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Summary

■ Range Searching (Range Tree)
■ Point Enclosure (Segment Tree)
■ Segment Intersection
■ Rectangle Intersection
■ Point Location with Segment Trees
■ Point Location with Dynamic Trees

Reference

■ Y.-J. Chiang and R. Tamassia, “Dynamic
Algorithms in Computational Geometry,”
Technical Report CS-91-24, Dept. of
Computer Science, Brown Univ., 1991.
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Range Searching

■ Set P of points in d-dimensional space Ed

■ Range Query: report the points of P
contained in a query range r

■ Query range:
■ r = (a1,b1) × (a2,b2) × ... × (ad,bd)
■ d=1  interval
■ d=2 rectangle with sides parallel to axes

■ Variations of Range Queries:
■ count points in r
■ if points have associated weights,

compute total weight of points in r

P

r
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One-Dimensional Range
Searching

■ use a balanced search tree T with internal
nodes associated with the points of P

■ thread nodes in in-order
■ Query for range r = (x',x")

■ search for x' and x" in T, this gives
nodes µ' and µ"

■ follow threads from µ' to µ" and report
points at internal nodes encountered

x' x"

µ' µ"
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Complexity of One-Dimensional
Range Searching

■ Space requirement for n points: O(n)
■ Query time: O(log n + k), where k is the

number of points reported
■ Time for insertion or deletion of a point:

O(log n).
■ Note that thread pointers are not affected by

rotations.

Exercises

■ * Show how to perform queries without
using threads.

■ * Show how to perform 1-D range counting
queries in time O(log n).

■ * Assuming that the points have weights,
show how to find the heaviest point in the
query range in time O(log n)
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One-Dimensional Range Tree

■ Alternative structure for 1-D range
searching.

■ More complex than a simple balanced
search tree.

■ Can be extended to higher dimensions.
■ Range Tree: balanced search tree T

■ leaves ↔ points, sorted by x-coordinate
■ node µ ↔ subset P(µ) of the points at the

leaves in the subtree of µ
■ Space for n points: O(n log n).

P(µ)

µ
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One-Dimensional Range Queries

■ Αn allocation node µ of T for the query
range (x',x") is such that (x',x") contains P(µ)
but not P(parent(µ)).

■ the allocation nodes are O(log n)
■ they have disjoint point-sets
■ the union of their point-sets is the set of

points in the range (x',x")
■ Query Algorithm

■ find the allocation nodes of (x',x")
■ for each allocation node µ

report the points in P(µ)
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How to Find the Allocation Nodes

■ Each node µ of T stores:
min(µ):   smallest x-coordinate in P(µ)
max(µ):  largest x-coordinate in P(µ)

■ Find(µ): recursive procedure to mark all the
allocation nodes of (x',x") in the subtree of µ
if  x' ≤ min(µ) and  x" ≥ max(µ)
     then mark µ as an allocation node
    else  if µ is not a leaf  then

if  x' ≤ max(left(µ))
then  Find(left(µ))

if  x" ≥ min(right(µ))
then  Find(right(µ))

x' x"
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Dynamic Maintenance of the
Range Tree

■ Algorithm for the insertion of a point p
■ create a new leaf λ for p in T
■ rebalance T by means of rotations
■ for each ancestor µ of λ do

insert p in the set P(µ)
■ In a rotation, we need to perform split/

splice operations on the point-sets stored
at the nodes involved in the rotation.

■ We use a red-black tree for T, and
balanced trees for the point sets.

■ Insertion time: O(log2n).   Similarly for
deletions.

