
Lecture 02
Making Decisions:

Conditional Execution

1

Flow of Control

• Flow of control = order in which statements are executed

• By default, a program's statements are executed sequentially,
from top to bottom.

program flowchart

total = 0
num1 = 5
num2 = 10
total = num1 + num2

total = 0

num1 = 5

num2 = 10

total = num1 + num2
2

Conditional Execution

• To solve many types of problems we need to change
the standard flow of control

• Conditional execution allows you to decide whether to do
something, based on some condition

• example:

 def abs_value(x):
 """ returns the absolute value of input x """
 if x < 0:
 x = -1 * x
 return x

• examples of calling this function from the Shell:
>>> abs_value(-5)
5
>>> abs_value(10)
10

3

Simple Decisions: if Statements

• Syntax:

if condition:
 true block

where:

• condition is an expression
that is true or false

• true block is one or more
indented statements

• Example:

 def abs_value(x):

 """ returns the absolute value of input x """
 if x < 0:
 x = -1 * x # true block
 return x

4

Two-Way Decisions: if-else Statements

• Syntax:

if condition:
 true block
else:
 false block

• Example:

 def pass_fail(avg):

 """ checks whether student passes/fails """
 if avg >= 60:
 grade = 'pass' # true block
 else:
 grade = 'fail' # false block
 return grade 5

A Word About Blocks

• A block can contain multiple statements.

 def welcome(class):
 if class == 'frosh':
 print('Welcome to Brown U!')
 print('Have a great four years!')
 else:
 print('Welcome back!')
 print('Have a great semester!')
 print('Be nice to the frosh students.')

• A new block begins whenever we increase the amount
of indenting.

• A block ends when we either:

• reach a line with less indenting than the start of the block

• reach the end of the program
6

Expressing Simple Conditions

• Python provides a set of relational operators
for making comparisons:

operator name examples

< less than val < 10
 price < 10.99

> greater than num > 60
 state > 'Ohio'

<= less than or equal to average <= 85.8

>= greater than or equal to name >= 'Jones'

= = equal to total = = 10
 letter = = 'P'

!= not equal to age != my_age

don't confuse ‘==’ with ‘=’

7

Boolean Expressions

• A condition has one of two values: True or False.

>>> 10 < 20
True

 >>> 10 < 20 < 15
False
>>> "Jones" == "Baker"
False

• True and False are not strings.

• they are literals from the bool data type
>>> type(True)
<class 'bool'>
>>> type(30 > 6)
<class 'bool'>

• An expression that evaluates to True or False is known as
a boolean expression. 8

Forming More Complex Conditions

• Python provides logical operators for combining/modifying
boolean expressions:

name example and meaning
and age >= 18 and age <= 35

True if both conditions are True;

False otherwise

or age < 3 or age > 65
True if one or both of the conditions are True;

False if both conditions are False

not not (grade > 80)
True if the condition is False;

False if it is True

9

Nesting

• We can "nest" one conditional statement in the true block
or false block of another conditional statement.

 def welcome(class):
 if class == 'frosh':
 print('Welcome to BU!')
 print('Have a great four years!')
 else:
 print('Welcome back!')
 if class == 'senior':
 print('Have a great last year!')
 else:
 print('Have a great semester!')
 print('Be nice to the frosh students.')

10

What is the output of this program?

x = 5
if x < 15:
 if x > 8:
 print('one')
 else:
 print('two')
else:
 if x > 2:
 print('three')

A. one
B. two
C. three
D. more than one of the above

E. nothing is output 11

What is the output of this program?

x = 5
if x < 15: # true
 if x > 8: # false
 print('one')
 else:
 print('two')
else:
 if x > 2:
 print('three')
program would go here next...

