
Homework 7
Due 4:00pm, ​Friday​, March 22, 2019

Installation and Handin 1

Part I: Connect Four Setup (25) 2
Background 2
Problem 7.1 A Connect Four Player Class 3

Part II: Connect Four Play (30) 5
Problem 7.2a process_move 6
Problem 7.2b RandomPlayer 9

Part III: AI Player (45)* 12
Problem 7.3 AIPlayer 13

Installation and Handin
Homework Installation.​ To copy support files to your to your home directory for this homework
type the following in a Brown CS terminal window:

cs4_install hw07

There should now be a ​hw07 ​ folder within your homeworks directory. Using Terminal, you can
move into the ​hw07 ​ folder with the ​cd ​ command:

cd ~/course/cs004/homeworks/hw07

Homework hand-in.​ Be sure to turn in all the files requested and that they are named exactly
as specified, including spelling and case. When you’re ready to submit the files, run:

cs4_handin hw07

from a Brown CS Terminal window from your ​~/course/cs004/homeworks/hw07
directory. The entire contents of ​~/course/cs004/homeworks/hw07 ​ will be handed in.
Check for a confirmation email to ensure that your assignment was correctly submitted using the
cs4_handin ​ command. You can resubmit this assignment using the ​cs4_handin ​ command
at any time, but be careful, as only your most recent submission with be graded.

Harder parts of this problem set are indicated by *. Problems that may be challenging are
also indicated by * following their name.

Note: Be sure to read each section all the way through before starting work on that
problem, and make sure to write your test cases ​before ​starting to write code.

Part I: Connect Four Setup (25)
Include your answers and code to this part of the homework in​ ​hw07_1.py

Silly Prelude

The babies and puppies are now in a civil disagreement on which is the smarter species. You
know that the species you side with is obviously superior, so you challenge the other side to a
game of Connect Four!

How to Play
The game is played by two players, and the goal is to place four checkers in a line vertically,
horizontally, or diagonally. The players alternate turns and add one checker to the board at a
time. However, because the board stands vertically, a checker cannot be placed in an arbitrary
position on the board. Rather, a checker must be inserted at the top of one of the columns, and
it drops down as far as it can go – until it rests on top of the existing checkers in that column, or
(if it is the first checker in that column) until it reaches the bottom row of the column. The
standard board size for Connect Four is six rows by seven columns.

In order to represent the Connect Four board in the computer we have given you a ​ ​Board
class defined in the file​ ​board.py​. ​ Below is a complete list of all the classes’ methods and
what they do. If you would like to know ​how​ the methods work, you should take a read through
board.py​!

Constructor What It Does

Board(height, width) Initializes an empty Board object with ​height ​ rows
and​ ​width ​ ​columns.

Properties What It Is

height the number of rows the board has

width the number of columns the board has

slots a 2D list containing what is being held in each slot of
the board ​(​‘X’, ‘O’, ​or​ ‘ ‘ ​).​ To access a slot in
row ​i ​ and column ​j ​ , use ​board.slots[i][j] ​.
Note: ​board.slots[0][0] ​ represents the top left
corner of the board, and ​board.slots[5][6]
represents the bottom right corner.

method name what it does

__repr__() returns a string version of the board for printing

add_checker(checker,

col)

adds the​ ​checker ​ ​to the board in column​ ​col

reset() clears the board

add_checkers(col_nums) adds a checker to the board for each number in the
string​ ​col_nums ​, ​for example
board.add_checkers(‘1123’) ​ will add checkers,
starting with​ ​‘X’ ​and alternating, to column 1 then 1
then 2 then 3.

can_add_to(col) returns a Boolean representing whether or not you
can add a checker to column​ ​col

is_full() returns a Boolean representing whether the board is
completely full or not

remove_checker(col) removes the last placed checker in column​ ​col ​ ​if it
exists

is_checker(row, col,

checker)

returns​ ​True ​ if the checker at row​ ​row ​ ​and column
col ​ ​is equal to​ ​checker ​ ​and​ ​False ​ ​otherwise

is_win_for(checker) returns​ ​True ​ ​if the board is a win for ​checker ​ and
False ​ ​otherwise

Problem 7.1: A Connect Four​ ​Player​ ​Class
In this problem, you will create a​ ​Player ​ class to represent a player of the Connect Four game
that is compatible with the​ ​connect_four ​ ​play loop​.