ν"

µ"ν'

µ'
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Two-Dimensional Range Searching

■ 2-D Range-Tree, a two level structure
■ Primary structure: a 1-D range tree T based

on the x-coordinates of the points
■ leaves ↔ points, sorted by x-coordinate
■ node µ ↔ subset P(µ) of the points at the

leaves in the subtree of µ
■ Secondary structure for node µ:

■ Data structure for 1-D range searching
by y-coordinate in the set P(µ) (either a
1-D range tree or a balanced tree)

P(µ)

µ
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Two-Dimensional Range Queries
with the 2-D Range-Tree

■ Query Algorithm for range r = (x',x") × (y',y")
■ find the allocation nodes of (x',x")
■ for each allocation node µ

perform a 1-D range query for range
(y',y") in the secondary structure of µ



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

12

Space and Query Time

■ The space used for n points depends on the
secondary data structures:

■ O(n log2n) space with 1-D range trees
■ O(n log n) with balanced trees

■ Query time for a 2-D range query:
■ O(log n) time to find the allocation nodes
■ Time to perform  a 1-D range query at

allocation node µ:  O(log n + kµ),
where kµ points are reported

■ Total time: Σµ (log n + kµ) = O(log2n + k)

Exercises

■ * Show how to perform 2-D range counting
queries in time O(log2n).

■ ** Give worst-case examples for the space
■ *** Extend the range tree to d dimensions:

show how to obtain O(n logd−1 n) space and
O(logdn + k) query time.
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Dynamic Maintenance of the
Range Tree

■ Algorithm for the insertion of a point p
■ create a new leaf λ for p in T
■ rebalance T by means of rotations
■ for each ancestor µ of λ do

insert p in the secondary data
 structure of µ

■ When performing a rotation, we rebuild
from scratch the secondary data structure
of the node that becomes child (there
seems to be nothing better to do).

■ The cost of a rotation at a node µ is
O(|P(µ)|) = O(#leaves in subtree of µ)

■ By realizing T as a BB[α]-tree, the
amortized rebalancing time is O(log n).

■ The total insertion time is dominated by
the for-loop and is O(log2n) amortized.

■ Similar considerations hold for deletion.
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Rotation in a 2-D Range Tree

■ The secondary
data structure
of µ" is the
same as the one
of ν'.

■ The secondary
data structure
of ν" needs to be
constructed.

■ The secondary
data structure
of µ' needs to be
discarded.

ν"

µ"

ν'

µ'
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Summary of Two-Dimensional
Range Tree

■ Two-level tree structure (RR-tree)
■ Reduces 2-D range queries to a collection

of O(log n) 1-D range queries
■ O(n log n) space
■ O(log2n + k) query time
■ O(log2n) amortized update time

Exercise
■ *** Modify the range-tree to achieve query

time O(log n + k).
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Point Enclosure

■ Set R of orthogonal ranges in Ed

■ Point Enclosure Query: given a query point
q, report the ranges of R containing q.

■ Dual of the range searching problem.
■ For d=1, R is a set of intervals.
■ For d=2, R is a set of rectangles.

R

q
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One-Dimensional Point Enclosure

■ Let S be a set of segments (intervals), and X
the set of segment endpoints plus ±∞.

■ Segment-tree T for S: a two-level structure
■ Primary structure: balanced tree T for X

■ leaves ↔ elementary intervals induced
by the points of X

■ node µ ↔ x-coordinate x(µ) and interval
I(µ) formed by the union of the intervals
at the leaves in the subtree of µ

■ Secondary structure of a node µ:
■ set S(µ) of the segments that contain I(µ)

but not I(parent(µ)).

µ

Ι(µ)

S(µ)

T
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Point Enclosure Queries with the
Segment Tree

■ Find the elementary interval I(λ)
containing the query point q by searching
for q in the primary structure of T

■ For each node µ in the path from λ to the
root, report the segments in S(µ)

q

λ
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Complexity of One-Dimensional
Point Enclosure

■ A node µ is an allocation node of segment s
if S(µ) contains s.

■ Each segment s has O(log n) allocation
nodes

s

■ Space used by the segment-tree:  O(n log n)
■ Query time: O(log n + k)
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Exercises

■ * Show how to perform point enclosure
counting queries in O(log n) time using
O(n) space.

■ ** Discuss special cases that have not been
addressed (e.g., a query point is a segment
endpoint).

