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1. Introduction 
After the movie Boss Baby comes out, the puppies of the world are finally at wit’s end with the 
attention the frickin’ babies are getting! They decide to challenge those tiny humans to a match 
of the classic card game, twenty-one, using hugs as betting tokens to decide once and for all 
who is the cutest. They enlist your help in setting up the game. But little do the babies know, 
those sneaky puppies have a secret weapon up their sleeve, which they also ask you to help 
complete.  
 
The Twenty-one assignment has been scaffolded to let you focus on applying the MATLAB 
skills you’ve learned in lecture and in section to construct an entire game of twenty-one. Don’t 
be worried if you don’t understand some of the stencil code, since we’ve explained everything 
you need in this handout. We’ve also provided you a test suite to test your code as you go and a 
simulator to see if the puppies’ secret weapon has worked (both are explained below).  
 

https://www.imdb.com/title/tt3874544/
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2. Assignment 
In this assignment, you will code a game of twenty-one in Matlab. Each round of a game of 
twenty-one consists of a player either drawing a card or ending their turn with the objective of 
having the sum of their hand be as close to 21 as possible without exceeding 21. The will be 
twofold. In part one, you will be implementing several classes necessary to set up a game of 21. 
In part two, you will implement two AI players and compare their performance in the game.  

3. Installation 
 
For each project, there may be support files that you will need to complete for the assignment. 
These can be copied to your home directory by using the cs4_install  command in a CIT 
Terminal window. For this project, type the command: 

cs4_install twentyone 

There should now be a twentyone  folder within your projects  directory. Using Terminal, you 
can move into the folders with the cd command: 

cd ~/course/cs0040/projects/twentyone 

If you are working on a department machine, you can run cs4_matlab  from this folder to open 
all files in that folder in MATLAB R2018a 

4. Instructions 
The twentyone stencil code consists of the following files. You need only edit the bolded files 
 

Class Files Functions Testing Scripts 

Player.m  
AIOptimistPlayer.m 

AIPessimistPlayer.m  

AIPlayerXray.m  

Card.m 

Game.m  

Hand.m  

Shoe.m 

Shuffler.m  

TwentyOneHand.m  

compare_results.m  

run_player.m 

make_hand.m  

play_round.m 

sample_mean.m 

 

 

 

 

twentyone_tests.m 

simulate.m  
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As you may recall, MATLAB doesn’t allow multiple public functions in one file; this same 
restriction also applies to Object Class definitions.  Since this is a lot of files to wade around in, 
you can use the MATLAB “Find Files” button on the editor tab to allow you to easily navigate to 
each TODO item that your need to complete in order to get your twenty-one system up and 
running. 
 

5. Part One: Game Setup 
 
In this part of the project, you will be implementing several classes that are necessary for the 21 
game to work. These classes can be found in Card.m , Hand.m , TwentyOneHand.m,  and 
Shoe.m . We’ve provided the stencil code for each of these classes, along with TODO 
comments to detail what still needs to be done.  
 

5.1 Testing 
The twentyone_tests.m script contains a full set of tests for the MATLAB 21 system.  As you 
implement your TODO items, you can open the twentyone_tests.m script and use the “Run 
Section” button in the editor to run just the tests associated with each section of code you are 
working on (which should be clearly labelled in the test suite). If you get an error when running 
any given section of the test suite, that means you haven’t reached a working implementation of 
the corresponding class.  
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Run Section Example 

 
 

5.2 Files 
Card.m 
For Card.m , you must compute the value of each card in the function get_value . The passed 
in parameter, obj , will be an array of card objects, and you should be returning an array of the 
same size where each value corresponds to the card at the same index in the card array. 
Remember that an Ace is worth 1, face cards are worth 10, and number cards are worth the 
same number value.  
*Note: The suit of a card and the name of face cards are both represented by the first letter of its 
name. For example, a king of hearts should have the name “K” and the suit “H”.  
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Hand.m 
For Hand.m , you must first initialize the cards in the hand (which should be a nx1 sized array). 
Then you must add new cards to the hand and calculate the total value of all cards in the hand. 
Finally, you must check if a given card is in the hand in the function has_any .  
 
