar orthogonal drawing:
	NP-hard in general
	polynomial time for a fixed embedding

	Beyond Aesthetic Criteria
	Constraints
	some readability aspects require knowledge about the semantics of the specific graph (e.g., place...
	constraints are provided as additional input to a graph drawing algorithm

	Examples
	place a given vertex in the “middle” of the drawing
	place a given vertex on the external boundary of the drawing
	draw a subgraph with a prescribed “shape”
	keep a group of vertices “close” together

	Algorithmic Approach
	Layout of the graph generated according to a prespecified set of aesthetic criteria
	Aesthetic criteria embodied in an algorithm as optimization goals. E.g.
	minimization of crossings
	minimization of area

	Advantages
	Computational efficiency

	Disadvantages
	User-defined constraints are not naturally supported

	Extensions
	A limited constraint-satisfaction capability is attainable within the algorithmic approach E.g., ...

	Declarative Approach
	Layout of the graph specified by a user- defined set of constraints
	Layout generated by the solution of a system of constraints
	Advantages
	Expressive power

	Disadvantages
	Some natural aesthetics (e.g., planarity) need complicated constraints to be expressed
	General constraint-solving systems are computationally inefficient
	Lack of a powerful language for the specification of constraints (currently done with a detailed ...

	Getting Started with Graph Drawing
	Book on Graph Drawing by G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, ISBN 0-13-30161...
	Roberto Tamassia’s WWW page http://www.cs.brown.edu/people/rt/
	Tutorial on Graph Drawing by Isabel Cruz and Roberto Tamassia (about 100 pages)
	Annotated Bibliography on Graph Drawing (more than 300 entries, up to 1993) by Di Battista, Eades...
	Computational Geometry Bibliography www.cs.duke.edu/~jeffe/compgeom/biblios.html (about 8,000 Bib...
	Proceedings of the Graph Drawing Symposium (Springer-Verlag, LNCS)
	Graph Drawing Chapters in: CRC Handbook of Discrete and Computational Geometry Elsevier Manual of...

	Visibility Drawing
	Systems
	Upward Polyline Drawing
	Upward Polyline Drawing
	Trees
	Drawings of Rooted Trees
	the usual drawings of rooted trees are planar, straight-line, and upward (parents above children)
	it is desirable to minimize the area and to display symmetries and isomorphic subtrees
	level drawing: nodes at the same distance from the root are horizontally aligned
	level drawings may require W(n2) area

	A Simple Level Drawing Algorithm for Binary Trees
	y(v) = distance from root
	x(v) = inorder rank
	level grid drawing
	display of symmetries and of isomorphic subtrees
	parent in between left and right child
	parents not always centered on children
	width = n - 1

	A Recursive Level Drawing Algorithm for Binary Trees
	[Reingold Tilford 1983]
	draw the left subtree
	draw the right subtree
	place the drawings of the subtrees at horizontal distance 2
	place the root one level above and half- way between the children
	if there is only one child, place the root at horizontal distance 1 from the child

	Properties of Recursive Level Drawing Algorithm for Binary Trees
	centered level drawing
	“small” width
	display of symmetries and of isomorphic subtrees
	can be implemented to run in O(n) time
	can be extended to draw general rooted trees (e.g., root is placed at the average x-coordinate of...

	Non Optimality of Recursive Tree Drawing Algorithm
	minimizing the width is NP-hard if integer coordinates are required

	Area-Efficient Drawings of Trees
	planar straight-line upward grid drawings of AVL trees with O(n) area [Crescenzi Di Battista Pipe...

	Area-Efficient Drawings of Trees
	planar polyline upward grid drawings with O(n) area [Garg Goodrich Tamassia 93]

	Area Requirement of Planar Drawings of Trees
	Open Problem: determine the area requirement of planar upward straight- line drawings of trees

	Tip-Over Drawings of Rooted Trees
	Tip-over drawings are upward planar orthogonal drawings such that the children of a node:
	are arranged either horizontally or vertically
	share portions of the edges to the parent.

	Widely used in organization charts.
	Allow to better fit the drawing in a prescribed region.