A. one
B. two
C. three
D. more than one of the above

E. nothing is output 12

What does this print? (note the changes!)

x = 5
if x < 15:
 if x > 8:
 print('one')
 else:
 print('two')
if x > 2:
 print('three')

 A. one
B. two
C. three
D. more than one of the above

E. nothing is output 13

What does this print? (note the changes!)

x = 5
if x < 15:
 if x > 8:
 print('one')
 else:
 print('two')
if x > 2:
 print('three')

 A. one
B. two
C. three
D. more than one of the above

E. nothing is output 14

What does this print? (note the new changes!)

x = 5
if x < 15:
 if x > 8:
 print('one')
else:
 print('two')
if x > 2:
 print('three')

 A. one
B. two
C. three
D. more than one of the above

E. nothing is output 15

What does this print? (note the new changes!)

x = 5
if x < 15:
 if x > 8:
 print('one')
else:
 print('two')
if x > 2:
 print('three')

 A. one
B. two
C. three
D. more than one of the above

E. nothing is output 16

Multi-Way Decisions

• The following function doesn't work.

 def letter_grade(avg):
 if avg >= 90:
 grade = 'A'
 if avg >= 80:
 grade = 'B'
 if avg >= 70:
 grade = 'C'
 if avg >= 60:
 grade = 'D'
 else:
 grade = 'F'
 return grade

• example:
>>> letter_grade(95)
'D'

17

Multi-Way Decisions (cont.)

• Here's a fixed version:

 def letter_grade(avg):
 if avg >= 90:
 grade = 'A'
 elif avg >= 80:
 grade = 'B'
 elif avg >= 70:
 grade = 'C'
 elif avg >= 60:
 grade = 'D'
 else:
 grade = 'F'
 return grade

• example:
>>> letter_grade(95)
'A'

18

Multi-Way Decisions: if-elif-else
Statements

• Syntax:

if condition1:
 true block for condition1
elif condition2:
 true block for condition2
elif condition3:
 true block for condition3
…
else:
 false block

• The conditions are evaluated in order. The true block of the
first true condition is executed.

• If none of the conditions are true, the false block is executed.

19

Flowchart for an if-elif-else Statement

false block

false

truecondition
1 true block 1

false

truecondition
2 true block 2

...

false

next statement
20

How many lines does this print?

x = 5
if x == 8:
 print('how')
elif x > 1:
 print('now')
elif x < 20:
 print(’brown')
print('cow')

 A. 0
B. 1
C. 2
D. 3
E. 4 21

How many lines does this print?

x = 5
if x == 8:
 print('how')
elif x > 1:
 print('now')
elif x < 20:
 print(’brown')
print('cow')

 A. 0
B. 1
C. 2
D. 3
E. 4 22

How many lines does this print?

x = 5
if x == 8:
 print('how')
if x > 1:
 print('now')
if x < 20:
 print(’brown')
print('cow')

 A. 0
B. 1
C. 2
D. 3
E. 4 23

How many lines does this print?

x = 5
if x == 8:
 print('how')
if x > 1:
 print('now')
if x < 20:
 print('wow')
print('cow')

 A. 0
B. 1
C. 2
D. 3
E. 4 24

What is the output of this code?

def mystery(a, b):
 if a == 0 or a == 1:
 return b
 return a * b

print(mystery(0, 5))

A. 5
B. 1
C. 0
D. none of these, because an error is produced

E. none of these, but an error is not produced
25

What is the output of this code?

 a b
def mystery(a, b): 0 5
 if a == 0 or a == 1:
 return b
 return a * b

print(mystery(0, 5))

A. 5
B. 1
C. 0
D. none of these, because an error is produced

E. none of these, but an error is not produced
26

What is the output of this code?

 a b
def mystery(a, b): 0 5
 if a == 0 or a == 1:
 return b # return 5
 return a * b

print(mystery(0, 5)) # print(5)

A. 5
B. 1
C. 0
D. none of these, because an error is produced

E. none of these, but an error is not produced

A return statement ends a function call,
regardless of whether the function
has more lines after the return.