TwentyOneHand.m 
TwentyOneHand.m  represents a hand of cards in a 21 game. In the get_value  function, you 
must first calculate the value of the hand of cards – the difficulty here is that an Ace can be 
determined to have a value of 1 or 11 depending on the situation, so you cannot just use the 
value returned from the Hand object’s get_value  function. For example, you may want an Ace 
to hold a value of 1 if you have the Ace and two face cards, and you may want an Ace to hold a 
value of 11 if you have the Ace and just one face card. A hand is soft if it uses an Ace as 11, 
and you must determine if the hand is soft in the function soft_value . 
 
Shoe.m 

Shoe.m  represents a card shoe containing deck(s) of cards that can contain either a finite 
number of cards or infinite cards. You must first initialize the deck(s) of cards contained in the 
shoe and then implement the shuffling mechanism in shuffle. Then, you must perform the 
distribution of cards (refer to the distribute  function) for both the case where there are finite 
cards (just return the next n cards in obj.cards) and infinite cards (sample with replacement from 
obj.cards). The TODO comments here should be extremely helpful. Remember the return value 
should be stored in the variable to which the function is assigned.  
*Note: next_card  denotes the index of the next card, not the actual card itself. 
 

6. Part Two: AI 
 
After you’ve finished implementing the game object classes, you’ll be filling out AIOptimist.m 
and AIPlayerXray.m  to create new players with different strategies for playing the game. 
We’ve given you AIPessimistPlayer.m  as a point of comparison. The pessimistic player 
always assumed that the next hit will put them over 21, so they always stand.  
 

6.1 AIOptimistPlayer.m 
 
The optimistic player assumes that the next hit won’t put them over 21 so they always hit unless 
their own hand value is 10 above the shuffler’s (or dealer’s) visible hand value. If 10 + the 
shuffler’s visible hand value is over 21, then they would also stand. Remember, classdef 
AIOptimistPlayer < Player means that the AIOptimistPlayer  inherits from the 
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Player  class, so it might be useful to look over the Player  class (in Player.m ) to see what’s 
going on. Like in part one of the project, you’ll find tests in twentyone_tests.m  to test your 
implementation.  
 

6.2 AIPlayerXray.m 
 
The puppies’ secret weapon is that they’ve convinced Superman to share with them the secret 
of x-vision. However, they’re not entirely sure how to use it except to see the shuffler’s hole 
(hidden) card and/or to peak ahead in the shoe’s cards, so they’ve asked you to help implement 
a strategy to beat the babies’ pessimistic strategy which you will place in the function bet  to 
determine how many hugs to bet. We’ve already added code to find the hole_card  value. It’s 
your job to determine how much to bet from this, which you should store in the return value b . 
This is open-ended and there is no right answer, so feel free to get creative! However, make 
sure you document your approach in the README, which will be factored into your grade. You 
don’t need to go overboard but your explanation should be detailed enough that a TA could 
replicate your function. 
 
You can run simulate.m  to see how your strategy stacks up to that of 
AIPessimistPlayer.m . After waiting for the program to finish running, you should see a 
graph that looks something like this (obviously, it doesn’t have to be exact!):  
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The reward accumulated by your x-ray bequeathed strategy in red should be higher than that of 
the pessimistic strategy in blue by the end of all 1000 rounds.  
 

7. Handin 
When you are ready to hand-in your project run the command 
 
cs4_handin twentyone 

 

from a CIT Terminal window in your ~/course/cs0040/projects/twentyone directory, 
and the entire contents of the directory will be handed in.   NOTE: Be sure to turn in all files 
needed to run all aspects of your project.  Including your AIPlayer class definition files. 
 
You can re-submit this assignment using the cscs4_handin  command at any time, but only 
your most recent submission with be graded. 
 
Please include a README (a simple text file) that details any parts of the project that aren’t 
working. If a section does not pass, if you explain in detail why it does not pass, you may 
receive some partial credit for that verification section. You should also explain your approach to 
the AIPlayerXray for Part II in your README. 
 
Be sure to turn in all files needed to run all aspects of your project.  
 
Good luck and happy coding! 

 
 
Please let us know if you find any mistakes, inconsistencies, or confusing language in this 
document or have any concerns about this and any other CS4 document by posting on Piazza 
or filling out our anonymous feedback form. 

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform

