

Strings + Markov
Due 11:59 PM, Thursday, February 28, 2018

Introduction 1
Important Notes 2

Installation and Handin 2

Specification 3
Checklist 3

Section A: Strings 4
count_ignore_case(s, sub) 4
middle_name(fullname) 4

Section B: Markov 5
Algorithm Overview 5
create_dictionary(filename) 6

Guidelines 7
Testing 7

generate_text(word_dict, num_words) 8
Guidelines 8
Testing 9

Introduction
Text analysis presents an interesting but complex problem—paragraphs that are easy for
humans to understand contain implicit linguistic structures that can subtly change the meaning
of text and therefore are difficult to algorithmically parse by computers. Statistical models can
also be developed to quantify how similar one piece of text is to another, such as for plagiarism
detection or searching for similar articles to an interesting one you found in an academic journal.

Markstrings (or Strings + Markov) uses several Python string parsing exercises to allow you to
become familiar with built-in Python methods and culminates in the creation of a simple,
automatic text-generation algorithm. You will use the skills you develop with this project in your
next text-processing project, called Modeling.

Project 1: Markstrings 2

Installation and Handin
Project setup.​ For each project, there may be support files that you will need to complete the
assignment. These can be copied to your home directory by using the ​cs4_install ​ command
in a CIT Terminal window. For this project, type the command:

cs4_install markstrings

There should now be a ​markstrings ​ folder within your ​projects ​ directory. Using Terminal,
you can move into the folders with the cd command:

cd ~/course/cs0040/projects/markstrings

Project hand-in.​ When you’re ready to submit your project files, run:

cs4_handin markstrings

from a CIT Terminal window from your ​~/course/cs0040/projects/markstrings
directory, and the entire contents of the directory will be handed in.

You can resubmit this assignment using the ​cs4_handin ​ command at any time, but only your
most recent submission with be graded.

Specification
In lecture, we’ve seen how every data value in Python is really an object, and that objects have
functions inside them that are called ​methods​. In this portion of the project, you will first use
some of the string methods that we discussed in lecture to ​complete several exercises designed
to develop your knowledge of Python string parsing.

After that, you will write a program that is capable of generating meaningful text all by itself by
implementing what is known as a Markov text-generation algorithm.

Checklist
To help you organize your project workflow, we have provided a checklist of the required
functions you need to write (and you’re welcome to write other helper functions for code
cleanliness and readability).

Note that this checklist is intentionally underspecified in some places to keep it concise—after
the checklist, we’ve provided more detailed specifications to follow in your implementation.

Project 1: Markstrings 3

Section A: Strings
Your answers for this section go in the ​strings.py ​ file. Implement the following functions:

❏ count_ignore_case(s, sub):​ takes in a string ​s ​and substring ​sub ​ and return the
number of occurrences of ​sub ​ in ​s ​ (ignoring cases of the letters)

❏ middle_name(fullname):​ ​takes a string fullname that represents a person’s full
name, returns a string representing the person’s middle name.

❏ Tests for ​count_ignore_case ​ and ​middle_name

Section B: Markov

Your answers for this section go in the ​markov.py ​ file. Implement the following functions:

❏ create_dictionary(filename):​ ​takes a string representing the name of a text file,
and that returns a dictionary of key-value pairs in which:

○ Each key is a word encountered in the text file
○ The corresponding value is a list of words that follow the key word in the text file

❏ generate_text(word_dict, num_words):​ ​takes in a dictionary of word transitions
(generated by the create_dictionary function) and a positive integer num_words to
generate a string of num_words words

❏ Tests for ​create_dictionary ​ and ​generate_text

Section A: Strings
Put your answers for this problem in ​strings.py ​.

count_ignore_case(s, sub)
Write a function ​count_ignore_case(s, sub) ​ that takes a string ​s ​ and a substring ​sub ​,
and that ​uses one or more ​Python string methods​ ​to compute and return the number of
occurrences of ​sub ​ in ​s ​, but ignores the cases of the letters involved. For example:

>>> ​count_ignore_case(​'Yes, yes, YES!'​, ​'yes'​)
3
>>> ​count_ignore_case(​'Yes, yes, YES!'​, ​'YES'​)
3
>>> ​count_ignore_case(​'Yes, yes, YES!'​, ​'yEs'​)
3
>>> ​count_ignore_case(​'Yes, yes, YES!'​, ​'no'​)
0

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods

Project 1: Markstrings 4

Notes:

● The cases of the letters in ​both​ strings does ​not​ matter when finding the count.
● Your function ​must​ make use of one or more string methods to determine the count.
● You should ​not​ need to use a loop or recursion.
● Ensure that your function ​returns​ the appropriate integer, rather than printing it.

