
Lecture 03
Iteration in Python

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

1

Last Time (lecture 02)

2

• Conditional Statements and Flow of Control
• if
• if-else
• if-elif-else
• True/False Blocks (require indentation)

• Variable Scope
• Local
• Global

• Memory: Frames and the Stack
• Tracing global, local, and printed output
• Functions calling Functions

Review
Default Index/Slicing Values

s == s[:]

s[:] = s[::]

s[::] = s[0:len(s):1]

s[len(s):] == ‘’

s=‘01234’ # len(s) == 5

s[2:] == s[?? : ?? : ??]
s[:3] == s[: :]

s[::2] == s[: :]

s[:4:3] == s[: :]

s[1::2] == s[: :]

3

Review
Default Index/Slicing Values

s == s[:]

s[:] = s[::]

s[::] = s[0:len(s):1]

s[len(s):] == ‘’

s=‘01234’ # len(s) == 5

s[2:] == s[2:5:1]

s[:3] == s[0:3:1]

s[::2] == s[0:5:2]

s[:4:3] == s[0:4:3]

s[1::2] == s[1:5:2]

4

Lecture 03 Goals

5

• Introduce Test Driven Design (TDD)
• Iteration

• Definite vs. Indefinite looping
• for loops

• Element-based vs. Index-based
• List comprehensions

• Generative vs. Manipulative
• Uniform vs. Conditional

Test Driven Design

When coding

1. Think clearly about how each function should work

• Inputs(what are arguments)

• Outputs (what should be returned)

• Special cases

• Usual cases

2. Develop a function signature (def + docstring)

3. Write actual “test cases” before you start to code each function

4. Add/improve tests as needed

This approach is also known as Test First Design.

6

Test Driven Design Example

Write a function gap(x,y) that returns the distance
between the numbers x and y? Use if statements and
not a function like abs or max.

1. Think clearly about how each function should work

• Inputs (what are arguments)
Two numbers, x and y

• Outputs (what should be returned)
The distance between x and y, i.e. |x-y|

• Special cases
If x==y, must return 0

• Usual cases
x > y or x < y

7

Test Driven Design Example

Write a function gap(x,y) that returns the distance
between the numbers x and y? Use if statements and
not a function like abs or max.

2. Develop a function signature (def + docstring)

def gap(x,y):

 ’’’Returns distance between two input numbers.’’’

NOTE: The doc string should explain what the function does (and
how to use it, i.e. inputs, outputs) but NOT how it does it.

8

Test Driven Design Example

Write a function gap(x,y) that returns the distance
between the numbers x and y? Use if statements and
not a function like abs or max.

3. Write actual “test cases” before you start code each function

• Special cases: x==y must return 0

• Usual case: x > y, x < y

• Note the test cases go in a new function

def gap_test():
 assert gap(10,10)==0, 'x==y test failed'
 assert gap(1, 10)==9, 'x<y test failed'
 assert gap(15,13)==2, 'x>y test failed'

9

Improving Tests

4. Add/improve tests as needed

• Creating student accounts for CS department machines
• The code was tested and it worked, but it failed to account for

cases where there were two sections of the class on CAB (CS 4)
• Edge case- a case that will rarely happen, but your program

should still be able to handle it
• For CS logins, add test to make sure it works for class with two

sections

10

Test Driven Design

Now code/test your function, design will be informed by tests that
need to pass.

def gap_test():
 assert gap(10,10)==0, 'x==y test failed'
 assert gap(1, 10)==9, 'x<y test failed'
 assert gap(15,13)==2, 'x>y test failed’

def gap(x, y): # Fill in after first set of tests!
 ''' Returns the distance between two input numbers.'''
 if x > y:
 return x – y

 else:
 return y – x

gap_test()

As you proceed keep testing,

4. Add/improve tests as needed 11

Test Driven Design, In class Problem

Write a function called repeat_element(string, index,
num_times) that takes as input a string, the index of
the element that we want to repeat, and the number of
times we want to repeat. The function should return a
new string in which the element of the string at
position index is repeated num_times times.

1. Think clearly about how each function should work

• Inputs(what are arguments)

• Outputs (what should be returned)

• Special cases

• Usual cases

2. Develop a function signature (def + docstring)

3. Write actual “test cases” before you start to code each function.

12

• A loop is a sequence of instructions to be repeated
• Definite and Indefinite

• Definite: repeat exactly X times
• Indefinite: repeat until some condition changes

Iteration: Loops

13

This is Bijou. Bijou is demonstrating
the following iteration examples:

for every front paw
paw = paw + frilly blue glove

while sun == shining
shed_more_fur()

Definite Loops

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

14

for Loops

• A for statement is one way to create a loop in Python.

• allows us to repeat statements a specific number of times

• Example:

 for i in [1, 2, 3]:
 print('Warning')

 print(i)

will output:
 Warning
 1
 Warning
 2
 Warning
 3

• The repeated statement(s) are known as the body of the loop.

