Lecture 02
Making Decisions:
Conditional Execution

Flow of Control

 Flow of control = order in which statements are executed

* By default, a program's statements are executed sequentially,
from top to bottom.

program flowchart
total = 0
numl =5 - N
numz — 10 total = 0
total = numl + num2 ; ¥ i
numl = 5
num2 = 10

v

[total = numl + num2 }

Conditional Execution

* To solve many types of problems we need to change
the standard flow of control

* Conditional execution allows you to decide whether to do
something, based on some condition

* example:

abs_value(x):
""" returns the absolute value of input x """
X < 0:
X = -1 % x
X

» examples of calling this function from the Shell:

>>> abs value(-5)
5

>>> abs value(10)
10

Simple Decisions: 1 Statements

* Syntax:

1T condition:

false

true blOCk condition

where:
* condition is an expression

that is true or false [e block J
* true block is one or more

indented statements l

[next statement]4
* Example:

abs_value(x):

returns the absolute value of 1nput X
x < 0:
X = -1 % x # true block
X

Two-Way Decisions: if-else Statements

* Syntax:

true false

i1f condition: \ condition \

true block
else:

false block [} { }
true block false block

P[next statement]4

 Example: |

pass_fail(avg):

checks whether student passes/fails

avg >= 60:
grade = 'pass' # true block
grade = 'fail"’ # false block

grade

A Word About Blocks

* A block can contain multiple statements.

welcome(class):
class == 'frosh':
print('Welcome to Brown U!")
print('Have a great four years!')

print('Welcome back!")
print('Have a great semester!')
print('Be nice to the frosh students.')

* A new block begins whenever we increase the amount
of indenting.

* A block ends when we either:
* reach a line with less indenting than the start of the block
* reach the end of the program

Expressing Simple Conditions

* Python provides a set of relational operators
for making comparisons:

operator name examples

< less than val < 10
price < 10.99

> greater than num > 60
state > 'Ohio’

<= less than or equal to average <= 85.8
>= greater than or equalto name >= 'Jones'
== equal to total == 10

don't confuse ‘== with =’ letter == 'P'

I= not equal to age != my_age

Boolean Expressions

A condition has one of two values: True or False.

>>> 10 < 20

True
>>> 10 < 20 < 15

False

>>> "Jones" == "Baker"
False

 True and False are not strings.

 they are literals from the bool data type
>>> type(True)
<class 'bool'>

>>> type(30 > 6)
<class 'bool'>

* An expression that evaluates to True or False is known as
a boolean expression.

Forming More Complex Conditions

* Python provides logical operators for combining/modifying
boolean expressions:

name example and meaning
and age >= 18 and age <= 35

True if both conditions are True;

False otherwise

or age < 3 or age > 65
True if one or both of the conditions are True;
False if both conditions are False
not not (grade > 80)
True if the condition is False;
Falseifitis True

Nesting

* We can "nest" one conditional statement in the true block
or false block of another conditional statement.

welcome(class):
class == "frosh':
print('Welcome to BU!")
print('Have a great four years!')

print(‘'Welcome back!")
class == 'senior':
print('Have a great last year!')

print('Have a great semester!')
print('Be nice to the frosh students.')

What is the output of this program?

X =5
1f x < 15;
if x > 8:
print('one')
else:
print('two")
else:
if x > 2:
print('three')
A. one
B. two
C. three
D. more than one of the above
E. nothing is output

What is the output of this program?

X =5

if x < 15: # true

if x > 8: # false
else:

[print('two')

[%f > 2
program would go here next...
one

o

A

B. two

C. three

D more than one of the above
E

nothing is output

What does this print? (note the changes!)

X =5
1if x < 15;
if x > 8:
print('one')
else:
print('two")
1if x > 2:
print('three')

one
two
three

more than one of the above

oY aw»

nothing is output

What does this print? (note the changes!)

X =5
if x < 15:
if x > 8:
elsg;
[print('two')
if x > 2;

[Print('three')

one
two
three

more than one of the above

oY aw»

nothing is output

What does this print? (note the new changes!)

X =5
1if x < 15;
if x > 8:
print('one')
else:
print('two")
1if x > 2:
print('three')

one
two
three

more than one of the above

oY aw»

nothing is output

What does this print? (note the new changes!)