■ ** Dynamize the segment tree, i.e., show
how to support insertions and deletions of
segments.

■ ** Give an efficient data structure to
perform 1-D segment intersection queries.
(Given a set of segments on a line, report
the segments intersecting a query
segment.)
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Two-Dimensional Point Enclosure

■ We represent a set of rectangles with sides
parallel to the axes by means of a two-level
structure (SS-tree).

■ Primary structure:
■ a segment tree T for the x-intervals of

the rectangles of R
■ Secondary structure of a node µ:

■ a 1-D point enclosure data structure for
the y-intervals of the rectangles in S(µ)
(another segment tree)

■ Space for n rectangles: O(n log2n)
■ Query algorithm for point q

■ Locate q in T, this gives a leaf λ whose
elementary vertical strip contains q

■ Perform 1-D point enclosure queries in
the secondary structures of the nodes on
the path from λ to the root

■ Query time: O(log2n + k)
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Orthogonal Segment Intersection

■ S: set of n horizontal segments in the plane
■ Orthogonal Segment Intersection Query:

given a vertical query segment s, report the
segments of S intersected by s.

■ Two data structures for this problem:
■ SR-tree: the segments of S are stored in

an x-based segment-tree T' .  The
secondary structures support 1-D range
searching on the y-coordinate.  A
segment intersection query corresponds
to performing O(log n) 1-D range queries
along a root-to-leaf path in T'.

■ RS-tree: the segments of S are stored in a
y-based range-tree T".  The secondary
structures support 1-D point enclosure
queries on the x-coordinate.  A segment
intersection query corresponds to
performing O(log n) 1-D point enclosure
queries at the allocation nodes of s in T".
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Exercises

■ * Determine the space requirement and
query time of the SR-tree and RS-tree.

■ ** Dynamize the SR-tree and the RS-tree.
■ ** Show how to perform vertical “ray

shooting” queries for horizontal segments.

Example of Querying the SR-Tree

s
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Orthogonal Rectangle Intersection

■ Let R be a set of n rectangles with sides
parallel to the axes

■ Orthogonal Rectangle Intersection Query:
given a query rectangle r, determine the
rectangles of R intersected by r.

■ Rectangles r' and r" intersect iff one of the
following mutually exclusive cases arises:

■ the bottom-left
corner of r' is in r"

■ the bottom-left
corner of r" is in r'

■ the left side of r'
intersects the
bottom side of r"

■ the left side of r"
intersects the
bottom side of r'

r"
r"

r"

r"

r'

r'

r'

r'
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Orthogonal Rectangle Intersection

■ We can perform an orthogonal rectangle
intersection query as follows:

■ range search query for the bottom-left
corners of the rectangles of R contained
in r

■ point enclosure query for the rectangles
of R containing the bottom-left corner of r

■ orthogonal segment intersection query
for the bottom sides of the rectangles of R
intersected by the left side of r

■ orthogonal segment intersection query
for the left sides of the rectangles of R
intersected by the bottom side of r

■ We can use a data structure consisting of
four components: RR, SS, RS, and RS tress.

■ Orthogonal rectangle intersection queries in
d dimensions can be performed with a data
structure consisting of the d-level trees
given by the symbolic expansion of (R + S)d
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Planar Point Location

■ Subdivision S of the plane into polygonal
regions, induced by the vertices and edges
of a planar graph

■ Find the region containing a query point q
■ Fundamental two-dimensional searching

problem

r1

r2

r3

r4

r6

r5

r7

q
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Types of Planar Subdivisions

■ Monotone

■ Convex

■ Triangulation
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Static Point Location

■ Preprocess the subdivision
■ Answer on-line queries

(query points are not known in advance)
■ Performance measures:

■ space
■ query time
■ preprocessing time

Dynamic Point Location

■ Perform an on-line sequence of intermixed
queries and updates (insertion and
deletion of vertices and edges)

■ Performance measures:
■ space
■ query time
■ insertion/deletion time
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■ Translate a vertex

Update Operations for Planar
Subdivisions

■ Insert/Delete an edge

■ Insert/Delete a chain of edges
■ Insert/Delete an isolated vertex
■ Insert/Delete a vertex on an edge

r

r"

r'

e
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Best Results for Static Point Location
[Kirkpatrick 83, Edelsbrunner Guibas
Stolfi 86, Sarnak Tarjan 86]
■ O(n) space
■ O(log n) query time
■ O(n log n) preprocessing time

Best Results for Dynamic Point Location
[Goodrich Tamassia 91] monotone subdiv.