Getting started
We have included an ​import ​ ​statement at the top of​ ​hw07_1.py ​ ​that imports the ​Board ​ ​class
from the​ ​board.py ​ ​file. Therefore, you will be able to use​ ​Board ​ ​objects and their methods as
needed.

1. Write a constructor​ ​__init__(self, checker) ​ ​that constructs a new​ ​Player
object by initializing the following two attributes:

■ an attribute​ ​checker ​ – ​a one-character string that represents the gamepiece for
the player (either an ​‘X’ ​ or ​‘O’ ​) , as specified by the parameter ​ ​checker

■ an attribute​ ​num_moves ​ –​ an integer that stores how many moves this specific
player has made so far. This attribute should be initialized to zero to signify that
the ​Player ​object has not yet made any Connect Four moves.

2. Write a method​ ​__repr__(self) ​ that returns a string representing a​ ​Player ​ ​object.

The string returned should indicate which checker the​ ​Player ​ ​object is using. For
example:

>>> ​p1 = Player(​'X'​)
>>> ​p1
Player X

The results of your​ ​__repr__ ​ ​method should exactly match the results shown above.
Remember that your ​__repr__ ​ ​method should ​return​ a string. It should ​not​ do any
printing.

3. Write a method ​opponent_checker(self) ​ that returns a one-character string
representing the checker of the​ ​Player ​ ​object’s opponent. The method may assume
that the calling​ ​Player ​ ​object has a​ ​checker ​ ​attribute that is either​ ​'X' ​ ​or​ ​'O' ​. ​For
example:

>>> ​p = Player(​'O'​)
>>> ​p.opponent_checker()
'X'

4. Write a method named​ ​next_move(self, board) ​ ​that accepts a​ ​Board ​ ​object as a

parameter and returns the column where the player wants to make the next move
without applying that move to the board.​ This function should

■ Determine the next move for this version of the Player by asking the user to enter
a 0-indexed column number that represents where they want to place a checker
on the board. The method should repeatedly ask for a column number until a
valid column number is given. A column number is valid if it references a valid
column and that column has room for an additional piece in it. Use the
can_add_to ​ ​method in the​ ​Board ​ ​class to determine this easily.

■ Increment the number of moves that the​ ​Player ​ ​object has made.

In order to get input from the user, you should use the Python ​input ​ ​function. Because
input ​ ​always returns a string, you will need to convert the returned string to an integer
to get a column number that you can work with. You may assume that the user types in
a string that can be converted to an integer by Python.

Example Output
>>> ​p = Player(​'X'​)
>>> ​b = Board(​6​, ​7​) ​# valid column numbers are 0 - 6
>>> ​p.next_move(b)
Enter a column: ​-1
Try again!

Enter a column: ​7
Try again!

Enter a column: ​5
5​ ​# return value of method call
>>> ​p.num_moves ​# number of moves was updated
1

Part II: Play Connect Four (30)

Include your answers and code to this part of the homework in​ ​hw07_2.py

In this part of the homework you’ll begin by completing ​process_move ​ ​so that you can use
your​ ​Player ​ ​class to play the game against a friend.
In​ hw07_2.py ​ we have provided the ​connect_four ​ game function. It takes in two ​Player
objects, and it will be used to run a game of Connect Four between those two ​Player ​s. As you
read over this function, you will see that it takes some preliminary steps, and that it then enters
a loop that repeatedly queries each player for their next move and adds it to the board via the
process_move ​ function.

Problem 7.2a ​process_move
Write a function​ ​process_move(player, board) ​ that takes two parameters: a​ ​Player
object for the player whose move is being processed, and a​ ​Board ​ ​object for the game that is
being played.

The function will perform all of the steps involved in processing a single move by the specified
player ​ ​on the specified​ ​board ​. ​These steps are enumerated below. ​Note that the function
should not be very long, because it should take advantage of the methods in the ​Player
object and​ ​Board​ ​object that it has been given.​ Those methods will do almost all of the work
for you!

Here are the steps that the function should perform:

1. Print a message that specifies whose turn it is:
Player X's turn

or
Player O's turn

Important:​ You should ​not​ need an​ ​if ​ ​statement here. Simply take advantage of the
__repr__ ​ method in​ ​player ​ ​to obtain its string representation.

