

Homework 3
Due 4:00pm, Wednesday, February 20, 2019

Installation and Handin 0

Part I: Mutability (40) 1
Problem 3.1a) Tracing References 1
Problem 3.1b) Functions for 2-D Lists 2
Problem 3.1c) More 2-D List Functions 3
Problem 3.1d) Questions 8

Part II: Conway’s Game of Life (60) 8
Problem 3.2a) Warm-up 8
Problem 3.2b) Real Life 10
Visualizing the Game 12

Installation and Handin 1
Homework Setup. For each homework assignment, there may be support files that you will
need to complete the assignment. These can be copied to your home directory by using the
cs4_install command in a Brown CS Terminal window. For this homework type

cs4_install hw03

There should now be a hw03 folder within your homeworks directory. Using Terminal, you can
move into the hw03 folder with the cd command:

cd ~/course/cs0040/homeworks/hw03

Homework hand-in. Be sure to turn in all the files requested and that they are named exactly
as specified, including spelling and case. When you’re ready to submit the files, run:

cs4_handin hw03

from a Brown CS Terminal window from your ~/course/cs0040/homeworks/hw03
directory. The entire contents of your ~/course/cs0040/homeworks/hw03 directory will be
handed in. Check for a confirmation email to ensure that your assignment was correctly
submitted using the cs4_handin command. You can resubmit this assignment using the
cs4_handin command at any time, but be careful, as only your most recent submission with
be graded.

1

Part I: Mutability (40)
Babies and Puppies have united because they have been united in a singular struggle: they
know their own names but no one else seems to! They keep getting called by these
“nicknames” by adults but have no idea who they’re referring to, and they need your help to
understand.

Include your answers and code to this part of the homework in hw03_1.py . Remember to put
any written responses inside of a triple quoted string.

Problem 3.1a) Tracing References
Consider the following Python program:

def foo1(values, x):
 for i in range(len(values)):
 values[i] = i

 x += 1

a = [4, 5, 6]
b = a[:]

c = a

x = 5

foo1(c, x)

print('a =', a)
print('b =', b)
print('c =', c)
print('x =', x)

Trace this code in Python Tutor, then answer the following questions:

1. Before the function call foo1(c, x) is made:
○ How many distinct lists are there?
○ Which variables refer to the same list?

2. During the execution of the function:
○ What value or values does the parameter values take? (inside of foo1)
○ What values does the variable i take on?

http://pythontutor.com/visualize.html#py=3

2

○ When the function call is about to complete, what return value does Python Tutor
specify? Why does this make sense?

3. After the function call returns:
○ What output does the program produce?
○ Why have the values of some of the variables changed, while others have not?

Problem 3.1b) Functions for 2-D Lists
In this problem we’ll work with 2-D lists of single-digit integers.

We have given you a function called create_grid(height, width) that creates and
returns a 2-D list of height rows and width columns in which all of the cells–i.e., all of the
elements of the sublists–have a value of 0 .

Additionally, we’ve also provided a function called print_grid(grid) that returns the grid in
a well-structured format, printing each row in a new separate line.

For example:

>>> grid = create_grid(3,5)
>>> print_grid(grid)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Write a function called mod_grid(grid, n) which takes a 2-D list of integers (grid) and an
integer n , and replaces each value in the grid with the modulus(%) of that value with n .
For example:

>>> mygrid = [[5, 4, 3, 2], [3, 6, 9, 1], [4, 7, 2, 9]]
>>> print_grid(mygrid)
5 4 3 2
3 6 9 1
4 7 2 9
>>> mod_grid(mygrid, 2)
>>> print_grid(mygrid)
1 0 1 0
1 0 1 1
0 1 0 1

3

Notice that mod_grid() does not return a value. It doesn’t need to! That’s because its
parameter grid gets a copy of the reference to the original 2-D list, and thus any changes that
it makes to the internals of that list will still be visible after the function returns.

We will now write a new version of this function called mod_grid_new(grid, n) that
leaves the original 2-D list unchanged. Instead it should create and return a new 2-D list
containing the results of taking the modulus of each list value with n . The internals of grid
should not be changed by this function.

Hint: Before the loop, create a new 2-D list with the same dimensions as the original one. To do
this, consider calling the create_grid function to do the work for you! Next, modify the loop
so that it stores the result of each modulus calculation in the new 2-D list, rather than in the
original one.