[Cheng Janardan 90] connected subdiv.
■ O(n) space, O(log2n) query time, O(log n)

update time

[Preparata Tamassia 89] convex subdiv.

[Chiang Tamassia 91] monotone subdiv.
■ O(n log n) space, O(log n) query time,

O(log2n) amortized update time

[Goodrich Tamassia 91] monotone subdiv.
■ O(log n loglog n) query time, O(1) amortized

insertion time
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Point Location with Segment Trees
(Overmars, CG '85)

■ Use an SR-tree for the set of edges
■ Each edge stores the region above it
■ The secondary structures are balanced

trees that support down-shooting queries in
a vertical “slab”

■ O(n log n) space and O(log2n) query time

q
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Exercises

■ ** Show how to construct the segment-tree
structure for point location in O(n log n)
time

■ *** Dynamize the data structure
■ **** Modify the data structure to achieve

O(log n) query time and O(n log n) space in
a static environment

Open Problem
■ ***** Modify the data structure to achieve

O(log n log log n) query time and polylog
upate time in a fully dynamic environment.
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Point Location With Dynamic Trees
(Goodrich-Tamassia, STOC '91)

■ A new method for planar point location,
based on interleaving primal and dual
spanning trees

■ Algorithms are relatively simple and easy to
implement

■ Optimal static data structure:  O(n) space,
O(log n) query time

■ Efficient fully dynamic data structure for
monotone subdivisions: O(n) space, O(log2n)
query time, O(log n) update time

■ Efficient on-line data structure for
insertions: O(log n loglog n) query time, O(1)
amortized insertion time

■ Improved 3-dimensional point location:
O(n log n) space, O(log2n) query time
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Triangulations

■ A subdivision can be refined into a
triangulation by adding fictitious edges,
plus 3 fictitious vertices

r1

r1 r5

r5

r5
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Monotone Spanning Tree

■ For each vertex, select an incoming edge
(incoming = incident from below)

■ This yields a monotone spanning tree T of
the subdivision

T
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Dual Spanning Tree

■ Place a dual node in every region
■ For each non-tree edge, draw a dual edge
■ This yields a dual tree D

D
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Cycles and Cuts

■ Each non-tree edge
■ forms a cycle with T
■ induces a cut in D
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Point Location Algorithm

1. Find a centroid edge e whose cut
decomposes D into subtrees D' (internal)
and D" (external), each with at most 2/3 of
the nodes.

2. Determine if the query point q is inside or
outside the cycle C(e) induced e

3. If q is inside C(e), then recur on D', else
recur on D"

q inside C(e)

q outside C(e)

D'

D''
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Example
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Testing if q is Inside or Outside
Cycle C(e)

■ The boundary of cycle C(e) consists of two
monotone chains (L and R)

■ We represent each such chain with a
balanced tree

■ By doing binary search on the y-coordinate
of q, we determine the points of L and R in
front of q in O(log n) time

q
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Centroid Decomposition

■ Represent the recursive decomposition of
the dual tree by means of a binary tree B

■ A point location query traverses a root-to-
leaf path in B

B
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Complexity Analysis

Query Time
■ The centroid decomposition tree B has

2n−5 leaves (regions)
■  For each node µ of B:

leaves(µ) < 2/3 leaves(parent(µ))
■ The centroid tree has depth O(log n)
■ Visiting each node takes O(log n) time
■ Query time:  O(log2n)