middle_name(fullname)
Write a function ​middle_name(fullname) ​ that takes a string fullname that represents a
person’s full name, and that ​uses one or more Python string methods​ to extract and return a
string representing the person’s middle name. For example:

>>> ​middle_name(​'Martin Luther King'​)
'Luther'
>>> ​middle_name(​'Sarah Jessica Parker'​)
'Jessica'

If the full name has ​three or more​ components, you should return the ​second ​component. Do
this even if there are more than three components. For example:

>>> ​middle_name(​'Jose Antonio Dominguez Banderas'​)
'Antonio'

If the full name has ​fewer than three​ components, you should return an empty string. For
example:

>>> ​middle_name(​'Abraham Lincoln'​)
''
>>> ​middle_name(​'Madonna'​)
''

Notes:

● Your function ​must​ make use of one or more string methods to determine the middle
name. You should ​not​ need to use a loop or recursion.

● Make sure that your function ​returns​ the appropriate string, rather than printing it.

Section B: Markov
Put your answers for this problem in the file named ​markov.py ​.

Project 1: Markstrings 5

Algorithm Overview
English is a language with a lot of structure. Words have a tendency (indeed, an obligation) to
appear only in certain sequences. Grammatical rules specify legal combinations of different
parts of speech. For example, the phrase “The cat climbs the stairs” obeys a legal word
sequence. “Stairs the the climbs cat” does not. Additionally, ​semantics​ (the meaning of a
phrase) further limits possible word combinations. “The stairs climb the cat” is a nearly legal
sentence, but it doesn’t make sense and you are very unlikely to encounter this word ordering in
practice.

Even without knowing the formal rules of English or the meaning of English words, we can get
an idea of which word combinations are allowed simply by looking at large amounts of
well-formed English text (training data) and noting the combinations of words that tend to occur
in practice. Based on our observations, we can generate new sentences by randomly selecting
words according to commonly occurring sequences within the training data. For example,
consider the following text:

I love roses and carnations. I hope I get roses for my birthday.

If we start by selecting the word “I”, we notice that “I” may be followed by “love,” “hope,” and
“get” with equal probability in this text. We randomly select one of these words to add to our
sentence: ​“I get.”​ We can repeat this process with the word “get,” necessarily selecting the word
“roses” as the next word. Continuing this process could yield the phrase:

I get roses and carnations.

Note that this is a valid English sentence, but not one that we have seen before. Other novel
sentences we might have generated include ​“I love roses for my birthday.”​ and ​“I get roses for
my birthday.”

More formally, the process used to generate these sentences is called a ​first-order Markov
process​. A first-order Markov process is a process in which the state at time t + 1 (i.e., the next
word) depends only on the state at time t (i.e., the previous word). In a second-order Markov
process, the next word would depend on the two previous words, and so on. Our example
above was a first-order process because the choice of the next word depended only on the
current word.

Implementing a first-order Markov text generator will involve writing two functions: one to
process a file and create a dictionary of legal word transitions, and another to actually generate
the new text.

Project 1: Markstrings 6

We will consider words to be different even if they only differ by capitalization or punctuation.
For example, 'spam', 'Spam', and 'spam!' will all be considered distinct words.

create_dictionary(filename)
Write a function ​create_dictionary(filename) ​ that takes a string representing the name
of a text file, and that returns a dictionary of key-value pairs in which:

● each key is a word encountered in the text file
● the corresponding value is a list of words that follow the key word in the text file.

For example, the dictionary produced for the text ​“I love roses and carnations. I hope I get roses
for my birthday.”​ would include the following key-value pairs, among others:

'I'​: [​'love'​, ​'hope'​, ​'get'​]
'love'​: [​'roses'​]
'roses'​: [​'and'​, ​'for'​]
'my'​: [​'birthday.'​]
as well as others!

Guidelines
● You should ​not​ try to remove the punctuation from the words of the text file.
● The keys of the dictionary should include every word in the file ​except​ the

sentence-ending words​. A sentence-ending word is defined to be any word whose last
character is a period ('.'), a question mark ('?'), or an exclamation point ('!'). A
sentence-ending word ​should​ be included in the lists associated with the words that it
follows (i.e., in the value parts of the appropriate key-value pairs), but it ​not​ appear as its
own key.

● If a word ​w1 ​ is followed by another word ​w2 ​ multiple times in the text file, then ​w2 ​ should
appear multiple times in the list of words associated with ​w1 ​. This will allow you to
capture the frequency with which word combinations appear.