For example:

>>> mygrid = [[5, 4, 3, 2], [3, 6, 9, 1], [4, 7, 2, 9]]
>>> result = mod_grid_new(mygrid, 2)
>>> print_grid(result)
1 0 1 0
1 0 1 1
0 1 0 1
>>> print_grid(mygrid)
5 4 3 2
3 6 9 1
4 7 2 9

Problem 3.1c) More 2-D List Functions
This problem involves writing some more functions that create and manipulate two-dimensional
lists of integers. These functions or ones similar to them, will be used in the next problem to
implement John Conway’s Game of Life.

Write a function called diagonal_grid(height, width) that creates and returns a 2-D
list of height rows and width columns. Additionally, all cells on the diagonal - i.e. the cells
whose row and column indices are the same, should contain the value 1 . All other cells should
have a value of 0 instead.

Hint: Since there will likely be more 0 ’s than 1 ’s, consider using the create_grid(height,
width) function to create a grid of 0 ’s, and then modify the appropriate cells to 1 .

4

For example:

>>> grid = diagonal_grid(6, 8)
>>> print_grid(grid)
10000000

01000000

00100000

00010000

00001000

00000100

Write a function called inner_grid(height, width) that creates and returns a 2-D list of
height rows and width columns in which the “inner” cells are all 1 and the cells on the outer
border are all 0 .

Hint: Consider modifying the ranges used by your loops so that they loop over only the inner
cells.

For example:

>>> grid = inner_grid(5, 5)
>>> print_grid(grid)
00000

01110

01110

01110

00000

Write a function called random_grid(height, width) that creates and returns a 2-D list
of height rows and width columns in which the inner cells are randomly assigned either 0 or
1 (with equal probability), but the cells on the outer border are all 0 .

Hint: You will need to use the call random.choice([0, 1]) , which will return either a 0 or a
1 .

Note: You do not need to test this function.

For example (although the actual values of the inner cells will vary):

5

>>> grid = random_grid(10, 10)
>>> print_grid(grid)
0000000000

0100000110

0001111100

0101011110

0000111000

0010101010

0010111010

0011010110

0110001000

0000000000

As we’ve seen in lecture, assigning a list variable does not actually copy the list. To see an
example of this, try the following commands from the Shell:

>>> grid1 = create_grid(2, 2)
>>> grid2 = grid1 # copy grid1 into grid2
>>> print_grid(grid2)
00

00

>>> grid1[0][0] = 1
>>> print_grid(grid1)
10

00

>>> print_grid(grid2)
10

00

Notice how changing grid1 also changes grid2 ! That’s because the assignment grid2 =
grid1 did not copy the list represented by grid1. Instead it copied the reference to the list.
Thus, grid1 and grid2 both refer to the same list!
To avoid this problem, write a function called copy(grid) that creates and returns a deep
copy of grid –a new, separate 2-D list that has the same dimensions and cell values as grid .
Note that you cannot just perform a full slice on grid (e.g., grid[:]), because you would still
end up with copies of the references to the rows. Instead, you should do the following:

6

● Use create_grid to create a new 2-D list with the same dimensions as grid , and
assign it to an appropriately named variable. Remember that len(grid) will give you
the number of rows in grid , and len(grid[0]) will give you the number of columns.

● Use nested loops to copy the individual values from the cells of grid into the cells of
your newly created grid.

● Make sure to return the newly created grid and not the original one!

For example:

>>> grid1 = diagonal_grid(3, 3)
>>> print_grid(grid1)
100

010

001

>>> grid2 = copy(grid1) # should get a deep copy of grid1
>>> print_grid(grid2)
100

010

001

>>> grid1[0][1] = 1
>>> print_grid(grid1) # should see an extra 1 at [0][1]
110

010

001

>>> print_grid(grid2) # should not see an extra 1
100

010

001

Write a function called invert(grid) that takes an existing 2-D list of 0 ’s and 1 ’s and inverts
it – changing all 0 values to 1 , and changing all 1 values to 0 .

Important notes:

● This function should not create and return a new 2-D list. Rather, it should modify the
internals of the existing list.

● There should not be a return statement because its parameter grid gets a copy of the
reference to the original 2-D list, and thus any changes that it makes to the internals of
that list will still be visible after the function returns.

● You may assume all values in the grid are either 0 or 1 (no bad inputs)

7

● Even though this function does not return a value, you are still expected to test it like you
would with functions that do return values. Think about how you could set things up
before the assert statement so that your tests work.

For example:

>>> grid = diagonal_grid(5, 5)
>>> print_grid(grid)
10000

01000

00100

00010

00001

>>> invert(grid)
>>> print_grid(grid)
01111

10111

11011

11101

11110

To reinforce your understanding of references, let’s walk through the following example code:

>>> grid1 = inner_grid(5, 5)
>>> print_grid(grid1)
00000

01110

01110

01110

00000

>>> grid2 = grid1
>>> grid3 = grid1[:]
>>> invert(grid1)
>>> print_grid(grid1)
11111

10001

10001

10001

11111

8

Problem 3.1d) Questions
Answer the following questions where specified in the file:

1. As you can see above, the value of grid1 has been changed. What about grid2 and
grid3 ?

2. Before entering the statements below, see if you can predict what has happened to
grid2 and grid3. If we print them, will we see the original grid or an inverted one?

3. Test your understanding by first entering the following:
>>> print_grid(grid2)

What do you see? Why does this make sense?
4. Now enter the following:

>>> print_grid(grid3)

What do you see? Why does this make sense?

Part II: Conway’s Game of Life (60)
Include your answers and code to this part of the homework in hw03_2.py .

IMPORTANT: We have included an import statement at the top of hw03_2.py that imports all
of the functions from your hw03_1.py file. Therefore, you will be able to call any of the
functions that you wrote previously.

Babies have decided that the only way to prove that they are better than puppies is to figure out
how to get even more babies! They heard about the Game of Life, and want you to help them
figure out how it works. In this part, you’ll first get warmed up and then implement the Game of
Life so the babies can emerge victorious.

Problem 3.2a) Warm-up
Write a function called has_left_right_neighbor(grid) that takes an existing
generation of cells (the 2-D list grid), and that creates and returns a new_grid with the same
dimensions as grid , but with cell values determined as follows:

● If an inner cell in grid has an alive left neighbor or an alive right neighbor or both, the
corresponding cell in the new_grid should be 1 .

● If an inner cell in grid has neither an alive left neighbor nor an alive right neighbor, the
corresponding cell in the new_grid should be 0 .

● The cells on the outer boundary of grid should be left alone.

For example:

9

>>> grid1 = diagonal_grid(6, 6)

>>> print_grid(grid1)
100000

010000

001000

000100

000010

000001

>>> grid2 = has_left_right_neighbor(grid1)
>>> print_grid(grid2)

100000

001000

010100

001010

000100

000001

Notice how the cells on the outer boundary are the same as the corresponding cells in the
original grid, but that the inner cells have been set to 0 or 1 based on the rules mentioned
above.

Write a function called count_neighbors(cellr, cellc, grid) that returns the
number of alive neighbors of the cell at position[cellr][cellc] in the specified grid. You
may assume that the indices cellr and cellc will always represent one of the inner cells of
grid, and thus the cell will always have eight neighbors.

For example:

>>> grid1 = [[0,0,0,0,0],
 [0,0,1,0,0],
 [0,0,1,0,0],
 [0,0,1,0,0],
 [0,0,0,0,0]]
>>> print_grid(grid1)
00000

00100

00100

00100

00000

10

>>> count_neighbors(2, 1, grid1) # grid1[2][1] has 3 alive neighbors
3

>>> count_neighbors(2, 2, grid1) # we don't count the cell itself!
2

>>> count_neighbors(1, 2, grid1)
1

>>> grid2 = [[0,0,0,0,0,0],
 [0,0,1,1,0,0],
 [0,1,1,1,0,0],
 [0,0,1,0,1,0],
 [0,0,1,0,1,0],
 [0,0,0,0,0,0]]
>>> count_neighbors(2, 2, grid2) # grid2[2][2] has 5 alive neighbors
5

>>> count_neighbors(2, 3, grid2) # so does grid2[2][3]
5

>>> count_neighbors(3, 3, grid2) # grid2[3][3] has 6 alive neighbors
6

Problem 3.2b) Real Life
Finally, let’s implement the rules of the Game of Life! The Game of Life was invented by John
Conway, who is currently a professor of mathematics at Princeton. It’s not a game in the
traditional sense, but rather a grid of cells that changes over time according to a few simple
rules.

At a given point in time, each cell in the grid is either “alive” (represented by a value of 1) or
“dead” (represented by a value of 0). The neighbors of a cell are the cells that immediately
surround it in the grid.

Over time, the grid is repeatedly updated according to the following five rules:

1. All cells on the outer boundary of the grid remain fixed at 0 .
2. An inner cell with fewer than 2 alive neighbors must die (because of loneliness).
3. An inner cell with more than 3 alive neighbors must die (from overcrowding).
4. An inner cell that is dead and has exactly 3 alive neighbors comes to life.
5. All other cells maintain their state.