Space
■ If we store at each node the corresponding

cycle, we use Ο(n2) space
■ To save space and dynamize the data

structure, we use dynamic trees ...
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Dynamic Trees

[Sleator Tarjan 1983]
■ Data structure to represent a collection of

rooted trees
■ Operations:

■ Path(v): return the path from v to the
root (as a balanced binary tree)

■ Link: join two trees by adding an edge
■ Cut: decompose a tree by removing an

edge

T1

T1

T2

T2
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Dynamic Trees and Point
Location

■ use dynamic trees for T and D
■ use D for finding centroid edges
■ use T for retrieving edge chains

■ Space:  O(n)

Query algorithm
1. If D consists of a single region r, then

report r and stop
2. Find a centroid edge e=(u,v)
3. Cut D at edge e into D' (internal) and D"

(external)
4. L(e) =  Path(u)
5. R(e) = splice(e,Path(v))
6. If q is inside, L(e) ∪ R(e), then recur on D',

else recur on D"
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Path Decomposition

■ partition the edges into light and heavy:

heavy edge: size(child) > size(parent) / 2

light edge: size(child) ≤ size(parent) / 2
■ heavy edges form disjoint solid paths
■ going from a leaf to the root we traverse at

most log n light edges
■ “removing light edges decomposes an

unbalanced tree into a balanced tree of
solid paths”
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Representing a Solid Path
■ we represent each solid path P by means of

a balanced binary tree, called path-tree
■ leaf ↔ node of P
■ internal node ↔  subpath of P

■ solid paths can be split and spliced in time
O(log n)
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Operation Path(v)

■ Construct the path from v to the root by
splitting and splicing O(log n) solid paths

v

v

split

splice
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Finding a Centroid Edge

Theorem:
There exists a centroid edge that is either on
the solid path P of the root, or is incident to
the bottommost node of P
■ Case 1: w1 < 1 + 2n/3, centroid edge on P
■ Case 2: w1 > 1 + 2n/3, centroid edge incident

 to µ1

µ1

µ2

µ3

µ4

µ5

Corollary:
A centroid edge can be found in time O(log n)

w1=
w2=4 w3=3

w4=6 w5=8
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T1

T2

Link/Cut Operations

■ In a link operation, O(log n) edges may
change from light to heavy, thus causing
O(log n) split/splice operations on the solid
paths.  (And similarly for a cut operation.)

T1

T2
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Time Complexity of Link/Cut

■ Using standard balanced trees (e.g., AVL,
red-black) each split/splice operation takes
O(log n) time

■ Total time complexity: O(log2n)

■ To improve the update time, use biased
search trees [Bent-Sleator-Tarjan, 85]

■ node µ on a solid path P
■ weight w(µ)  =  size of child of µ not in  P
■ depth of µ-leaf = O(log (W/w(µ))), where

W is the total weight
■ Since all the split/splice operations on

solid paths are along a root-to-leaf path,
the time complexity is now:

   O(log(n/w1)+log(w1/w2)+...+log (wk-1/wk))
■ Total time complexity: O(log n)
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Dynamization

■ Repertory of update operations for monotone
subdivisions:

■ insert/delete an edge
■ expand a vertex into two vertices

connected by an edge
■ contract an edge
■ insert/delete a monotone chain

■ Use the leftist monotone spanning tree
obtained by selecting the lefmost incoming
edge of each vertex

■ Cannot dynamically maintain a
triangulation of the subdivision

■ Instead, dynamically maintain a refinement
of the subdivision such that the dual tree D
has degree at most 3

■ An update operation on the subdivision
corresponds to performing O(1) link/cut
operations on the dynamic trees



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

52

Refinement of the Subdivision

■ Insert a “comb” that duplicates the left
chain of every region. The “comb” is placed
infinitesimally close to the left chain

■ The refined subdivision is topologically
different but geometrically equivalent to
the original subdivision.

■ In the refined subdivision the dual tree of
the leftist monotone spanning tree has
degree at most 3.


