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Installation and Handin 
Homework Setup. For each homework assignment, there may be support files that you will 
need to complete the assignment. These can be copied to your home directory by using the 
cs4_install  command in a Brown CS Terminal window. For this homework type: 
 

cs4_install hw05 

 

There should now be a hw05  folder within your homeworks directory. Using Terminal, you can 
move into the hw05  folder with the cd command: 
 

cd ~/course/cs0040/homeworks/hw05 

 

Homework hand-in. Be sure to turn in all the files requested and that they are named exactly 
as specified, including spelling and case. When you’re ready to submit the files, run: 
 
cs4_handin hw05 
 
from a Brown CS Terminal window from your ~/course/cs0040/homeworks/hw05         
directory. The entire contents of your ~/course/cs0040/homeworks/hw05 directory will be          
handed in. Check for a confirmation email to ensure that your assignment was correctly              
submitted using the cs4_handin command. You can resubmit this assignment using the            
cs4_handin command at any time, but be careful, as only your most recent submission with               
be graded. 

 



 
Note: Harder parts of this problem set are indicated by *.  Problems that may be challenging are 
also indicate by * following their name. 

Part I: Efficiency* (20) 
Place your answers for Part I in a file named hw05_1.py . 

Problem 5.1a) Power Function 
In this problem, you will compare the efficiency of two different recursive versions of the power 
function. In lecture, we covered power(b,n) , which uses a recursive step based on the 
following definition: 
 

 
 
In hw05_1.py , write the function myPower(b,n)  based on the following definition: 
 

 
 
You may assume n  is a non-negative integer. As always, use test first design as you create a 
recursive version of myPower (and be sure to include all your test cases). For some guidance, 
this is how you could implement the even case: 
 

sqrt = myPower(b, n/2) 
return sqrt*sqrt 

 
And this is how you could implement the odd case: 
 

return b*myPower(b, n-1) 

Problem 5.1b) Thoughtful Comparison* 
Include your answers to the following question inside of a triple quoted string in hw05_1.py . 
 

 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Db%5En%20%3D%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bcl%7D%0A%201%20%26%5Cmbox%7B%20if%20%24n%20%3C%201%24%7D%20%5C%5C%0A%20%20b(b%5E%7Bn-1%7D)%20%26%20%5Cmbox%7Botherwise%7D%0A%5Cend%7Barray%7D%20%5Cright.
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Db%5En%20%3D%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bcl%7D%0A%201%20%26%5Cmbox%7Bif%20%24n%20%3C%201%24%7D%20%5C%5C%0A%20(b%5E%7Bn%2F2%7D)%5E2%20%26%5Cmbox%7B%24n%24%20even%7D%5C%5C%0A%20%20b(b%5E%7Bn-1%7D)%20%26%20%5Cmbox%7B%24n%24%20odd%7D%0A%5Cend%7Barray%7D%20%5Cright.


1) How many recursive calls are made when power(2,9)  is evaluated?  How about in the 
method you implemented myPower(2,9) ? 

2) Draw call diagrams for both power(2,9)  and myPower(2,9).  Take photos of them 
and include them in your homework submission as power_diagram.jpg and 
myPower.jpg. 

3) Which function is more efficient? Why? Try and be as clear as you can.  
4) What would have happen if you had implemented the even case of myPower(b,n)  via:  

return myPower(b, n/2)*myPower(b, n/2) 

 
Would the solution be correct? Is this alternate version as efficient as the original? 
Explain.  

Problem 5.1c) Empiric Comparison 
In this question you will run a computer experiment to verify your conclusions above and to 
measure the average number of recursive calls these functions make over a range of input 
values.  
 
First, create the alternate version of the myPower  that was described in Problem 5.1b Question 
4. Call this new version myOtherPower(b, n).  Again, Its recursive step for the even case 
should be: 
 

return myOtherPower(b,n/2)*myOtherPower(b,n/2) 

 

The recursive step for the odd case should be: 
  

return b*myOtherPower(b,n-1) 

 
In other words, make sure you do not call power  or myPower  inside of myOtherPower . 
 