2. Obtain the player’s next move by using the appropriate​ ​Player ​ ​method. Store the move
(i.e., the selected column number) in a variable.

3. Apply the move to the board by using the appropriate​ ​Board ​ ​method.

4. Print a blank line, and then print the board.

5. Check to see if the move resulted in a win or a tie by using the appropriate​ ​Board

methods.

If it is a win, print a message that looks like this:
Player X wins in 8 moves.

Congratulations!

and return​ ​True ​.

If it is a tie, print
It's a tie!
and return​ ​True ​.

6. If it is neither a win nor a tie, the method should simply return​ ​False ​.
Make sure that the method returns the appropriate value — either​ ​True​ ​or​ ​False​.

Example Output

>>> ​b = Board(​2​, ​4​)
>>> ​b.add_checkers(​'0011223'​)
>>> ​b
|O|O|O| |

|X|X|X|X|

 ​0​ ​1​ ​2​ ​3

>>>​ ​process_move(Player(​'O'​), b)
Player O​'​s turn
Enter a column: ​3
|O|O|O|O|

|X|X|X|X|

 ​0​ ​1​ ​2​ ​3

Player O wins in ​1​ moves. ​# we made the other 3 moves for Player O!
Congratulations!

True​ ​# return value of process_move
>>> ​b.remove_checker(​3​)
>>> ​b.remove_checker(​3​) ​# call this twice!

>>> ​process_move(Player(​'O'​), b)
Player O's turn

Enter a column:​ ​3

|O|O|O| |

|X|X|X|O|

 0 1 2 3

False

>>> process_move(Player(​'X'​), b)
Player X's turn

Enter a column: ​3

|O|O|O|X|

|X|X|X|O|

 ​0​ ​1​ ​2​ ​3

It's a tie!

True

You should also test it from within the context of the ​connect_four ​ ​function that we have
given you. Simply enter the following:

>>> ​connect_four(Player(​'X'​), Player(​'O'​))

and then play against a friend, or against yourself! Use Ctrl-C if you need to end the game
prematurely.

Problem 7.2b ​RandomPlayer

Define a class called​ ​RandomPlayer ​ ​that can be used for an ​un​intelligent computer player that
chooses at random from the available columns.

This class should be a ​subclass​ of the​ ​Player ​ class that you implemented in Part III, and you
should take full advantage of inheritance. In particular, you should ​not​ need to include any
attributes in your​ ​RandomPlayer ​ class, because all of the necessary attributes (the player’s
checker, and its count of the number of moves) will be inherited from​ ​Player ​.

Similarly, you should not need to redefine the​ ​__repr__ ​ ​or​ ​opponent_checker ​ ​methods
because they will be inherited from​ ​Player ​, ​and we don’t want these methods to behave any
differently for a ​RandomPlayer ​ ​than they do for a ​Player ​.

However, you will need to do the following:

● Make sure that your class header specifies that​ ​RandomPlayer ​ ​inherits from​ ​Player ​.
● Write a method​ ​next_move(self, board) ​ that ​overrides​ (i.e., replaces) the

next_move ​ ​method inherited from​ ​Player ​. R​ather than asking the user for the next
move, this version of​ ​next_move ​ ​should choose at random from the columns in the
specified​ ​board ​ ​that are not yet full, and return the index of that randomly selected
column. You may assume that this method will only be called in cases in which there is
at least one available column. In addition, make sure that you increment the number of
moves that the ​RandomPlayer ​ ​object has made.

Choosing a Random Move
To ensure that the method does not select the index of a column that is already full, we
recommend that you begin by constructing a list containing the indices of all available columns
— i.e., all columns to which you can still add a checker. For example, let’s say that the
parameter​ ​board ​ ​represents the following board:

|X| | |O| | | |

|X| | |O| |O| |

|X|X| |O|X|X|O|

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

The list of available columns in this case would be​ ​[1,2,4,5,6] ​.

To build this list, you should consider the columns one at a time, and add the index of
any available column to the list. This can be done using a loop or list comprehension.
Take advantage of one of the​ ​Board ​ ​methods to determine if a given column is
available!

● We have included an​ ​import ​ ​statement for the​ ​random ​ ​module so that you can use the
appropriate function to make a random choice from the list of available columns.