27

Common Mistake When Using and / or
def mystery(a, b):
 if a == 0 or 1: # this is problematic
 return b
 return a * b

print(mystery(0, 5))

• When using and / or, both sides of the operator should be a
boolean expression that could stand on its own.

boolean boolean boolean integer
 a == 0 or a == 1 a == 0 or 1

 (do this) (don't do this)

• Unfortunately, Python doesn't complain about code like the
problematic code above.

• but it won't typically work the way you want it to!
28

Avoid Overly Complicated Code

• The following also involves decisions based on a person's age:

age = ... # let the user enter his/her age
if age < 13:

 print('You are a child.')
elif age >= 13 and age < 20:

 print('You are a teenager.')
elif age >= 20 and age < 30:
 print('You are in your twenties.')
elif age >= 30 and age < 40:
 print('You are in your thirties.')
else:
 print('You are a survivor.')

• How could it be simplified?

29

Avoid Overly Complicated Code

• The following also involves decisions based on a person's age:

age = ... # let the user enter his/her age
if age < 13:

 print('You are a child.')
elif age >= 13 and age < 20:

 print('You are a teenager.')
elif age >= 20 and age < 30:
 print('You are in your twenties.')
elif age >= 30 and age < 40:
 print('You are in your thirties.')
else:
 print('You are a survivor.')

• How could it be simplified?

30

Variable Scope
Functions Calling Functions

31

Variable Scope

• The scope of a variable is the portion of your program
in which the variable can be used.

• We need to distinguish between:

• local variables: limited to a particular function

• global variables: can be accessed anywhere

32

Local Variables

def mystery(x, y):
 b = x - y # b is a local var of mystery
 return 2*b # we can access b here

c = 7
mystery(5, 2)
print(b + c) # we can't access b here!

• When we assign a value to a variable inside a function,
we create a local variable.

• it "belongs" to that function

• it can't be accessed outside of that function

• The parameters of a function are also limited to that function.

• example: the parameters x and y above

33

Global Variables

def mystery(x, y):
 b = x - y
 return 2*b + c # works, but not recommended

c = 7 # c is a global variable
mystery(5, 2)
print(b + c) # we can access c here

• When we assign a value to a variable outside of a function,
we create a global variable.

• it belongs to the global scope

• A global variable can be used anywhere in your program.

• in code that is outside of any function

• in code inside a function (but this is not recommended)

Neither globals nor locals exist until they are assigned a value!34

Different Variables With the Same Name!

def mystery(x, y):
 b = x - y # this b is local
 return 2*b # we access the local b here

b = 1 # this b is global
c = 7
mystery(5, 2)
print(b + c) # we access the global b here

• The program above has two different variables called b.

• one local variable

• one global variable

• When this happens, the local variable has priority inside
the function to which it belongs.

35

What is the output of this code?

def mystery2(a, b):
 x = a + b
 return x + 1

x = 8
mystery2(3, 2)
print(x)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

36

What is the output of this code?

def mystery2(a, b): # there are two different x's!
 x = a + b # this x is local to mystery2
 return x + 1

x = 8 # this x is global
mystery2(3, 2)
print(x)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

37

What is the output of this code?

def mystery2(a, b): # there are two different x's!
 x = a + b # this x is local to mystery2
 return x + 1

x = 8 # this x is global
mystery2(3, 2)
print(x)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

Follow-up question:
Why don't we see the following?
6
8

38

What is the output of this code?

def mystery2(a, b): # there are two different x's!
 x = a + b # this x is local to mystery2
 return x + 1

x = 8 # this x is global
mystery2(3, 2)
print(x)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

Follow-up question:
Why don't we see the following?
6
8

mystery2(3, 2) returns 6,
but we don't print the return value.
We essentially "throw it away"!

39

What is the output of this code? (version 2)

def mystery2(a, b):
 x = a + b
 return x + 1

x = 8
mystery2(3, 2)
print(x)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

40

What is the output of this code? (version 2)

A. 5
B. 6
C. 8
D. 9
E. none of these, because an error is produced

def mystery2(a, b):
 x = a + b
 return x + 1

x = 8
mystery2(3, 2)
print(x) # the only x belongs to mystery2,
 # so we can't access it here.