Now, modify myPower  again and modify your new myOtherPower  function to count the 
number of recursive calls they make. See the modified version of power  below as an example. 
(When you submit, it is okay to include just your final versions of myPower  and 
myOtherPower .) 
 

def power(b, n): 
   '''Returns b raised to the nth power''' 
   if n < 1: 
       return 1 
   else: 

 



       global num_calls 
       num_calls = num_calls + 1 
       return b * power(b, n - 1) 
 

 

num_calls = 0 
power(2,9) 
print(num_calls) # Prints out number of recursive calls made by power 

 
Next, modify the additional code provided to find the average number of recursive calls made to 
each function when they are used to calculate 3^n, for n=1,2,3,4,5,6,...,100.  
 
When your hw05_1.py  file is run, it should print out these answers. For example: 
 

power(2,9) made 9 recursive calls. 
myPower(2,9) made __ recursive calls. 
myOtherPower(2,9) made __ recursive calls. 
 

The average number of recursive calls when evaluating 3^n, for 
n=0,1,2,3,...,100 is as follows: 
power = 50.0 
myPower = ___ 

myOtherPower = ___ 

 
The number of recursive calls for calculating 2^9 reported by your program should agree with 
your answers in Problem 5.1b, and also be reflected in the number of edges (i.e., lines 
connecting function calls) in your call diagrams.  If they do not agree, something is wrong with 
your code or your reasoning, or both. Try and resolve it. 

Part II: Anonymous Functions (20) 
This problem has been removed from the homework. Move on, be happy! 
As noted on Piazza, We will be giving up to 3 bonus points per question if you use a lambda 
in a practical and elegant way anywhere else on the homework!  

Part III: A (Second) Taste of Recursion (20) 
Place your answers to this part in hw05_3.py . 
 

Recursive functions are functions that may call themselves. Below is an example that calls itself 
whenever its first argument is less than its second. 

 



 

def myst(a, b): 
    """ 
    Perform a mystery operation on two integers. 
    """  
    if a >= b: 
        return b  
    else: 
        m = myst(a * 2, b // 2)  
        return a + m 
 
Trace the execution of myst(1,32)  and determine what it will return. You may use any 
reasonable approach, provided that you show all of the calls to the function in a table like the 
one below. This table is provided in hw05_3.py , where you should place your final answer. 
Complete the table by constructing rows as needed and adding the values for a , b , and m  on 
each recursive call, as well as what each call to myst  returns. Some initial values of a  and b 
have been filled in for you: 
 

function call | a  |  b |  m | return | 
--------------------------------------- 
myst(1,32)    | 1  | 32 |    |        | 
myst(2,16)    | 2  | 16 |    |        | 
              |    |    |    |        | 
 
Here is a full example for myst(3,20) : 
 

function call | a  | b  | m  | return |  
--------------------------------------- 
myst(3,20)    | 3  | 20 | 11 | 14     |  
myst(6,10)    | 6  | 10 | 5  | 11     |  
myst(12,5)    | 12 | 5  |    | 5      |      
 
You may also find it helpful to trace this code using Python Tutor. However, as this course 
progresses you should become comfortable with tracing code by hand (especially since you 
may be asked to do so on the quiz). 

Part IV: Longest Common Subsequence (20) 
Place your answers for Part IV in the file named hw05_4.py . 
 
For this part of the homework you may use any of the programming techniques that we have 
covered in class: conditionals, recursion, filter, map, reduce  and/or list comprehensions.  
 
The veterinarians of Puppy Land need your help! Tensions are rising between the vets and their 
canine patients, with puppies suddenly going savage for mysterious causes we need to act fast. 

 

http://pythontutor.com/visualize.html


Head Vet Joy suspects it may have something to do with DNA sequences and wants to 
compare healthy and infected puppies. 
 
Write a function lcs(s1, s2)  that takes two strings s1  and s2  and returns the longest 
common subsequence (LCS) that they share. The LCS is a string whose letters appear in both 
s1  and s2 ; these letters must appear in the same order in both s1  and s2 , but not necessarily 
consecutively. For example: 
 

>>> lcs('gattaca', 'tacgaacta') 
'gaaca' 

>>> lcs('wow', 'whew') 
'ww' 

>>> lcs('', 'dog')                 # first string is empty 
'' 

>>> lcs('abcdefgh', 'efghabcd')     # tie! 'efgh' would also be fine 
'abcd' 

>>> lcs('babies', 'puppies')  

'ies' 

>>> lcs('veterinarians', 'puppies') # tie! 'is' would also be fine 
'es'  

 
Notes: 
 

● If either s1  or s2  is the empty string, the LCS is also the empty string. 
● Using the index  function from Homework 4 may allow you to create an elegant solution. 
● If there are ties for the LCS, any one of the ties is acceptable. In the last example above, 

a return value of 'efgh'  would also have been fine, because both 'abcd' and 
'efgh' are common subsequences of the two strings, and both of these 
subsequences have a length of 4. 

● Here’s one possible strategy for the recursive case (after you have checked for base 
cases): 

○ If the first characters in the two strings match, include that character in the LCS, 
and process the remaining characters of the two strings meaning you should 
return something to the effect of 

first character + lcs(s1[1:], s2[1:]) 

 
○ Otherwise, if the first characters don’t match, make two recursive calls: one that 

eliminates the first character in s1 , and one that eliminates the first character in 
s2 . Your code will look something like this 

result1 = lcs(s1[1:], s2) 
result2 = lcs(s1, s2[1:]) 

 

 



where you should fill in the blanks in the appropriate way. Return the better of 
these two results. 

Part V: Caesar Cipher* (20) 
Place your answers for Part III in a file named hw05_5.py . 
 
Drs. Griffin and Hersh are running some errands for Dr. Joy’s huge upcoming procedure on 
puppy Lola. Lola seems to be able to understand English and is frightened, so the only way 
Griffin and Hersh can communicate without scaring Lola is through encrypted messages. To 
encrypt their messages, they move each letter forward in the alphabet by a certain number of 
places. When Dr. Joy sent the message "Retrieve the supplies from the hospital",  she moved 
each letter forward 1 place: "Sfusjfwf uif tvqqmjft gspn uif iptqjubm".  
 
Griffin and Hersh are getting tired of encrypting and decrypting these messages by hand, and 
they can never remember what rotation they were using when they are looking at older 
messages, so they have hired you to write them the function: encipher , which takes in a 
message (as a string) and a number (how many places to rotate each letter by) and returns the 
encrypted message. 
 
For this part of the homework you may use any of the programming techniques that we have 
covered in class: conditionals, recursion, filter, map, reduce  and/or list comprehensions.  
 

Problem 5.5) Encipher 
Write a function encipher(s, n) that takes as inputs an arbitrary string s  and a 
non-negative integer n  between 0 and 25, and that returns a new string in which the letters in s 
have been “rotated” by n  characters forward in the alphabet, wrapping around as needed. For 
example: 
 

>>> encipher('hello', 1) 
'ifmmp' 

>>> encipher('hello', 2) 
'jgnnq' 

>>> encipher('hello', 4) 
'lipps' 

 
Upper-case letters should be “rotated” to upper-case letters, and lower-case letters should be 
“rotated” to lower-case letters. This also applies even if you need to wrap around the end of the 
alphabet. For example: 
 

 



>>> encipher('XYZ', 3) 
'ABC' 

>>> encipher('xyz', 3) 
'abc' 

 
Non-alphabetic characters should be left unchanged: 
 

>>> encipher('#caesar!', 2) 
'#ecguct!' 

 
Notes: 
 

● You can use the built-in functions ord  and chr  to convert from single-character strings 
to integers and back: 
 

>>> ord('a') 
97 

>>> chr(97) 
'a' 

 
 

● You can use the following test to determine if a character is between 'a'  and 'z'  in the 
alphabet: 

 

if 'a' <= c <= 'z': 

 
● A similar test will work for upper-case letters. 
● We recommend writing a helper function rot(c, n)  that rotates a single character c 

forward by n  spots in the alphabet. For example: 
 

>>> rot('a', 1) 
'b' 

>>> print(rot('a', 1)) 
b 

>>> rot('y', 2) 
'a' 

>>> rot('A', 3) 
'D' 

>>> rot('Y', 3) 

 



'B' 

>>> rot('!', 4) 
'!' 

 
● Once you have rot(c, n) , you can write an encipher  function. 

 
Once you think you have everything working, here are three more examples to try: 
 

>>> encipher('xyza', 1) 
'yzab' 

>>> encipher('Z A', 2) 
'B C' 

>>> encipher('Caesar cipher? I prefer Caesar salad.', 25) 
'Bzdrzq bhogdq? H oqdedq Bzdrzq rzkzc.' 

 
 

 
 
Please let us know if you find any mistakes, inconsistencies, or confusing language in this 
document or have any concerns about this and any other CS4 document by posting on Piazza 
or filling out our anonymous feedback form. 

 

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform?usp=sf_link