Example Output
>>> ​p = RandomPlayer(​'X'​)
>>> ​p
Player X ​# uses the inherited __repr__
>>> ​p.opponent_checker()
'O'​ ​# uses the inherited version of this method
>>> ​b = Board(​2​, ​4​)
>>> ​b.add_checkers(​'001223'​)
>>> ​b
|O| |X| |

|X|X|O|O|

 ​0​ ​1​ ​2​ ​3

>>> ​p.next_move(b)
3​ ​# can be either 1 or 3
>>> ​p.next_move(b)
1​ ​# can be either 1 or 3
>>> ​p.next_move(b)
1​ ​# can be either 1 or 3
>>> ​b.add_checker(​'O'​, ​1​)
>>> ​b
|O|O|X| |

|X|X|O|O|

 ​0​ ​1​ ​2​ ​3

>>> ​p.next_move(b)
3​ ​# must be 3!
>>> ​p.next_move(b)
3​ ​# must be 3!

Playing with the ​RandomPlayer ​ Object
To play against a random player, enter something like this:

>>> ​connect_four(Player(​'X'​), RandomPlayer(​'O'​))

You’ll see that it’s pretty easy to win against someone who chooses randomly!

You could also pit two random players against each other and see who wins:

>>> ​connect_four(RandomPlayer(​'X'​), RandomPlayer(​'O'​))

Testing your​ ​RandomPlayer ​ ​class
Note:​ When adding testing functions for your class methods make sure that you define them
outside of the class definition itself.

Your tests should verify that:

● process_move ​ correctly returns a boolean indicating whether or not the game has
ended. Some cases to consider are when Player X wins, Player O wins, when it’s a tie,
and when the game hasn’t reached an endpoint yet.

● next_move ​ correctly counts the number of moves a player takes, and that it doesn’t try
to make moves into columns that are already full/invalid.

○ Optional: Pseudo-random operations, like ​random.choice() ​, depend on a
seed value to determine how they will operate. If you call ​random.seed(k) ​,
where ​k ​ is some specific integer of your choosing, subsequent calls to
random.choice() ​ will produce the same sequence of “random” choices
(hence why these are called ​pseudo​-random operations!). As an optional
exercise, you can use this fact to generate specific test cases for your
RandomPlayer ​’s ​next_move ​ method.

Part III: AI Player (45)*
Include your answers and code to this part of the homework in​ ​hw07_3.py

You will now define an “intelligent” computer player – one that uses techniques from artificial
intelligence (AI) to choose its next move.

In particular, this AI player will ​look ahead​ some number of moves into the future to assess the
impact of each possible move that it could make for its next move, and it will assign a score to
each possible move. And since each move corresponds to a column number, it will effectively
assign a score to each column.

The possible column scores are:
● -1 for a column that is already full

● 0 for a column that, if chosen as the next move, will result in a ​loss​ for the player at some
point during the number of moves that the player looks ahead.

● 100 for a column that, if chosen as the next move, will result in a ​win​ for the player at
some point during the number of moves that the player looks ahead.

● 50 for a column that, if chosen as the next move, will result in neither a win nor a loss for
the player at any point during the number of moves that the player looks ahead.

After obtaining a list of scores for each column, it will choose as its next move the column with
the maximum score. This will be the player’s judgment of its best possible move.
When looking ahead, the player will assume that its opponent is using a similar strategy –
assigning scores to columns based on some degree of lookahead, and choosing what it judges
to be the best possible move for itself.

Problem 7.3​ ​AIPlayer

Define a class called​ ​AIPlayer ​ ​that takes the approach outlined above (and in more detail
below) to choose its next move.

Like the​ ​RandomPlayer ​ c​lass that you implemented for Part III, this class should be a ​subclass
of the​ ​Player ​ ​class that you implemented in Part II, and you should take full advantage of
inheritance.

In addition to the attributes inherited from​ ​Player ​, ​an​ ​AIPlayer ​ object should include two new
attributes:

1. one called​ ​tiebreak ​ ​that stores a string specifying the player’s tie-breaking strategy
(​'LEFT' ​, ​'RIGHT' ​, ​or​ ​'RANDOM' ​)

If there are ties, the player will use one of the following tie-breaking strategies, each of
which is represented by a single-word string and passed into the constructor for
AIPlayer ​:

● 'LEFT' ​:​ out of all the columns that are tied for the highest score, pick the
leftmost one. (You should develop a test case for this.)