X =5

if x < 15:

if >|<:> 8:

else_:

1f x > 2:
[Print('three')

one
two
three

more than one of the above

oY aw»

nothing is output

Multi-Way Decisions

* The following function doesn't work.

letter_grade(avg):

avg >= 90:
grade = 'A’
avg >= 80:
grade = 'B'
avg >= 70:
grade = 'C'
avg >= 60:
grade = 'D'
grade = 'F'
grade

* example:
>>> letter_grade(95)
lDl

Multi-Way Decisions (cont.)

e Here's a fixed version:

letter_grade(avg):

avg >= 90:
grade = 'A’
eli? avg >= 80:
grade = 'B'
eli? avg >= 70:
grade = 'C'
eli? avg >= 60:
grade = 'D'
grade = 'F'
grade

* example:
>>> letter_grade(95)
lAl

Multi-Way Decisions: if-elif-else
Statements
* Syntax:

if conditionl:

true block for conditionl
elif conditionZ2:

true block for conditionZ2
elif condition3:

true block for condition3

else:
false block

* The conditions are evaluated in order. The true block of the
first true condition is executed.

* Ifnone of the conditions are true, the false block is executed.

Flowchart foran if-elif-else Statement

true block 1

true block 2

falsei

false block

v

next statement |«

v

How many lines does this print?

X =5

1f x == 8:
print('how")

elif x > 1:
print('now")

elif x < 20:
print(’'brown')

print('cow")

m o 0w >
AW N 2 O

How many lines does this print?

X =5

1f x == 8:
print('how")

elif x > 1:
print('now")

elif x < 20:
print(’'brown')

print('cow")

m o 0w >
AW N 2 O

How many lines does this print?

X =5

1f x == 8:
print('how")

if x > 1:
print('now")

1if x < 20:
print(’'brown')

print('cow")

m o 0w >
AW N 2 O

How many lines does this print?

X =5

1f x == 8:
print('how")

if x > 1:
print('now")

1if x < 20:
print('wow")

print('cow")

m o 0w >
AW N 2 O

What is the output of this code?

def mystery(a, b):
if a == 0 or a ==
return b
return a * b

print(mystery(0, 5))

A. 5

B 1

C 0

D. none of these, because an error is produced
E. none of these, but an error is not produced

What is the output of this code?

a b

def mystery(a, b): 0 5

if a == § ot a == 1:

retu b

return a b
print(mystery(0, 5))
A. 5
B 1
C 0
D. none of these, because an error is produced
E. none of these, but an error is not produced

What is the output of this code?

a b
def mystery(a, b): 0 5
if a == 0 or a == 1:
return b # return 5
return a * b
print(mystery(0, 5)) # print(5)
A. 5
A return statement ends a function call,
B 1 regardless of whether the function
has more lines after the return.
C 0
D. none of these, because an error is produced
E. none of these, but an error is not produced

Common Mistake When Using and / or

def mystery(a, b):
if a == 0 or 1: # this 1s problematic
return b
return a * b

print(mystery(0, 5))

« When using and / or, both sides of the operator should be a
boolean expression that could stand on its own.

boolean boolean boolean integer
a == or a == a == or 1
(do this) (don't do this)

* Unfortunately, Python doesn't complain about code like the
problematic code above.

* but it won't typically work the way you want it to!

Avoid Overly Complicated Code

* The following also involves decisions based on a person's age:

age = ... # let the user enter his/her age
if age < 13:
print('You are a child.")
elif age >= 13 and age < 20:
print('You are a teenager.')
elif age >= 20 and age < 30:
print('You are in your twenties.')
elif age >= 30 and age < 40:
print('You are in your thirties.')
else:
print('You are a survivor.')

 How could it be simplified?

Avoid Overly Complicated Code

* The following also involves decisions based on a person's age:

age = ... # let the user enter his/her age
if age < 13:

print('You are a child.")
elif-age>=-13-and age < 20:

print('You are a teenager.')
elif-age>=20-and age < 30:

print('You are in your twenties.')
elif-age>=30-and age < 40:

print('You are in your thirties.')
else:

print('You are a survivor.')

 How could it be simplified?

Variable Scope
Functions Calling Functions

Variable Scope

* The scope of a variable is the portion of your program
in which the variable can be used.

 We need to distinguish between:
* local variables: limited to a particular function
* global variables: can be accessed anywhere

Local Variables

def mystery(x, y):

b=x-y # b 1s a local var of mystery
return 2*b # we can access b here

c =7

mystery(5, 2)

print(b + c) # we can't access b here!

 When we assign a value to a variable inside a function,
we create a local variable.

* it "belongs” to that function
* it can't be accessed outside of that function

* The parameters of a function are also limited to that function.
* example: the parameters X and y above

Global Variables

def mystery(x, y):
b =x -y
return 2*b + ¢ # works, but not recommended

c =7 # c 1s a global variable
mystery(5, 2)
print(b + c) # we can access c here

 When we assign a value to a variable outside of a function,
we create a global variable.

* it belongs to the global scope

* A global variable can be used anywhere in your program.
* in code that is outside of any function

* in code inside a function (but this is not recommended)

Neither globals nor locals exist until they are assigned a value!