● In addition to the words in the file, the dictionary should include the string ​'$' ​ as a
special key referred to as the ​sentence-start symbol​. This symbol will be used when
choosing the first word in a sentence. In the dictionary, the list of words associated with
the key ​'$' ​ should include:

○ the first word in the file
○ every word in the file that follows a sentence-ending word.

● Doing this will ensure that the list of words associated with ​'$' ​ includes all of the words
that start a sentence. For example, the dictionary for the text ​“I scream. You scream. We
all scream for ice cream.”​ would include the following entry for the sentence-start
symbol:

Project 1: Markstrings 7

'$'​: [​'I'​, ​'You'​, ​'We'​]

You may find it helpful to consult the ​word_frequencies ​ function from lecture. We will also
discuss some additional strategies for ​create_dictionary ​ in lecture.

Testing
To test your code, we have provided a file called ​sample.txt ​:

sample.txt

A B A. A B C. B A C. C C C.

Try this in the command line:

>>> ​word_dict = create_dictionary(​'sample.txt'​)
>>> ​word_dict
{​'A'​:[​'B'​, ​'B'​, ​'C.'​], ​'C'​:[​'C'​, ​'C.'​], ​'B'​:[​'A.'​, ​'C.'​, ​'A'​],
 '$'​:[​'A'​, ​'A'​, ​'B'​, ​'C'​]}

The order of the keys–or of the elements within a given key’s list of values–may not be the
same as what you see above, but the elements of the lists should appear in the quantities
shown above for each of the four keys ​'A' ​, ​'B' ​, ​'C' ​, and​ '$' ​.

Here are some additional files you can use for testing:

● brown_vision.txt ​ - an edited version of Brown’s vision statement
● brave.txt ​ - lyrics from the song ​Brave​ by Sara Bareilles, and its dictionary
● alice.txt ​ - the text to Alice in Wonderland by Charles Lutwidge Dodgson

Here again, the ordering that you obtain for the keys and list elements in the dictionaries may be
different. In addition, we have edited the formatting of the dictionaries to make them easier to
read.

We have also provided a file entitled ​brave_dictionary.txt, ​which contains the entire
dictionary generated from our solution code run on ​brave.txt

generate_text(word_dict, num_words)
Write a function ​generate_text(word_dict, num_words) ​ that takes as parameters a
dictionary of word transitions (generated by the ​create_dictionary ​ function) named

Project 1: Markstrings 8

word_dict ​ and a positive integer named ​num_words ​. The function should use ​word_dict ​ to
generate and print a string of ​num_words ​ words.

Guidelines
● The first word should be chosen randomly from the words associated with the

sentence-start symbol, ​'$' ​. The second word should be chosen randomly from the list
of words associated with the first word, ​etc​. When the current word ends in a period
(​'.' ​), question mark (​'?' ​), or exclamation point (​'!' ​), the function should detect this
and start a new sentence by again choosing a random word from among those
associated with ​'$' ​.

● Do not include ​'$' ​ in the output text. It should only be used as an internal marker for
your function.

● You can use the ​random.choice ​ function to choose from a list of possible words.
Don’t forget to include ​import random ​ at the top of your file.

■ For example, if ​wordlist ​ is the list of possible words at a given point in the
generated text, you can use​ ​random.choice(wordlist) ​ to select a random
word from ​wordlist ​.

● Here again, you shouldn’t try to remove or change the punctuation associated with the
words, and you don’t need to worry if the generated text doesn’t end with appropriate
punctuation. The generated text won’t be perfect, but most of the time it will at least be
meaningful!

● If your function encounters a word that doesn’t have any words associated with it in the
dictionary, the function should start a new sentence. This situation can occur if the last
word in the file used to create the dictionary was unique and did not end with
punctuation.

Testing
Below are two examples using the same text file as above. Your output may differ because of
the randomness involved in the generation.

>>> ​word_dict = create_dictionary(​'sample.txt'​)
>>> ​generate_text(word_dict, ​20​)
B C. C C C. C C C C C C C C C C C. C C C. A

>>> ​generate_text(word_dict, ​20​)
A B A. C C C. B A B C. A C. B A. C C C C C C.

Try some other examples using longer documents containing English words, such as the ​works
of William Shakespeare​. In particular, we have provided a text file named ​romeo.txt ​ that
contains the first act of ​Romeo and Juliet​, along with the files that we provided above in the
examples for ​create_dictionary ​.

http://shakespeare.mit.edu/
http://shakespeare.mit.edu/

Project 1: Markstrings 9

https://www.youtube.com/watch?v=rg6CiPI6

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
document or have any concerns about this and any other CS4 document by ​posting on Piazza
or filling out ​our anonymous feedback form​.

https://www.youtube.com/watch?v=rg6CiPI6h2g
https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/u/4/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform

