
CS4 Pair Programming Guide

1 What is Pair Programming?

Simply put, pair programming is “two people working together at a single
computer” [1]. The practice has been popularized by a software develop-
ment methodology called Extreme Programming (XP), and a number of
researchers have studied the effects of incorporating pair programming into
introductory and higher-level computer courses.

2 Why Pair Program?

Again, simply put:

• You will produce better code [3, 4]

• You will learn more by sharing your ideas with your peers and bene-
fiting from their insights [2]

• You will become better at articulating your thoughts [3]

• You will enjoy your work more and spend less time frustrated [3, 4]

• You will be better prepared for more complicated software engineering
tasks, both in school and beyond, where collaboration is imperative to
success [2]

3 How to Pair Program

We first introduce the practice of pair programming, and then follow up
with an informal description of the spirit behind it with the hope that a
thorough understanding of its goals will help you and a partner work to-
gether productively and harmoniously. A successful pair programmer not
only knows and adheres to the formal guidelines, but is also able to resolve
intra-partner stress through constructive communication.
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The Formal

When two programmers work with with one keyboard, a division of labor is
necessary. Originally, XP had one programmer type on the left half of the
keyboard and the other on the right. However, that practice was abandoned
due to the uncomfortable seating arrangements required and a statistically
significant increase in repetitive stress injury (RSI). A perhaps more natural
division of roles developed in its place:

The Driver: Responsible for typing, moving the mouse, etc.

The Navigator: Responsible for reviewing the driver’s work. In addition
to catching incidental mistakes (that are nonetheless tedious to track
down when solo-programming), the navigator considers the code at a
more strategic level: how will this fit with the rest of the code? Will
this implementation require changes elsewhere? Could we design this
program better?

Every fifteen minutes or so, the pair switches roles by sliding the key-
board over [4]. That’s a pretty loaded sentence, so let’s break it down:

“Every fifteen minutes or so...” You can wait for a natural breaking
point [3], but no one should drive more than 20 minutes or less than
10.

“...the pair switches roles...” To avoid animosity, ensure the integrity
of the team, and keep pair programming fun–it’s important that both
partners spend an equal amount of time in each role. Some program-
mers may enjoy driving better, others navigating; however, neither
partner does the other a favor by letting him spend more time in a
fixed role.

“...by sliding the keyboard.” This is not done by rearranging chairs and
adjusting the monitor. That is to say, regardless of roles, you are both
working together on the problem at hand. As such you are seated
next to each other with the monitor adjusted so you can both see the
screen easily. All that’s required when you switch, then, is to push the
keyboard a few inches this way or that. [4]

It is important to distinguish pair programming from another distinct
cooperative division of labor: divide-and-conquer. In the latter strategy,
two people responsible for completing a single task break down the task into
smaller pieces, partition the resulting subtasks among themselves, and each
works on “his or her part” separately. This strategy can be used successfully,
but it should not be confused with pair programming.
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The Informal

Here, we outline various practices and perspectives that provide a foundation
for your pair programming experience. Knowing that you and your partner
have both read this, the two of you will have a common expectation about
the pair programming experience and should be able to work together more
effectively. These practices and perspectives are inspired principally by All I
Really Need to Know About Pair Programming I Learned in Kindergarten, a
well-written essay that programmers at every level are encouraged to read.
[4]

Respect Each Other’s Time

Show up on time. Cut calls short. Don’t check email or play online games.
Respect involves communication. If you partner is often late, bring it

up. If you receive a call that you must answer, let your partner know and
reschedule your meeting, acknowledging that you’ve inconvenienced your
partner.

Be a Team Player

Take collective ownership of the code you and your partner are writing,
abandoning the notion of “my part” and “your part.” And, in light of that
view, make sure you speak up when you think an error’s been introduced,
and don’t be too proud to admit a mistake. Finally, if you work on any
code alone (for example, if you a solution comes to you in a dream, or in
the shower), review it together line-by-line before incorporating it into your
program. Often, it’s useful for the two of you to rewrite solo code from
scratch (you’d be surprised how many errors you can catch that way).

Again, communication is crucial. Perhaps you’re having a hard time ad-
justing to pair programming, or your partner continues to say “my” instead
of “our” work. Speak your mind and work through any problems.

Offer to cease driving when it’s time (“Hey, would you like a go at
the keyboard?”), and remind your partner it’s time to switch when you’re
navigator (“Mind if I drive for a while?”).

Be Open-minded and Light-hearted

One of the most important predictors of success in pair programming is buy-
in: if you are determined to make the practice fail, it will. Choose a healthy
perspective: laugh at your mistakes, apologize if you hurt your partner’s
feelings, and, more generally, look at pair programming as an opportunity
to learn.

Also, realize that pair programming can be a pretty demanding activity,
so take breaks when you need them. Perhaps a five-minute microbreak is

3



all you need: to check email, get a drink of water, or catch some fresh air.
Or maybe you would like to take an hour off to get dinner.

Seek Advice When You Need It

It’s important to realize that you and your partner are not alone: if the two
of you are having trouble working together, it’s important to let an HTA or
the professor know so she or he can provide further guidance. The HTAs
and professors are familiar with the pair programming philosophy and the
difficulties that may arise. They will be able to assist in conflict resolution
and/or help you and your partner re-pair if necessary.

It is not acceptable in pair programming for a single person to do all (or
even most) of the work and then add his partner’s name. Academic honesty
is always more important than fulfilling a pair programming requirement. If
your partner is unwilling to help or fails to show up at scheduled meetings,
or if your partner is unwilling or resistant to letting you contribute your
share of the work, contact an HTA or the professor. Asking for help is not
an inflammatory action, but an important step in conflict resolution.

4 Pair Programming in CS4

Given enough eyeballs, all bugs are shallow.
—Eric Raymond

To summarize the collaboration policy included in the course missive:

• For most labs during the course, you will be required to pair program,
following the methodology outlined in this document. You’re expected
to work with a different partner at every lab, so don’t worry about
finding a partner in advance.

• For each project, unless otherwise indicated, you have the option to
pair program following the methodology of this document. If you opt
to work on a project in this way, you and your partner need to let the
TAs know prior to the project’s partner selection deadline (usually
one week before the project due date). You are expected to follow the
methodology outlined above even when you are not actively coding.
You can do this by sharing a notebook or a whiteboard, instead of a
screen, as you plan and design your program(s), and develop solutions
that require a written answer. You and your partner are each expected
to understand (and be able to replicate) everything you turn in.

• On homeworks, you may not pair program. All of the rules outlined
in the Collaboration Policy regarding homeworks still apply.

• On exams, no collaboration of any sort is permitted.
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You are encouraged to read All I Really Need to Know About Pair Pro-
gramming I Learned in Kindergarten, to enhance your understanding of the
methodology. [4]
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