Different Variables With the Same Name!

def mystery(x, y):

b=x-Yy # this b 1s local
return 2*b # we access the local b here
b = 1 # this b is global
c =7
mystery(5, 2)
print(b + c) # we access the global b here

* The program above has two different variables called b.
* one local variable
* one global variable

* When this happens, the local variable has priority inside
the function to which it belongs.

What is the output of this code?

def mystery2(a, b):
X =a+b
return x + 1

X = 8
mystery2(3, 2)
print(x)

A 5
B. 6
C. 8
D 9
E

none of these, because an error is produced

What is the output of this code?

def mystery2(a, b): # there are two different x's!
X =a+b # this x 1s local to mystery2
return x + 1

X = 8 # this x 1s global
mystery2(3, 2)
print(x)

A. 5

B. 6

C. 8

D. 9

E. none of these, because an error is produced

What is the output of this code?

def mystery2(a, b): # there are two different x's!
X =a+b # this x 1s local to mystery2
return x + 1

X = 8 # this x 1s global
mystery2(3, 2)
print(x)

Follow-up question:

Why don't we see the following?
6

8

5
6
8
9

m o 0w

none of these, because an error is produced

What is the output of this code?

def mystery2(a, b): # there are two different x's!
X =a+b # this x 1s local to mystery2
return x + 1

X = 8 # this x 1s global

Follow-up question:

Why don't we see the following?
6

8

but we don't print the return value.
We essentially "throw it away"!

A 5

B. 6

C 8 mystery2(3, 2) returns 6,
D 9

E

none of these, because an error is produced

What is the output of this code? (version 2)

def mystery2(a, b):
X =a+b
return x + 1

*——8-
mystery2(3, 2)
print(x)

A 5
B. 6
C. 8
D 9
E

none of these, because an error is produced

What is the output of this code? (version 2)

def mystery2(a, b):

X =a+b
return x + 1

X"
mystery2(3, 2)
print(x) # the only x belongs to mystery2,
so we can't access 1t here.
A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

A Note About Globals

 It's not a good idea to access a global variable inside a function.
 for example, you shouldn't do this:

def average3(a, b):
total = a + b + ¢ # accessing a global c
return total/3

c =7
print(average3(5, 7))

A Note About Globals

 It's not a good idea to access a global variable inside a function.
 for example, you shouldn't do this:

def average3(a, b):
total = a + b + ¢ # accessing a global c
return total/3

c =7
print(average3(5, 7))

 Instead, you should pass it in as a parameter/input:

def average3(a, b, c):
total = a + b + ¢ # accessing input c
return total/3

c =7
print(average3(5, 7, c))

Frames and the Stack

Variables are stored in B Objects
blocks of memory known |
Global frame function
as frames. - mystery2(a, b)
mystery
Each function call gets a XS
frame for its local variables.
mystery2
* goes away when -
the function returns i ;
. X |5
Global variables are stored |
in the global frame. e |2

The stack is the region of the
computer's memory in which
the frames are stored.

* thus, they are also known as stack frames

Visualizing How Functions Work
pythontutor.com/visualize.html

* Before the call tomystery2:

def mystery2(a, b): Global frame function
/—>myster~y2(a, b)
X =a+ b mystery2

return x + 1 g

X = 8

=¥ 5 mystery2(3, 2) The global frame includes

print(x) the function names
and the global variables.

line that has just executed

= next line to execute

http://pythontutor.com/visualize.html

Visualizing How Functions Work
pythontutor.com/visualize.html

* At the start of the call to mystery?2:

=y def mystery2(a, b): Global frame function
mystery2(a, b)
X =a+b mystery2
return x + 1 X |8
mystery2
X = 8
mystery2(3, 2)
print(x)
mystery2(3, 2) getsits own frame
line that has just executed containing the variables that belong to it.
= next line to execute mystery2's x isn't shown yet because
we haven't assigned anything to it.

http://pythontutor.com/visualize.html

Visualizing How Functions Work
pythontutor.com/visualize.html

* When the call to mystery2 is about to return:

def mystery2(a, b): Global frame function
% = a 3+ b —— mystery2(a, b)
return x + 1 L
i
mystery2
X = 8 a (3
mystery2(3, 2) b 2 | Python looks for a

X 5« variable in the
Return | current frame first,
YiLn so the local x will
be used instead of
line that has just executed the global x when
== next line to execute returnmg X + 1.

print(x)

http://pythontutor.com/visualize.html

Visualizing How Functions Work
pythontutor.com/visualize.html

 After the call to mystery2 has returned:

def mystery2(a, b): Global Frame function

mystery2(a, b)
X =a+b mystery2

return X + 1 X8

¥ = '8

When a function call
returns, its frame is
_— print(x) removed from memory.
Its local variables can
no longer be accessed.

mystery2(3, 2)

* The only x that remains is the global X, so its value is printed.