41

A Note About Globals

• It's not a good idea to access a global variable inside a function.

• for example, you shouldn't do this:

 def average3(a, b):
 total = a + b + c # accessing a global c
 return total/3

 c = 7
 print(average3(5, 7))

42

A Note About Globals

• It's not a good idea to access a global variable inside a function.

• for example, you shouldn't do this:

 def average3(a, b):
 total = a + b + c # accessing a global c
 return total/3

 c = 7
 print(average3(5, 7))

• Instead, you should pass it in as a parameter/input:

 def average3(a, b, c):
 total = a + b + c # accessing input c
 return total/3

 c = 7
 print(average3(5, 7, c))

43

Frames and the Stack

• Variables are stored in
blocks of memory known
as frames.

• Each function call gets a
frame for its local variables.

• goes away when
the function returns

• Global variables are stored
in the global frame.

• The stack is the region of the
computer's memory in which
the frames are stored.

• thus, they are also known as stack frames
44

Visualizing How Functions Work
pythontutor.com/visualize.html

• Before the call to mystery2:

The global frame includes
the function names

and the global variables.

45

http://pythontutor.com/visualize.html

Visualizing How Functions Work
pythontutor.com/visualize.html

• At the start of the call to mystery2:

mystery2(3, 2) gets its own frame
containing the variables that belong to it.
mystery2's x isn't shown yet because

we haven't assigned anything to it. 46

http://pythontutor.com/visualize.html

• When the call to mystery2 is about to return:

Visualizing How Functions Work
pythontutor.com/visualize.html

Python looks for a
variable in the

current frame first,
so the local x will
be used instead of
the global x when
returning x + 1.

47

http://pythontutor.com/visualize.html

Visualizing How Functions Work
pythontutor.com/visualize.html

• After the call to mystery2 has returned:

• The only x that remains is the global x, so its value is printed.

When a function call
returns, its frame is

removed from memory.
Its local variables can

no longer be accessed.

48

http://pythontutor.com/visualize.html

What is the output of this code?

def quadruple(y):
 y = 4 * y
 return y

y = 8
quadruple(y)

print(y)

A. 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

49

What is the output of this code?

def quadruple(y): # the parameter y is local
 y = 4 * y
 return y

y = 8 # this y is global
quadruple(y)

print(y)

A. 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

50

What is the output of this code?

def quadruple(y): # 3. local y = 8
 y = 4 * y
 return y

y = 8 # 1. global y = 8
quadruple(y) # 2. pass in global y's value

print(y)

A. 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

51

What is the output of this code?

def quadruple(y): # 3. local y = 8
 y = 4 * y # 4. local y = 4 * 8 = 32
 return y # 5. return local y's value
 32
y = 8 # 1. global y = 8
quadruple(y) # 2. pass in global y's value
 # 6. return value thrown away!
print(y)

A. 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

52

What is the output of this code?

def quadruple(y): # 3. local y = 8
 y = 4 * y # 4. local y = 4 * 8 = 32
 return y # 5. return local y's value
 32
y = 8 # 1. global y = 8
quadruple(y) # 2. pass in global y's value
 # 6. return value thrown away!
print(y) # 7. print global y's value,
 # which is unchanged!
A. 4
B. 8
C. 12
D. 32
E. none of these, because an error is produced

You can't change
the value of a variable
by passing it
into a function!

53

How could we change this to see the return value
of quadruple?

def quadruple(y):
 y = 4 * y
 return y

y = 8
quadruple(y)
print(y)

54

Seeing the return value (option 1)

def quadruple(y):
 y = 4 * y
 return y

y = 8
y = quadruple(y) # assign return val to global y
print(y)

55

Seeing the return value (option 2)

def quadruple(y):
 y = 4 * y
 return y

y = 8
print(quadruple(y)) # print return val

 # no need for print(y)

56

What is the output of this program?

def demo(x):
 return x + f(x)

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

print(demo(-4))

A. 4
B. 42
C. 44
D. 46
E. none of these

57

def f(x):
 return 11*g(x) + g(x//2)

print(demo(-4))

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

def g(x):
 return -1 * x

stack frame

Functions Calling Other Functions!