● 'RIGHT' ​: ​out of all the columns that are tied for the highest score, pick the
rightmost one. (You should develop a test case for this.)

● 'RANDOM' ​:​ out of all the columns that are tied for the highest score, pick one of
them at random. (You can test if the​ ​next_move ​ ​is in an allowed set, or you can
use the ​random.seed ​ ​option described previously)

2. one called​ ​lookahead ​ ​that stores an integer specifying how many moves the player

looks ahead in order to evaluate possible moves.

Getting Started
● Make sure that your class header specifies that​ ​AIPlayer ​ inherits from ​Player ​.

● Call the constructor inherited from the superclass, so that it can initialize the inherited
attributes:

 super().__init__(checker)

This constructor now has two new attributes not inherited from ​Player ​ ​(see above), so
you will need to initialize these by assigning them the values passed in as parameters.

Make sure that you do ​not​ redefine the inherited attributes by trying to assign something
to them here.

● Write a method​ ​__repr__(self) ​ ​that returns a string representing an​ ​AIPlayer
object. This method will override/replace the​ ​__repr__ ​ method that is inherited from
Player ​. ​In addition to indicating which checker the​ ​AIPlayer ​ ​object is using, the
returned string should also indicate the player’s tie-breaking strategy and lookahead.

Example Output

 >>> ​p1 = AIPlayer(​'X'​, ​'LEFT'​, ​1​)
>>>​ p1
Player X (LEFT, ​1​)
>>>​ p2 = AIPlayer(​'O'​, ​'RANDOM'​, ​2​)
>>>​ p2
Player O (RANDOM, ​2​)

The results of your​ ​__repr__ ​ method should exactly match the results shown above.

Writing ​max_score_column
 ​max_score_column(self, scores) ​takes a list​ ​scores ​ ​containing a score for each
column of the board and returns the ​index​ of the column with the maximum score. If one or
more columns are tied for the maximum score, the method should apply the called ​AIPlayer ​‘s
tie breaking strategy to break the tie. Make sure that you return the ​index​ of the appropriate
column, and ​not​ the column’s score.

Notes:

● One good way to implement this method is to first determine the maximum score in
scores ​ ​(you can use the built-in​ ​max ​ ​function for this), and to then create a list
containing the indices of all elements in​ ​scores ​ ​that match this maximum score. For
example, if​ ​scores ​ ​consisted of the list ​[50,50,50,50,50,50,50] ​, ​the list of indices
that you would build would be​ ​[0,1,2,3,4,5,6] ​,​ because all of these scores are tied
for the maximum score. If​ ​scores ​ ​consisted of the list
[50,100,100,50,50,100,50] ​, ​you would build the list of indices​ ​[1,2,5] ​. ​Then
once you have this list of indices, you can choose from the list based on the​ ​AIPlayer ​‘s
tie breaking strategy.

● If you take this approach, then you don’t really need to worry about whether there is a
tie. You can ​always​ use the tie breaking strategy when choosing from the list of indices
that you construct!

● We have included an​ ​import ​ ​statement for the​ ​random ​ ​module so that you can use the
appropriate function to make a random choice for players that use the ​'RANDOM' ​tie
breaking strategy.

Examples:

 >>> ​scores = [​0​, ​0​, ​50​, ​0​, ​50​, ​50​, ​0​]
>>>​ p1 = AIPlayer(​'X'​, ​'LEFT'​, ​1​)
>>>​ p1.max_score_column(scores)
2

>>>​ p2 = AIPlayer(​'X'​, ​'RIGHT'​, ​1​)
>>>​ p2.max_score_column(scores)
5

Writing ​scores_for
scores_for(self, board) ​ ​takes a​ ​Board ​ ​object,​ ​board ​,​ ​and​ ​determines the ​AIPlayer ​‘s
scores for the columns in​ ​board ​. Each column should be assigned one of the four possible
scores discussed in the start of this problem, based on the called​ ​AIPlayer ​‘​s​ ​lookahead
value. The method should return a list containing one score for each column.
This method should take advantage of both the other methods in the called​ ​AIPlayer ​s
object (including the inherited ones) ​and​ the methods in the​ ​Board ​ ​object that it is given
as a paramete​r. Don’t repeat work that can be done using one of those methods!

You should begin by creating a list (call it ​scores ​) that is long enough to store a score for each
column. You can use list multiplication for this, and it doesn’t really matter what initial value you
use for the elements of the list.

You should then loop over all of the columns in​ ​board ​, ​determine a score for each column, and
assign the score to the appropriate element of​ ​scores ​. ​Here is an outline of the logic:

If the lookahead is 0:
1. If the current column is full, use a score of -1 for it. In other words, assign -1 to the

appropriate element of your​ ​scores ​ list.
2. If ​board ​ ​is a win for the called​ ​AIPlayer ​ (i.e., for​ ​self ​), use a score of 100 for the

current column.
3. If​ ​board ​ ​is a win for the player’s opponent, use a score of 0 for the current column.
4. Otherwise, use a score of 50 for the column.

If the lookahead is greater than 0:

1. Add one of the called​ ​AIPlayer ​‘​s checkers to the current column using the appropriate
Board ​ ​method.

2. Determine what scores ​the opponent​ would give to the resulting board. To do so, create
an opponent (an ​AIPlayer ​ object) with the same tie-breaking strategy as​ ​self ​, ​but
with a lookahead that is one less than the one used by​ ​self ​.​ Make a recursive call to
determine the scores that this created opponent would give to the current board (the one
that resulted from adding a checker to the current column).

a. Following the approach discussed in lecture, use the opponent’s scores (the
scores returned by the recursive call) to determine what score​ ​self ​ ​should use
for the current column​.

b. Remove the checker that was placed in this column so that you can restore
board ​to its prior state.

Once the loop has considered all of the columns, the method should return the complete list of
scores.

Examples:

 >>> ​b = Board(​6​, ​7​)
>>>​ b.add_checkers(​'1211244445'​)
>>>​ b
| | | | | | | |

| | | | | | | |

| | | | |X| | |

| |O| | |O| | |

| |X|X| |X| | |

| |X|O| |O|O| |

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

 # A lookahead of 0 doesn't see threats!

>>>​ AIPlayer(​'X'​, ​'LEFT'​, ​0​).scores_for(b)
[​50​, ​50​, ​50​, ​50​, ​50​, ​50​, ​50​]
A lookahead of 1 sees immediate wins.

(O would win if it put a checker in column 3.)

>>>​ AIPlayer(​'O'​, ​'LEFT'​, ​1​).scores_for(b)
[​50​, ​50​, ​50​, ​100​, ​50​, ​50​, ​50​]
But a lookahead of 1 doesn't see possible losses!

(X doesn't see that O can win if column 3 is left open.)

>>>​ AIPlayer(​'X'​, ​'LEFT'​, ​1​).scores_for(b)
[​50​, ​50​, ​50​, ​50​, ​50​, ​50​, ​50​]
A lookahead of 2 sees possible losses.

(All moves by X other than column 3 leave it open to a loss.

note that X's score for 3 is 50 instead of 100, because it

assumes that O will follow X's move to 3 with its own move

 ​# to 3, which will block X's possible horizontal win.)
>>>​ AIPlayer(​'X'​, ​'LEFT'​, ​2​).scores_for(b)
[​0​, ​0​, ​0​, ​50​, ​0​, ​0​, ​0​]
A lookahead of 3 sees set-up wins!

(If X chooses column 3, O will block its horizontal win, but

then X can get a diagonal win by choosing column 3 again!)

>>>​ AIPlayer(​'X'​, ​'LEFT'​, ​3​).scores_for(b)
[​0​, ​0​, ​0​, ​100​, ​0​, ​0​, ​0​]
With a lookahead of 3, O doesn't see the danger of not

choosing 3 for its next move (hence the 50s in columns

other than column 3).

>>>​ AIPlayer(​'O'​, ​'LEFT'​, ​3​).scores_for(b)
[​50​, ​50​, ​50​, ​100​, ​50​, ​50​, ​50​]
With a lookahead of 4, O **does** see the danger of not

choosing 3 for its next move (hence the 0s in columns

other than column 3).

