

Homework 6
Due 3:59pm, Wednesday, March 13, 2018

Installation and Handin 0

Part I: First Date with OOP (60) 1
Support Code 1
Problem 6.1a) A Better Date 3
Problem 6.1b) Custom Operators 7

Part II: Using Your Date Class (40) 8
Import the Class 8
Problem 6.2a) get_age_on(birthday, other) 9
Problem 6.2b) print_birthdays(filename) 9

Installation and Handin
Homework Setup. For each homework assignment, there may be support files that you will
need to complete the assignment. These can be copied to your home directory by using the
cs4_install command in a Brown CS Terminal window. For this homework type

cs4_install hw06

There should now be a hw06 folder within your homeworks directory. Using Terminal, you can
move into the hw06 folder with the cd command:

cd ~/course/cs0040/homeworks/hw06

Homework hand-in. Be sure to turn in all the files requested and that they are named exactly
as specified, including spelling and case. When you’re ready to submit the files, run:

cs4_handin hw06

from a Brown CS Terminal window from your ~/course/cs0040/homeworks/hw06
directory. The entire contents of your ~/course/cs0040/homeworks/hw06 directory will be
handed in. Check for a confirmation email to ensure that your assignment was correctly
submitted using the cs4_handin command. You can resubmit this assignment using the
cs4_handin command at any time, but be careful, as only your most recent submission with
be graded.

1

Part I: First Date with OOP (60)
Put your answers for this problem in a plain-text file named hw06_1.py .

In their age long struggle against the babies, the puppies have learned something vital--some
babies aren’t actually babies: they’re toddlers! The puppies have tasked you to with using
python to create revolutionary new date-finding technology to figure out how old some of these
“babies” are to find which ones are the fakers.

In this problem, you will create a Date class, from which you will be able to create Date
objects that represent a day, month, and year. You will add functionality to this class that will
enable Date objects to find the day of the week to which they correspond.

Support Code
Take a moment to look over the hw06_1.py file as it stands so far. We have given you the
following methods to start:

● The __init__(self, month, day, year) method, which is the constructor for
Date objects. In other words, this is the method that Python uses when making a new
Date object. It defines the attributes that compose a Date object (month , day , and
year) and accepts parameters to set an object’s attributes to some initial values.

● The __repr__(self) method, which returns a string representation of a Date object.
This method will be called when an object of type Date is printed. It can also be tested
by simply evaluating an object from the Shell. This method formats the month, day, and
year that represent a Date object into a string of the form 'mm/dd/yyyy' and returns
it.

● The isLeapYear(self) method, which returns True if the called object is in a leap
year, and False otherwise. In other words, when we create a Date object and call its
isLeapYear method, the method will return whether that specific Date object falls in a
leap year. There are no double-underscores here, because Python doesn't "expect" this
method, but it certainly doesn't "object" to it either. (Clearly our puns have no class!)

● The copy(self) method, which returns a newly-constructed object of type Date with
the same month, day, and year that the called object has. This allows us to create deep
copies of Date objects.

The Date class provided also has three data members:

● A data member holding the month (this is self.month)
● A data member holding the day of the month (this is self.day)
● A data member holding the year (this is self.year)

2

Read over the starter code that we’ve given you. Make sure that you understand how the
various methods work.
Then, try the following interactions in the Python Shell to experiment with the __init__ ,
__repr__ , and isLeapYear methods:

Create a Date object named d1 using the constructor.

>>> d1 = Date(4, 10, 2016)

An example of using the __repr__ method. Note that no quotes

are displayed, even though the function returns a string.

>>> d1
04/10/2016

Check if d1 is in a leap year -- it is!

>>> d1.isLeapYear()
True

Create another object named d2

>>> d2 = Date(1, 1, 2017)

Check if d2 is in a leap year.

>>> d2.isLeapYear()
False

Next, try the following examples in the Python Shell (by running python3 in your Terminal in the
directory that has all of your files) to illustrate why we will need to override the __eq__ method
to change the meaning of the == operator:

>>> d1 = Date(1, 1, 2016)
>>> d2 = d1
>>> d3 = d1.copy()

Determine the memory addresses to which the variables refer.

>>> id(d1)
430542 # Your memory address may differ.
>>> id(d2)
430542 # d2 is a reference to the same Date that d1 references.
>>> id(d3)
413488 # d3 is a reference to a different Date in memory.

3

The == operator tests whether memory addresses are equal.

>>> d1 == d2
True # Shallow copy -- d1 and d2 have the same memory address.
>>> d1 == d3
False # Deep copy -- d1 and d3 have different memory address

If having trouble accessing Date from the terminal, try running from hw06_1 import Date
from the python terminal, which should then give you access to the module.

Problem 6.1a) A Better Date
Add the following methods to the date class:

Method equals(self, d2)
This method should return True if the calling object (named self) and the argument (named
d2) represent the same calendar date. If they do not represent the same calendar date, this
method should return False . The examples above show that the same calendar date may be
represented at multiple locations in memory—in that case the == operator returns False .
equals(self, d2) can be used to see if two objects represent the same calendar date,
regardless of whether they are at the same location in memory.

Example output:

>>> d1 = Date(1, 1, 2016)
>>> d1
01/01/2016
>>> d2 = Date(1, 1, 2016)
>>> d2
01/01/2016
>>> d1 == d2
False

>>> d1.equals(d2)
True

>>> d1.equals(Date(1, 1, 2016)) # this is OK, too!
True

>>> d1 == d1.copy()
False

Method tomorrow(self)

4

This method should return a new date object corresponding to a day after the calling object.
This means that day will definitely be incremented. What's more, month and year might be
incremented as well.

Hint: To tell how many days there are in February, explore the numeric properties of boolean
values. For example, True + 1 = 2 and False + 1 = 1 .

Hint: Make a list consisting of the days in each month of the year. Have the element at index 0
be 0 for ease of indexing.

Example output:

>>> d = Date(2, 28, 2016)
>>> new_date = d.tomorrow()
>>> new_date
02/29/2016
>>> (d.tomorrow()).tomorrow()
03/01/2016
>>> d
02/28/2016

Method yesterday(self)
This method should return a new date object corresponding to a day before the calling object.
This means that day will definitely be decremented. What's more, month and year might be
decremented as well.

Example output:

>>> d = Date(1, 1, 2016)
>>> d.yesterday()
12/31/2015
>>> d
01/01/2016

Method addNDays(self, N)
Alters the invoking Date object so that it is N calendar days in the future. This method only
needs to handle nonnegative integer arguments N .

Example outputs:

5

>>> d = Date(11, 11, 2015)
>>> d.addNDays(3)
>>> d
11/14/2015

You can check your own date arithmetic with this website.

Method subNDays(self, N)
Mutates the invoking Date object so that it is N calendar days before the starting date. This
method only needs to handle nonnegative integer arguments N .

Example output:

>>> d = Date(11, 04, 2015)
>>> d.subNDays(5)
>>> d
10/30/2015

Try reversing the test cases from addNDays !

Method isBefore(self, d2)
This method should return True if the calling object is a calendar date before the argument
named d2 (which will always be an object of type Date). If self and d2 represent the same
day, this method should return False . Similarly, if self is after d2 , this should return False .

Hint: Try comparing the list Lself = [self.year, self.month, self.day] with the
list L2 = [d2.year, d2.month, d2.day] .

Example output:

>>> ny = Date(1,1,2016) # New Year's
>>> d2 = Date(11,11,2015)
>>> ny.isBefore(d2)
False

>>> d2.isBefore(ny)
True

>>> d2.isBefore(d2)
False

http://www.timeanddate.com/date/dateadd.html

6

Method isAfter(self, d2)
This method should return True if the calling object is a calendar date after the argument
named d2 (which will always be an object of type Date). If self and d2 represent the same
day, this method should return False . Similarly, if self is before d2 , this should return False .

You can emulate your isBefore code here OR you might consider how to use the isBefore
and or equals method to write isAfter .

Example output:

Try reversing the test cases of your method isBefore !

Method diff(self, d2)
This method should return an integer representing the number of days between self and d2 .
You can think of it as returning the integer representing self - d2 . The method can return
any integer. Construct your code accordingly.

NOTE: This method should NOT change self NOR should it change d2 !

Hint: Make copies of self and d2 . For example:

● self_copy = self.copy()

● d2_copy = d2.copy()

Example output:

>>> d1 = Date(11,11,2015)
>>> d2 = Date(12,18,2015)
>>> d2.diff(d1)
37

>>> d1.diff(d2)
-37

>>> d1
11/11/2015
>>> d2
12/18/2015

Use your diff method to compute your own age - or someone else's age - in days!
You can check other differences at www.timeanddate.com/date/duration.html .

Method dow(self)

http://www.timeanddate.com/date/duration.html

7

This method should return a string that indicates the day of the week (dow) of the object (of type
Date) that calls it. That is, this method returns one of the following strings: "Monday" ,
"Tuesday" , "Wednesday" , "Thursday" , "Friday" , "Saturday" , or "Sunday" .

Hint: Consider making a dictionary out of the days of the week.

Hint: How might it help to find the diff from a known date, like Wednesday, November 11,
2015? How might the mod (%) operator help?

Example output:

>>> d = Date(12, 7, 1941)
>>> d.dow()
'Sunday'

>>> d = Date(1, 1, 2100)
>>> d.dow()
'Friday'

You can views days of the week for an entire year at www.timeanddate.com/calendar/

NOTE: Before moving on, make sure you’ve thoroughly tested all of the methods you just wrote!

Problem 6.1b) Custom Operators
In Python you can also define operators for your own classes. For example, since the above
equals method is how we want to express equality,i.e., == , you can override (i.e. redefine) the
== operator by adding a method named __eq__ (note that that name has two underscores on
each side of the eq).

Method __eq__(self, other)
Write a method __eq__(self, other) that returns True if the called object (self) and the
argument (other) represent the same calendar date (i.e., if the have the same values for their
day , month , and year attributes). Otherwise, this method should return False .

Recall from lecture that the name __eq__ is a special method name that allows us to override
the == operator–replacing the default version of the operator with our own version. In other
words, when the == operator is used with Date objects, our new __eq__ method will be
invoked!

http://www.timeanddate.com/calendar/

8

This method will allow us to use the == operator to see if two Date objects actually represent
the same date by testing whether their days, months, and years are the same, instead of testing
whether their memory addresses are the same.

After implementing your __eq__ method, try re-executing the following sequence of statements:

>>> d1 = Date(1, 1, 2016)
>>> d2 = d1
>>> d3 = d1.copy()

Determine the memory addresses to which the variables refer.

>>> id(d1)
430542 # Your memory address may differ.
>>> id(d2)
430542 # d2 is a reference to the same Date that d1 references.
>>> id(d3)
413488 # d3 is a reference to a different Date in memory.

The new == operator tests whether the internal date is the same.

>>> d1 == d2
True # Both refer to the same object, so their internal
 # data is also the same.
>>> d1 == d3
True # These variables refer to different objects, but
 # their internal data is the same!

Notice that we now get True when we evaluate d1 == d3 . That’s because the new __eq__
method compares the internals of the objects to which d1 and d3 refer, rather than comparing
the memory addresses of the objects, whereas the default __eq__ method only tests “shallow
equality” meaning it will only test whether or not the memory addresses of two objects are the
same.

As part of the problem, please also include methods for the following operators:

● Implement __lt__ to define the < operator.
● Implement __gt__ to define the > operator.
● Implement __sub__ to define the (-) operator.

Be sure to reuse method(s) you wrote previously!

9

Part II: Using Your Date Class (40)
Put your answers for this problem in a plain-text file named hw06_2.py .

Now that you have written a functional Date class, we will put it to use to expose the fake
babies for what they really are! Remember that the Date class is only a blueprint, or template,
for how Date objects should behave. We can now create Date objects according to that
template and use them in client code.

Import the Class
IMPORTANT: Since your clients will need to construct Date objects, you need to import the
Date class. Therefore, make sure that hw06_2.py is in the same directory as hw06_1.py ,
and include the following statement at the top of hw06_2.py :

from hw06_1 import Date

We haven’t done this for you because the import command is such a common way of accessing
additional python functionality, so you need to get used to using it yourself!

Problem 6.2a) get_age_on(birthday, other)
Write a function named get_age_on(birthday, other)that accepts two Date objects as
parameters: one to represent a person’s birthday, and one to represent an arbitrary date. The
function should then return the person’s age on that date as an integer.

Notes: You can assume that the other parameter will represent a date on or after the birthday
date. Hint: It may be helpful to construct a new Date object that represents the person’s birthday
in the year of other. That way, you can determine whether the person’s birthday has already
passed in the year of other, and use that information to calculate the age.

Example output:

>>> birthday = Date(6, 29, 1994)
>>> d1 = Date(2, 10, 2014)
>>> get_age_on(birthday, d1)
19

>>> d2 = Date(11, 10, 2014)
>>> get_age_on(birthday, d2)
20

10

Problem 6.2b) print_birthdays(filename)
Write a function print_birthdays(filename) that accepts a string filename as a
parameter. The function should then open the file that corresponds to that filename, read
through the file, and print some information derived from that file (you do not need to write a test
case for this function).

More specifically, the function should assume that the file in question contains information about
birthdays in lines of the following format:

Name,month,day,year

In other words, each line of the file contains comma-separated birthday data.

The function should read this file line-by-line, and print the person’s name, birthday, and the day
of the week on which the person was born in the following format: name (mm/dd/yyyy) (day)

For example, the file birthdays.txt contains the following data:

George Washington,2,22,1732
Abraham Lincoln,2,12,1809
Susan B. Anthony,2,15,1820
Franklin D. Roosevelt,1,30,1882
Eleanor Roosevelt,10,11,1884

Therefore, calling print_birthdays with this filename should print the following information:

>>> print_birthdays('birthdays.txt')
George Washington (02/22/1732) (Friday)
Abraham Lincoln (02/12/1809) (Sunday)
Susan B. Anthony (02/15/1820) (Tuesday)
Franklin D. Roosevelt (01/30/1882) (Monday)
Eleanor Roosevelt (10/11/1884) (Saturday)

Notes: For every line of the file, you will need to create a Date object and invoke the appropriate
methods on the object to get the information needed.

Hint: You can get a string representation of a Date object named d using the expression str(d).

https://drive.google.com/a/brown.edu/file/d/0B5Mwk-2LLWe3VHVEaUs3UThyZDQ/view?usp=sharing
https://drive.google.com/a/brown.edu/file/d/0B5Mwk-2LLWe3VHVEaUs3UThyZDQ/view?usp=sharing

11

Testing
You are required to write test cases for every function you implement in this homework that
does not explicitly tell you to not include test cases. Be sure to develop (or include) appropriate
a set of test cases for each problem you solve. Note that if for any function your code does
not compile, you can at most receive half credit on that problem. You have to not only write
your tests, but run them as well!

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
document or have any concerns about this and any other CS4 document by posting on Piazza
or filling out our anonymous feedback form.

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform?usp=sf_link