58

 demo f g

 x | ret x | ret x | ret

-4 | | |

def f(x):
 return 11*g(x) + g(x//2)

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f
x = -4
return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

These are distinct memory locations
both holding x's.

stack frame

stack frame

print(demo(-4))

Functions Calling Other Functions!

59

 demo f g

 x | ret x | ret x | ret

-4 | -4 | |

def f(x):
 return 11*g(x) + g(x//2)

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f

g

x = -4
return 11*g(-4) + g(-4//2)

x = -4
return -1 * x

def g(x):
 return -1 * x

stack frame

stack frame

stack frame

print(demo(-4))

Functions Calling Other Functions!

60

 demo f g

 x | ret x | ret x | ret

-4 | -4 | -4 |

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f

g

x = -4
return 11* 4 + g(-4//2)

x = -4
return -1 * -4 4

print(demo(-4))

Functions Calling Other Functions!

61

 demo f g

 x | ret x | ret x | ret

-4 | -4 | -4 | 4

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f

g

x = -4
return 11* 4 + g(-4//2)

x = -2
return -1 * x

These are distinct memory locations
both holding x's – and now they also
have different values!!

print(demo(-4))

Functions Calling Other Functions!

62

 demo f g

 x | ret x | ret x | ret

-4 | -4 | -4 | 4

 -2 |

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f

g

x = -4
return 11* 4 + g(-4//2)

x = -2
return -1 * -2 2

These are distinct memory locations
both holding x's – and now they also
have different values!!

print(demo(-4))

Functions Calling Other Functions!

63

 demo f g

 x | ret x | ret x | ret

-4 | -4 | -4 | 4

 -2 | 2

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f
x = -4
return 11* 4 + 2 46

print(demo(-4))

Functions Calling Other Functions!

64

 demo f g

 x | ret x | ret x | ret

-4 | -4 | 46 -4 | 4

 -2 | 2

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + 46

print(demo(-4))

Functions Calling Other Functions!

42

65

 demo f g

 x | ret x | ret x | ret

-4 | 42 -4 | 46 -4 | 4

 -2 | 2

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

def demo(x):
 return x + f(x)

42

print(demo(-4)) # print(42)

Functions Calling Other Functions!

66

What is the output of this program?

def demo(x):
 return x + f(x)

def f(x):
 return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

print(demo(-4))

A. 4
B. 42
C. 44
D. 46
E. none of these

67

Tracing Function Calls

def foo(x, y):
 y = y + 1
 x = x + y
 print(x, y)
 return x

x = 2
y = 0

y = foo(y, x)
print(x, y)

foo(x, x)
print(x, y)

print(foo(x, y))
print(x, y)

global
 x | y

output

foo
 x | y | ret

68

Tracing Function Calls

def foo(x, y):
 y = y + 1
 x = x + y
 print(x, y)
 return x

x = 2
y = 0

y = foo(y, x)
print(x, y)

foo(x, x)
print(x, y)

print(foo(x, y))
print(x, y)

global
 x | y
 2 0
 2 3

output
3 3

foo
 x | y | ret
 0 2 3

69

Tracing Function Calls

def foo(x, y):
 y = y + 1
 x = x + y
 print(x, y)
 return x

x = 2
y = 0

y = foo(y, x)
print(x, y)

foo(x, x)
print(x, y)

print(foo(x, y))
print(x, y)

global
 x | y
 2 0
 2 3

output
3 3
2 3
5 3
2 3
6 4
6
2 3

foo
 x | y | ret
 0 2 3
 2 2 5
 2 3 6

70