Although these rules seem simple, they give rise to complex and interesting patterns! You can
find more information and a number of interesting patterns here.

Write a function called next_gen(grid) that takes a 2-D list called grid that represents the

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

11

current generation of cells, and uses the rules of the Game of Life (mentioned previously) to
create and return a new 2-D list representing the next generation of cells.

Hint: Begin by creating a copy of grid and call it new_grid . Consider using previously written
functions such as count_neighbors() . Make sure that you count the neighbors in the
current generation grid and not the new_grid . When updating a cell, make sure to change
the appropriate element of new_grid and not the element of grid .

Here are two patterns that you might want to take advantage of when testing your next_gen()
function:

1. If a 3x1 line of alive cells is isolated in the center of a 5x5 grid, the line will oscillate from
vertical to horizontal and back again, as shown below:

>>> grid1 = [[0,0,0,0,0],
 [0,0,1,0,0],
 [0,0,1,0,0],
 [0,0,1,0,0],
 [0,0,0,0,0]]

>>> print_grid(grid1)

00000

00100

00100

00100

00000

>>> grid2 = next_gen(grid1)
>>> print_grid(grid2)

00000

00000

01110

00000

00000

>>> grid3 = next_gen(grid2)
>>> print_grid(grid3)
00000

00100

00100

00100

00000

and so on!

12

2. In a 4x4 grid, if the inner cells are all alive, they should remain alive over time:

>>> grid1 = [[0,0,0,0],
 [0,1,1,0],
 [0,1,1,0],
 [0,0,0,0]]

>>> print_grid(grid1)

0000

0110

0110

0000

>>> grid2 = next_gen(grid1)

>>> print_grid(grid2)

0000

0110

0110

0000

Visualizing the Game
Once your next_gen function is working, try running these commands in terminal:

python3 -i gol_graphics.py

>>> grid = random_grid(15, 15)
>>> show_graphics(grid) # run the Game of Life in a graphics window

The following key presses can be used to control the simulation:

● Enter (or Return): begin/resume the simulation
● P : pause the simulation
● Spacebar : clear the grid
● Q : quit the simulation

When the simulation is paused, you should be able to change the state of a cell by clicking on it.
Trying other patterns: The Life Lexicon is a website that includes many examples of
interesting starting patterns. They use a different representation for the cells in a grid: a dot .
character for a dead cell and an O character for an alive cell. For example, here is a well-known
pattern known as the Gosper glider gun:

http://www.physics.buffalo.edu/gonsalves/ComPhys_1998/Java/GameOfLife_lexicon.html

13

........................O...........

......................O.O...........

............OO......OO............OO

...........O...O....OO............OO

OO........O.....O...OO..............

OO........O...O.OO....O.O...........

..........O.....O.......O...........

...........O...O....................

............OO......................

You can easily try a pattern that is specified in Life Lexicon form by using the read_pattern
function. It takes 2 inputs specifying the amount of padding (i.e., the number of empty rows and
empty columns) that should be added around a pattern that is entered by the user. When you
call this function, it waits for you to enter a pattern in the form found in the Life Lexicon, and it
converts it into a 2-D list of the form that our functions use.
For example:

>>> grid = read_pattern(20, 20) # use a padding of 20 on all sides

enter the pattern:

........................O...........

......................O.O...........

............OO......OO............OO

...........O...O....OO............OO

OO........O.....O...OO..............

OO........O...O.OO....O.O...........

..........O.....O.......O...........

...........O...O....................

............OO......................

When you are prompted to enter the pattern, copy and paste it into the Shell window and hit
Enter . (It’s not a problem if you have extra spaces at the start of some of the lines when you
paste the pattern.) You can then run the pattern graphically as indicated above.

Colors
You can also change the colors used for the alive and dead cells. For example, to invert the
default color scheme you can do the following from the Shell before calling show_graphics :

>>> set_color(0, 'red')
>>> set_color(1, 'white')

http://www.argentum.freeserve.co.uk/lex.htm
http://www.argentum.freeserve.co.uk/lex.htm

14

A full list of color names is available here.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
document or have any concerns about this and any other CS4 document by posting on Piazza
or filling out our anonymous feedback form.

http://wiki.tcl.tk/16166
https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSeSOSbwg53_WzBftn60LelDNt1G3TN0Av8mfyIUZ7s4pXwubg/viewform