● Write a method​ ​next_move(self, board) ​ that ​overrides​ (i.e., replaces) the

next_move ​method that is inherited from​ ​Player ​. ​Rather than asking the user for the
next move, this version of ​next_move ​ ​should return the called​ ​AIPlayer ​‘​s judgment of
its best possible move. This method won’t need to do much work, because it should use
your​ ​scores_for ​and​ ​max_score_column ​ ​methods to determine the column
number that should be returned. In addition, make sure that you increment the number
of moves that the​ ​AIPlayer ​ ​object has made.

Examples:
>>> ​b = Board(​6​, ​7​)
>>> ​b.add_checkers(​'1211244445'​)
>>> ​b
| | | | | | | |

| | | | | | | |

| | | | |X| | |

| |O| | |O| | |

| |X|X| |X| | |

| |X|O| |O|O| |

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

With a lookahead of 1, gives all columns a score of 50, and its

tie-breaking strategy leads it to pick the leftmost one.

>>> ​AIPlayer(​'X'​, ​'LEFT'​, ​1​).next_move(b)
0

Same lookahead means all columns are still tied, but a different

tie-breaking strategy that leads it to pick the rightmost column.

>>> ​AIPlayer(​'X'​, ​'RIGHT'​, ​1​).next_move(b)
6

With the larger lookahead, X knows it must pick column 3!

>>> ​AIPlayer(​'X'​, ​'LEFT'​, ​2​).next_move(b)
3

The tie-breaking strategy doesn't matter if there's only one best move!

>>> ​AIPlayer(​'X'​, ​'RIGHT'​, ​2​).next_move(b)
3

>>> ​AIPlayer(​'X'​, ​'RANDOM'​, ​2​).next_move(b)
3

Playing the game with​ ​AIPlayer ​ ​objects!

Because our​ ​AIPlayer ​ ​class inherits from​ ​Player ​, ​we can use it in conjunction with our
connect_four ​ ​function from Part III.

You can play against an​ ​AIPlayer ​ ​by doing something like:

>>> ​connect_four(Player(​'X'​), AIPlayer(​'O'​, ​'RANDOM'​, ​3​))

Below some examples in which two​ ​AIPlayer ​ ​objects play against each other. And because
we’re using non-random tie-breaking strategies for both players, you should obtain the same
results.

>>> ​connect_four(AIPlayer(​'X'​, ​'LEFT'​, ​0​), AIPlayer(​'O'​, ​'LEFT'​, ​0​))
omitting everything but the final result...

Player X (LEFT, ​0​) wins ​in​ ​10​ moves.
Congratulations!

|O|O|O| | | | |

|X|X|X| | | | |

|O|O|O| | | | |

|X|X|X| | | | |

|O|O|O| | | | |

|X|X|X|X| | | |

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

>>> ​connect_four(AIPlayer(​'X'​, ​'LEFT'​, ​1​), AIPlayer(​'O'​, ​'LEFT'​, ​1​))
omitting everything but the final result...

Player X (LEFT, ​1​) wins ​in​ ​8​ moves.
Congratulations!

|O|O| | | | | |

|X|X| | | | | |

|O|O| | | | | |

|X|X| | | | | |

|O|O|O| | | | |

|X|X|X|X| | | |

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

The player with the larger lookahead doesn't always win!

>>> ​connect_four(AIPlayer(​'X'​, ​'LEFT'​, ​3​), AIPlayer(​'O'​, ​'LEFT'​, ​2​))
omitting everything but the final result...

Player O (LEFT, ​2​) wins ​in​ ​19​ moves.
Congratulations!

|O|O|X|X|O|O| |

|X|X|O|O|X|X| |

|O|O|X|X|O|O| |

|X|X|O|O|X|X| |

|O|O|X|O|O|O|O|

|X|X|X|O|X|X|X|

 ​0​ ​1​ ​2​ ​3​ ​4​ ​5​ ​6

Testing Your ​AIPlayer​ Class

You should write a test to verify that​:

● Your ​AIPlayer ​ correctly initializes: you can do this by checking the output of the
__repr__ ​function

● max_score_column ​ returns the correct column, for each kind of tie-breaking strategy
● scores_for ​ returns the correct scores for a given board. Feel free to use the examples

from lecture when constructing the board!

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
document or have any concerns about this and any other CS4 document by ​posting on Piazza
or filling out ​our anonymous feedback form​.

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform?usp=sf_link