	Inclusion Drawings of Rooted Trees
	Inclusion drawings display the parent- child relationship by the inclusion between isothetic rect...
	Closely related to tip-over drawings.
	Used for displaying compound graphs (e.g., the union of a graph and a tree)
	Allow to better fit the drawing in a prescribed region

	Area of Tip-Over and Inclusion Drawings
	Eades, Lin and Lin (1992) study of the area requirement of tip-over and inclusion drawings of roo...
	The dimensions of the node labels are given as part of the input.
	Minimizing the area of the drawing is:
	NP-hard for general trees
	computable in polynomial time for balanced trees with a dynamic programming algorithm

	Similar results for the following problems:
	minimizing the perimeter of the drawing.
	minimizing the width for a given height
	minimizing the height for a given width

	How to Draw Free Trees
	Free trees are connected graphs without cycles and do not represent hierarchical relationships (e...
	Level drawings of rooted trees yield radial drawings of free trees:
	root the free tree T at its center (node with minmax distance from the leaves), which gives a roo...
	construct a level drawing D' of T'
	use a geometric transformation (cartesian Æ polar) to obtain from D' a radial drawing D of T

	Planar Undirected Graphs
	Planar Drawings and Embeddings
	a planar embedding is a class of topologically equivalent planar drawings
	a planar embedding prescribes
	the star of edges around each vertex
	the circuit bounding each face

	the number of distinct embeddings is exponential in the worst case
	triconnected planar graphs have a unique embedding

	The Complexity of Planarity Testing
	Planarity testing and constructing a planar embedding can be done in linear time:
	depth-first-search [Hopcroft Tarjan 74] [de Fraysseix Rosenstiehl 82]
	st-numbering and PQ-trees [Lempel Even Cederbaum 67] [Even Tarjan 76] [Booth Lueker 76] [Chiba Ni...

	The above methods are complicated to understand and implement
	Open Problem:
	devise a simple and efficient planarity testing algorithm.

	Planar Straight-Line Drawings
	[Hopcroft Tarjan 74]: planarity testing and constructing a planar embedding can be done in O(n) time
	[Fary 48, Stein 51, Steinitz 34, Wagner 36]: every planar graph admits a planar straight-line dra...
	Planar straight-line drawings may need W(n2) area
	[de Fraysseix Pach Pollack 88, Schnyder 89, Kant 92]: O(n2)-area planar straight-line grid drawin...

	Planar Straight-Line Drawings: Angular Resolution
	O(n2)-area drawings may have r = O(1/n2)
	[Garg Tamassia 94]:
	Upper bound on the angular resolution:
	Trade-off (area vs. angular resolution):

	[Kant 92] Computing the optimal angular resolution is NP-hard.

	Planar Straight-Line Drawings: Angular Resolution
	[Malitz Papakostas 92]: the angular resolution depends on the degree only:
	Good angular resolution can be achieved for special classes of planar graphs:
	outerplanar graphs, r = O(1/d) [Malitz Papakostas 92]
	series-parallel graphs, r = O(1/d2) [Garg Tamassia 94]
	nested-star graphs, r = O(1/d2) [Garg Tamassia 94]

	Open Problems:
	can we achieve r = O(1/dk) (k a small constant) for all planar graphs?
	can we efficiently compute an approximation of the optimal angular resolution?

	Planar Orthogonal Drawings: Minimization of Bends
	given planar graph of degree £ 4, we want to find a planar orthogonal drawing of G with the minim...

	Minimization of Bends in Planar Orthogonal Drawings
	[Tamassia 87]
	O(n2 log n)-time bend minimization for fixed embedding

	[Di Battista Liotta Vargiu 93]
	polynomial-time bend minimization for degree-3 and series-parallel graphs

	[Tamassia Tollis 89]
	O(n)-time approximation with O(n) bends

	[Garg Tamassia 93]
	minimization of bends is NP-hard
	approximation with O(opt + n1 - e) bends is NP-hard
	rectilinear planarity testing is NP-complete

	Network Flow Model
	a unit of flow is a 90° angle
	a vertex (source) produces 4 units
	a face f (sink) consumes 2 deg(f) ��- 4 units (deg(f) + 4 for the external face)
	Edges transport flow across faces through the bends

	Flow Network
	vertex-face arcs: flow ³ 1, cost = 0

	Flow Network
	face-face arcs: flow ³ 0, cost = 1

	Complete Flow Network
	Correctness of Flow Model
	supply of sources = demand of sinks ´ Euler’s formula
	flow conservation at vertex ´ S angles around vertex = 360°
	flow conservation at face ´ (# 90° angles) - (# 270° angles) = 4
	cost of flow ´ # bends
	flow in N ´ drawing of G
	minimum cost flow ´ optimal drawing
	Theorem [Tamassia 87] Computing the minimum number of bends for an embedded graph G is equivalent...
	Open Problem: reduce the time complexity of bend minimization.