http://pythontutor.com/visualize.html

What is the output of this code?
def quadruple(y):
*

y =4 y
return y
y = 8
quadruple(y)
print(y)
A 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

What is the output of this code?
def quadruple(y): # the parameter y 1s local
*

y =4 y
return y
y = 8 # this y 1s global
quadruple(y)
print(y)
A 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

What is the output of this code?

def quadruple(y): # 3. local y = 8
*

y =4 y
return y
y =8 # 1. global y = 8
quadruple(y) # 2. pass 1in global y's value
print(y)
A 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

What is the output of this code?

def quadruple(y): # 3. local y = 8
* —

y =4 *y # 4. localy =4 * 8 = 32
return y # 5. return local y's value
32
y =8 f///’ # 1. global y = 8
quadrupfe(y) # 2. pass 1n global y's value
6. return value thrown away!

print(y)

A. 4

B. 8

C. 12

D. 32

E. none of these, because an error is produced

What is the output of this code?

def quadruple(y):
*

y=4"%y
return y
32
y =38
quadruple(y)
print(y)
A. 4
B. 8
C. 12
D. 32
E.

H R R R W

NN =

3. local y = 8
4. local y = 4 * 8 = 32
5. return local y's value

. global y = 8

. pass 1n global y's value

. return value thrown away!

. print global y's value,
which 1s unchanged!

You can't change

the value of a variable
by passing it

into a function!

none of these, because an error is produced

How could we change this to see the return value

of quadruple?
def quadruple(y):
y =4 %y
return y

y =38
quadruple(y)
print(y)

Seeing the return value (option 1)

def quadruple(y):

y =4*y
return y
y =8

y = quadruple(y) # assign return val to global y
print(y)

Seeing the return value (option 2)

def quadruple(y):

y =4*y
return y
y =8

print(quadruple(y)) # print return val
no need for print(y)

What is the output of this program?

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

A 4

B. 42

C. 44

D. 46

E. none of these

Functions Calling Other Functions!

def demo(
return| x + f(x)

def f(x):

return \11*g(x) + g(x//2)

def g(x):
return 41 * x

print(demo(-4))

demo
= -4
return -4 + f(-4)

stack frame

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2

def g(x):
return -1 * x

print(demo(-4))

demo
— X = -4
return -4 +|f(-4)

stack frame

: ¥

— X = -4
return 11*g(x) + g(x//2)

stack frame

These are distinct memory locations
both holding X's.

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo stack frame
X = -4
return -4 +|f(-4)
f l stack frame
X = -4
return 114g(-4)| + g(-4//2)
g stack frame
X = -4
return -1 * x

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo
= -4
return -4 +|f(-4)

: ¥

X = -4
return 11*
AN

+ g(-4//2)

AN

PPN

return 4

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo
X = -4
return -4 +|(f(-4)

: ¥

— X = -4
return 11* 4 +| g(-4//2)

g
— X = =2

return -1 * x

These are distinct memory locations
both holding X's — and now they also
have different values!!

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo f g
X | ret X | ret x| ret
-4 | -4 | -4 | 4
-2 | 2

demo
X = -4
return -4 +|(f(-4)

: ¥

— X = -4
return 11* 4 +| g(-4//2)

g
— X = =2

return 2

These are distinct memory locations
both holding X's — and now they also
have different values!!

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo f g
X | ret X | ret x| ret
-4 | -4 | 46 -4 | 4
-2 | 2

demo
= -4
return -4 +|f(-4)

%
l <
f \
X = -4
return 46

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo f g
X | ret X | ret x| ret
-4 | 42 -4 | 46 -4 | 4
-2 | 2

demo
= -4
return -4 + 46 —> 42
/

Functions Calling Other Functions!

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4)) # print(42)

42

What is the output of this program?

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

A 4

B. 42

C. 44

D. 46

E. none of these

Tracing Function Calls

def foo(x, y):

y =y +1
X = X + Yy
print(x, y)
return X
X = 2
y =0
y = foo(y, X)
print(x, y)
foo(x, Xx)
print(x, y)

print(foo(x, y))
print(x, y)

foo
x |y | ret

global
x |y

output

Tracing Function Calls)(; | \2/ | rgt
def foo(x, y):
y =y +1
X =X +Yy
print(x, y)
return x
X = 2
y =0 global
X |y
y = foo(y, Xx) 2 0
print(x, y) 2 3
foq(x, X)
print(x, y) outout
3 3

print(foo(x, y))
print(x, y)

Tracing Function Calls

def foo(x, y):

y =y +1
X = X + Yy
print(x, y)
return X
X = 2
y =0
y = foo(y, X)
print(x, y)
foo(x, Xx)
print(x, y)

print(foo(x, y))
print(x, y)

foo

NN O IX

wN NK
o U1 WD

global
X |y
2 0
2 3

output

:

NOODNUTN W
AW www

