

Homework 1
Due 4:00pm, Wednesday, February 6, 2019

Installation and Handin 1

Part I: Strings and Lists (10) 2

Part II: Tracing Program Execution (20) 4

Part III: Debugging & Conditionals (10) 6

Part IV: Functions and Function Calls (30) 8

Part V: List Comprehensions (30) 10

Installation and Handin
Homework Setup. For most homework assignments, there will be support files that you will
need to complete the assignment. These can be copied to your home directory by using the
cs4_install command in a Brown CS Terminal window. For this homework, type in terminal:

cs4_install hw01

There should now be a hw01 folder within your homeworks directory. Using Terminal, you can
move into the hw01 folder with the cd command:

cd ~/course/cs0040/homeworks/hw01

Homework hand-in. When you have finished the homework, be sure to turn in all the files
requested and that they are named exactly as specified, including spelling and case. To submit
the files, from a Brown CS Terminal window in your ~/course/cs0040/homeworks/hw01
directory, type:

cs4_handin hw01

The entire contents of your ~/course/cs0040/homeworks/hw01 directory will be handed
in. Check for a confirmation email to ensure that your assignment was correctly submitted using
the cs4_handin command. You can re-submit this assignment using the cs4_handin
command at any time, but be careful, as only your most recent submission will be graded.

1

Part I: Strings and Lists (10)
This homework is divided into five parts. Make sure to pay attention to which file your answers
for each part go in as you read the assignment specifications below.

Problem 1.1a) String Indexing and Slicing (5)
Open hw01_1.py in Atom. You are provided with the three strings and the following stencil
code:

b = "brown"
u = "university"
a = "awesome"
Example: Create the string "best"

answer_ex1 = b[0] + u[4:9:2]
print(answer_ex1)

Create the string 'brownies'

answer1 = ''
print(answer1)

Create the string 'emotion'

answer2 = ''
print(answer2)

Following the example, update hw01_1.py to create the requested strings using b , u and a
and whichever of the following string operations you deem appropriate (hint: you don’t have to
use all of them!):

● string indexing (e.g., u[1])
● string slicing (e.g., u[1:3]),
● string skip-slicing (e.g., t[3:1:-1])
● string concatenation (e.g., b+u)
● string repetition (e.g., 2*t)

We encourage you to try and do this with as few string operations as possible. Be sure to save
your updated answers back to hw01_1.py , and use then the following command:

python3 hw01_1.py

to try out your solutions. You should see the correct strings printed out. If they are not correct,
double check your work and make some edits to ensure all the correct strings are printing!

2

Problem 1.1b) List Indexing and Slicing (5)
For the second part of this problem, you are provided with the following three lists and the
following stencil code:

e = [2, 4, 6, 8]
o = [1, 3, 5, 7, 9]
c = [0,10]
Example: Create the list [1, 4, 6]

answer_ex2 = [o[0]] + e[1:3]
print(answer_ex2)

Create the list [0, 1, 5, 9, 10]

answer5 = []

print(answer5)

Create the list [2, 6, 9, 5, 1]

answer6 = []

print(answer6)

Following the example, create the requested lists using whichever of the following string
operations you deem appropriate (hint: you don’t have to use all of them!):

● list indexing (e.g. e[1])
● list slicing (e.g. o[1:3])
● list skip-slicing (e.g. e[3:1:-1])
● list repetition (e.g. 2*c)
● list concatenation (e.g. [e[1]]+c)
● list construction (e.g. [e[0], c[1]])

Again, try to use as few list operations as possible. All answers should also be saved to
hw01_1.py . Again, use the python3 hw01_1.py command to check your answers!

Part II: Tracing Program Execution (20)
It’s very important to know the flow of a program during its execution and how it affects the
program’s state (i.e. the value of all of its variables). By default, a program’s statements are
executed sequentially, from top to bottom. The value of a variable in a program changes as it is
assigned different values during the execution of a program.

Below is a simple Python program. Here, b is first set to 5, and then updated to a new value of
8, which is its value for the rest of the program.

3

a = 15
b = 5
c = a + b

b = b + 3
a = b // 4
c = b ** 2

Problem 1.2a) Variable Reassignment (10)
The file hw01_2a.py contains a copy of the code above embedded in the table below. Fill in
the table inside the file to show the values of the variables as each line of code is executed. The
first two rows of the table are filled in for you. Once you are done, list the final values of a , b ,
and c .

'''

Complete the following table to show all variable changes

 line of code | a | b | c |

 a = 15 | 15 | | |

 b = 5 | 15 | 5 | |

 c = a + b | | | |

 b = b + 3 | | | |

 a = b // 4 | | | |

 c = b ** 2 | | | |

Q: What are the final value of a, b and c?

A: a = , b = and c =

'''

Problem 1.2b) Understanding Variable Scope (10)
Your goal is to:

● Walk through the code and identify which variables are local, and which variables are
global. Some are used as both local and global variables in the code!

● Fill out the table at the bottom of the file, by designating each variable L (local only), G
(global only), or B (both)

4

Part III: Debugging & Conditionals (10)
The hw01_3.py file contains the following code:

def decide(temp):
 """
 Print a decision based on an input temperature in Fahrenheit

 """

 if temp > 80:
 print('The temperature is','temp', ', so we will go to Newport.')
 if temp > 55 and temp <= 80:
 print('The temperature is','temp', ', so we will go to Boston.')
 if temp > 40 and temp <= 55
 print('The temperature is','temp,' ', so we will go to Eastside.')
 if temp > 32 and temp <= 40:
 print('The temperature is','temp', ', so we will go to the Avon.')
 if temp <= 32:
 print('The temperature is', temp, ', so we will stay in.'

decide(85)
decide(60)
decide(45)
decide(36)
decide(10)

The decide function is supposed to take as input a number indicating the temperature and
print out a decision for your weekend plan. In its current state, the function contains several
errors that prevent it from running properly.

To introduce you to the process of debugging, your first task is to fix these syntax errors.
Syntax errors are simply typos that prevent the code from running (a missing parenthesis,
incorrectly placed quotation mark, etc.). Once these errors are fixed, you should be able to run
the given code and see the results. After each call to the decide function it should print:

The temperature is <XX> <decision>

where <XX> is the input temperature in Fahrenheit and <decision> is the plan for that
temperature based on the rules of the function. For this bug fixing step, do not change how
these are currently defined (just get them to work). Once you think you’re done, you can try
running the program with the python3 command:

python3 hw01_3.py

5

Hints:

● If your program fails to run due to a syntax error, the error messages that are produced
in the terminal can sometimes give you clues as to why your code is incorrect. In
particular, the error messages will print out the line number on which your program is
failing.

● A majority of the errors are related to missing parentheses, quotation marks or colons.
● Note the difference between 'temp' and temp .

Part IV: Functions and Function Calls (30)
In this part we are going to write some simple functions. Write your answers to all parts of this
problem in hw01_4.py . For each part, make sure you:

● Include a docstring right after the declaration of the function that describes what the
function is doing. See the decide function in Part III for an example of this (docstrings
are denoted by triple quotes """).

● Do not use any built-in Python functions that we have not yet discussed in class.
● Make sure all function names and input variables are exactly as we have given them to

you. Changing these names will make it difficult for us to test what you have written.
● Return the requested output, printing is optional!

Problem 1.4a) Functions with Numeric Inputs (15)

square(x)
Write a function named square(x) , that takes a number x as input and returns the square
of its input. For example:

>>> square(2)
4

root(x)
Write a function named root(x) , that takes a number x as input and returns the square
root of its input. For example:

>>> root(2)
1.41421356...

6

Hint: how can you express a root with arithmetic operators we have learned?

distance(x1, y1, x2, y2)
Write a function distance(x1, y1, x2, y2) that takes four inputs that specify the x- and
y-coordinates of two points (x1, y1) and (x2, y2), and returns the distance between those
two points. Sample input and output is shown below. Use the distance formula:

 d = √(x) y)2 − x1
2 + (2 − y1

2

Note: Implement your distance function using the square(x) and root(x) functions you just
wrote.

>>> distance(2, 3, 5, 7)
5.0

Problem 1.4b) Functions with Lists and Strings (15)

mid_element(numlist)
Write a function called mid_element(numlist) that takes as input a non-empty list of
numbers and returns:

● the element if there is only one element in numlist
● the middle element if there is an odd number of elements in numlist
● the average of the two middle elements if there is an even number of elements in

numlist

Note: The only built-in Python function you are allowed to use is len() .

>>> mid_element([1])
1

>>> mid_element([1, 2, 3, 4, 5])
3

>>> mid_element([1, 2, 3, 4])
2.5

Hint: / is used for float division and // is used for integer division. Make sure you are using
the correct one!

7

smaller_len(s1, s2)
Write a function called smaller_len(s1, s2) that takes as input two different strings, and
returns the length of the smaller string.

Note: You are not allowed to use the Python built-in min() function. If the strings are the same
length, return s1.

>>> smaller_len("hello", "hi")
2

Part V: List Comprehensions (30)
Place your answers for Part III in the file named hw01_5.py .

Problem 1.5a) List Comprehension Puzzles
You will see that hw01_5.py includes several incomplete list comprehensions. Complete them
by filling in the blanks in the file to produce the results specified below.

1. [5, 6, 7, 8, 9] .

2. [‘going’, ‘eating’, ‘reading’] .

3. [‘o’, ‘d’, ‘w’, ‘s’, ‘?’] .

4. [5, 10, 15, 20] . Note that you need to fill in two blanks for this one: the expression
before the for , and the expression after the if .

Problem 1.5b) Functions Using List Comprehensions
In this problem you will write two functions.

Write a function called longer_than(n, wordlist) that takes as inputs an integer n and a
list of strings wordlist , and that uses a list comprehension to construct and return a list
consisting of all words from wordlist that are longer than n . (Hint: your list comprehension will
need an if clause.) For example:

>>> longer_than(3, ['only', 'recursion', 'on', 'the', 'brain'])

8

['only', 'recursion', 'brain']

>>> babynames = ['Alexander', 'Katherine', 'Ben', 'Annabel']
>>> longer_than(6, babynames)
['Alexander', 'Katherine', 'Annabel']
>>> longer_than(7, babynames)
['Alexander', 'Katherine']
>>> longer_than(10, babynames)
[]

Write a function called most_vowels(wordlist) that takes a list of strings wordlist and
returns the string in the list with the most vowels. You may assume that the strings only contain
lowercase letters. For example:

>>> most_vowels(['Buddy', 'Oreo', 'Max', 'Toto'])
'Oreo'

>>> most_vowels(['puppies', 'are', 'the', 'greatest'])
'puppies'

The function that you write should use a num_vowels function as a helper function. We
strongly encourage you to use the list-of-lists technique that we discussed in lecture, but you
may use some other technique if you prefer.

Note: When two or more words are tied for the most vowels, it doesn’t matter which one you
return as long as the one returned is part of the subset that is tied for most vowels.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
document or have any concerns about this and any other CS4 document by posting on Piazza
or filling out our anonymous feedback form.

9

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSeSOSbwg53_WzBftn60LelDNt1G3TN0Av8mfyIUZ7s4pXwubg/viewform