	Characterization of Bend-Minimal Drawings
	A drawing has the minimum number of bends if and only if there is no oriented closed curve C such...
	vertices are intersected by C entering from angles ³ 180°
	(# edges crossed by C from 90° or 180°) < (# edges crossed by C from 270°)

	If such a curve exists, “rotating” the portion of the drawing inside C reduces the number of bends

	Proving the Optimality of a Drawing
	potential F on each face
	vertices cannot be traversed by C
	C traverses edge from 270° ﬁ DFi = -1
	C traverses edge from 90° ﬁ DFi = +1
	bends removed going ‘‘inward’’ and inserted going ‘‘outward’’ DBi + DFi = 0
	C is a closed curve ﬁ Si DFi = 0
	Hence, Si DBi = 0

	Planar Directed Graphs
	Upward Planarity Testing
	upward planarity testing for ordered sets has the same complexity as for general digraphs (insert...
	[Kelly 87, Di Battista Tamassia 87]: upward planarity is equivalent to subgraph inclusion in a pl...
	[Kelly 87, Di Battista Tamassia 87]: upward planarity is equivalent to upward straight-line plana...

	Complexity of Upward Planarity Testing
	[Bertolazzi Di Battista Liotta Mannino 91]
	O(n2)-time for fixed embedding

	[Hutton Lubiw 91]
	O(n2)-time for single-source digraphs

	[Bertolazzi Di Battista Mannino Tamassia 93]
	O(n)-time for single-source digraphs

	[Garg Tamassia 93]
	NP-complete

	Tree Layout
	right

	How to Construct Upward Planar Drawings
	Since an upward planar digraph is a subgraph of a planar st-digraph, we only need to know how to ...
	If G is a planar st-digraph without transitive edges, we can use the left/right numbering method ...

	General Undirected Graphs
	The Spring Embedder [Eades 1984]
	replace the edges by springs with unit natural length
	connect nonadjacent vertices with additional springs with infinite natural length
	recall that the springs attract the endpoints when stretched, and repel the endpoints when compre...
	start with an initial random placement of the vertices
	let the system go ... (assume there is friction so that a stable minimum energy state is eventual...

	Springs for Planar Graphs
	use springs with natural length 0, and attractive force proportional to the length
	pin down the vertices of the external face to form a given convex polygon (position constraints)
	let the system go ...
	the final configuration is a state of minimum energy: min Se[length(e)]2
	equivalent to the barycentric mapping [Tutte 60]:
	p(v) = 1/deg(v) S(v,w) p(w)

	General Directed Graphs
	Properties of Dominance Drawings
	Upward, planar, straight-line, O(n2) area
	The transitive closure is visualized by the geometric dominance relation
	Symmetries and isomorphisms of st-components are displayed

	More on Dominance Drawings
	A variation of the left/right numbering yields dominance drawings with optimal area
	Dummy vertices are inserted on transitive edges and are displayed as bends (upward planar polylin...

	Planar Drawings of Graphs and Digraphs
	We can use the techniques for dominance drawings also for undirected planar graphs:
	orient G into a planar st-digraph G'
	construct a dominance drawing of G'
	erase arrows ...

	Algorithmic Strategies for Drawing General Undirected Graphs
	Planarization method
	if the graph is nonplanar, make it planar! (by placing dummy vertices at the crossings)
	use one of the drawing algorithms for planar graphs

	e.g., GIOTTO [Tamassia Batini Di Battista 87]
	Orientation method
	orient the graph into a digraph
	use one the drawing algorithms for digraphs

	Force-Directed method
	define a system of forces acting on the vertices and edges
	find a minimum energy state (solve differential equations or simulate the evolution of the system)

	e.g., Spring Embedder [Eades 84]

	Other Force-Directed Techniques
	[Kamada Kawai 89]
	the forces try to place vertices so that their geometric distance in the drawing is equal to thei...
	for each pair of vertices (u,v) use a spring with natural length dist(u,v)

	[Fruchterman Reingold 90]
	system of forces similar to that of subatomic particles and celestial bodies
	given drawing region acts as wall
	n-body simulation

	[Davidson Harel 89]
	energy function takes into account vertex distribution, edge-lengths, and edge-crossings
	given drawing region acts as wall
	simulated annealing

	Layering Method for Drawing General Directed Graphs
	Layer assignment: assign vertices to layers trying to minimize
	edge dilation
	feedback edges

	Placement: arrange vertices on each layer trying to minimize
	crossings

	Routing: route edges trying to minimize
	bends

	Fine tuning: improve the drawing with local modifications
	[Carpano 80]
	[Sugiyama Tagawa Toda 81]
	[Rowe Messinger et al. 87]
	[Gansner North 88]

	Some Graph Drawing Systems
	Graph Drawing Server (Brown University, USA)
	loki.cs.brown.edu:8081/graphserver/
	Roberto Tamassia(rt@cs.brown.edu)

	GDToolkit (University of Rome III)
	www.dia.uniroma3.it/people/gdb/wp12/ GDT.html
	Giuseppe Di Battista (dibattista@iasi.rm.cnr.it)

	Graphlet (University of Passau, Germany)
	www.fmi.uni-passau.de/Graphlet/
	Michael Himsolt (himsolt@fmi.uni-passau.de)

	GraphViz (AT&T Research)
	www.research.att.com/sw/tools/graphviz/
	Sthephen North (north@research.att.com)

	Visibility Representation
	vertices Æ horizontal segments
	edges Æ vertical segments
	can be constructed in O(n) time
	preliminary step for drawing algorithms

	From Visibility Representations to Orthogonal Drawings
	Heuristic Algorithm for Bend Minimization
	1. Construct visibility representation
	2. Transform visibility representation into a preliminary drawing
	3. Apply bend-stretching transformations
	4. Compact orthogonal representation
	Runs in O(n) time and can be parallelized
	At most 2n + 4 bends if G is biconnected (2.4n + 2 otherwise)
	O(n2) area

	Area-Efficient Drawings of Trees
	planar straight-line orthogonal upward grid drawing of a binary tree with O(n log n) area, O(n) w...
	draw the largest subtree “to the right” and the smallest subtree “below”
	Example:

	Size of Planar Drawings of Binary Trees
	the size of a drawing is the maximum of its height and width
	known bounds on the size of planar drawings of binary trees:
	Open Problem: can Q(n1/2) size be achieved for (nonupward) planar straight- line drawings of bina...

	Planar Upward Straight-Line Drawings of Binary Trees with Optimal Size
	recursive winding technique [CGKT96]:
	let N be number of nodes in the tree, and N(v) be the number of nodes in the subtree rooted at v
	for each node u, swap children to have N(left(u)) £ N(right(u)
	find the first node v on the rightmost path such that: N(right(v)) £ N - (N log N)1/2 < N(v)
	draw the left subtrees on the path from the root to v with linear width (height) and logarithmic ...
	draw recursively the subtrees T' and T" of v

	Recursive Winding Drawing
	recurrence relations for the width W(N) and height H(N):
	W(N) max{W(N'), W(N"), A} + O(log N)
	H(N) max{H(N') + H(N") + O(log N), A}

	where:
	A = (N log N)1/2
	max(N', N") £ N - A
	solution:
	W(N)=H(N)= O(N log N)1/2
	Graph Drawing Tutorial

	Isabel F. Cruz
	Worcester Polytechnic Institute
	Roberto Tamassia
	Brown University
	Graphical objects are defined by example, and have a typical part and a default part.
	Constraints are associated with the classes (methods specify constraint satisfaction).
	Object-oriented (message passing, inheritance).
	Visual programming language.
	Textual specification of constraints.
	Graphical objects are obtained by instantiating abstract data types, and adding constraints.
	Uses complex numbers to specify coordinates.
	GVL [Graham & Cordy 90]
	Visual language to specify the display of program data structures.
	Pictures can be specified recursively (the display of a linked list is the display of the first e...
	FIGURE Æ over (rectangle1, rectangle2)
	Where
	rectangle1.lx == rectangle2.lx rectangle1.rx == rectangle2.rx rectangle1.by == rectangle2.ty
	(CONTAINS BOX CIRCLE)
	(CONTAINS BOX TRIANGLE)
	(IMMEDIATELY-RIGHT-OF CIRCLE TRIANGLE)
	(SAME-SIZE CIRCLE TRIANGLE)

	Level Drawings
	Upward
	Planar
	Nodes at the same distance from the root are horizontally aligned.

	Display of symmetries.
	Display of isomorphic subtrees.
	T:binTree[rootÆN:node; leftÆL:binTree; rightÆR: binTree]

	Efficient Visual Graph Drawing [Cruz & Garg 94]
	Series-parallel graphs / delta-drawings [Bertolazzi, Cohen, Di Battista, Tamassia & Tollis, 92]

	Example
	initial configuration
	final configuration
	Examples
	drawings of the same graph constructed with the technique of [Davidson Harel 89] using three diff...

	Example
	[Sugiyama Tagawa Toda 81]