• must be indented the same amount in Python

“body”

15

for Loops (cont.)

for i in [1, 2, 3]:
 print('Warning')
 print(i)

16

• General syntax:

• In this case, our sequence is a sequence of values, but it could be
any sequence (i.e. for word in list_of_words)

• For each value in the sequence:

• the value is assigned to the variable

• all statements in the body of the loop are executed
using that value

• Once all values in the sequence have been processed,
the program continues with the first statement after the loop.

for <variable> in <sequence>:
 <body of the loop>

Executing a for Loop

for <variable> in <sequence>:
 <body of the loop>

execute statement
after the loop

yes

no

does the

more values?

assign the next value in
the sequence to variable

execute the statements
in the body

sequence have

for i in [1, 2, 3]:
 print('Warning')
 print(i)

17

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes

print('That's all.')

print('Warning')
print(i)

18

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1

yes

print('That's all.')

print('Warning')
print(i)

19

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1

print('That's all.')

print('Warning')
print(i)

20

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes

print('That's all.')

print('Warning')
print(i)

21

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2

yes

print('That's all.')

print('Warning')
print(i)

22

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2 Warning

2

print('That's all.')

print('Warning')
print(i)

23

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2 Warning

2

skipping to end of loop

print('That's all.')

print('Warning')
print(i)

24

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

Executing Our Earlier Example
(with one extra statement)

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2 Warning

2
yes 3 Warning

3
no

print('Warning')
print(i)

yes

does

more values?
[1, 2, 3] have

print('That's all.')

25

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

Executing Our Earlier Example
(with one extra statement)

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2 Warning

2
yes 3 Warning

3
no That's all.

print('That's all.')

print('Warning')
print(i)

yes

does

more values?
[1, 2, 3] have

26

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
 <body of the loop>

• What would this loop do?

for i in range(8):
 print('I'm feeling loopy!')

Simple Repetition Loops

27

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
 <body of the loop>

• Example:

for i in range(3): # [0, 1, 2]
 print('I'm feeling loopy!')

outputs:

I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!

Simple Repetition Loops

28

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
 <body of the loop>

• Example:

for i in range(5): # [0, 1, 2, 3, 4]
 print('I'm feeling loopy!')

outputs:

I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!

Simple Repetition Loops

29

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
 <body of the loop>

• What would this loop do?

for i in range(8): # [0,1,2,3,4,5,6,7]
 print('I'm feeling loopy!')

• Output:
 I'm feeling loopy!

I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!

Simple Repetition Loops

30

8 times!

Simple Repetition Loops (cont.)

• Another example:

for i in range(7):
 print(i * 5)

How many repetitions?

Output?

31

Simple Repetition Loops (cont.)

• Another example:

for i in range(7): # gives [0, 1, 2, 3, 4, 5, 6]
 print(i * 5)

How many repetitions? 7

Output?

0
5
10
15
20
25
30

32

• A definite loop is a loop in which the number of repetitions
is fixed before the loop even begins.

• In a for loop, # of repetitions = len(sequence)

for <variable> in <sequence>:
 <body of the loop>

for Loops Are Definite Loops

33

To print the warning 20 times,
how could you fill in the blank?

for i in __________________:
 print('Warning!')

A. range(20)
B. [1] * 20
C. 'abcdefghijklmnopqrst'
D. either A or B would work, but not C

E. A, B or C would work

34

To print the warning 20 times,
how could you fill in the blank?

for i in __________________:
 print('Warning!')

A. range(20)
B. [1] * 20
C. 'abcdefghijklmnopqrst'
D. either A or B would work, but not C

E. A, B or C would work

35

These are all sequences
with a length of 20!

Python Arithmetic Shortcuts
(language feature)

• Here are some augmented assignment statements that can be
used in for loops!

• Consider this code:

age = 14
age = age + 1

• Instead of writing

 age = age + 1

we can just write
age += 1

36

Python Arithmetic Shortcuts (cont.)

shortcut equivalent to
var += expr var = var + (expr)
var -= expr var = var – (expr)
var *= expr var = var * (expr)

 var /= expr var = var / (expr)
var //= expr var = var // (expr)
var %= expr var = var % (expr)
var **= expr var = var ** (expr)

where var is a variable
 expr is an expression

• Important: the = must come after the other operator.

+= is correct
=+ is not!

37

def sum(vals):

 result = 0

 for ______________________________:

 result += ____________________

 return result

 first blank second blank

A. x in vals x

B. x in vals vals[x]

C. i in range(len(vals)) vals[i]

D. either A or B would work, but not C
E. either A or C would work, but not B

To add the numbers in the list vals,
how could you fill in the blanks?

38

def sum(vals):

 result = 0

 for ______________________________:

 result += ____________________

 return result

 first blank second blank

A. x in vals x

B. x in vals vals[x]

C. i in range(len(vals)) vals[i]

D. either A or B would work, but not C
E. either A or C would work, but not B

To add the numbers in the list vals,
how could you fill in the blanks?

39

Using a Loop to Sum a List of Numbers

def sum(vals):
 result = 0
 for x in vals:
 result += x
 return result

print(sum([10, 20, 30, 40, 50]))

Trace the execution of sum, determine the output

x result

40

Using a Loop to Sum a List of Numbers

def sum(vals): # vals = [10, 20, 30, 40, 50]
 result = 0
 for x in vals:
 result += x
 return result # returns 150

print(sum([10, 20, 30, 40, 50])) # print(150)

x result

no more values in vals, so we're done: return: 150, output: 150
 41

0
10
30
60
100
150

10
20
30
40
50

Using a Loop to Sum a List of Numbers

def sum(vals):
 result = 0 # the accumulator variable
 for x in vals:
 result += x # gradually accumulates the sum
 return result

print(sum([10, 20, 30, 40, 50]))

x result

no more values in vals, so we're done: return: 150, output: 150
42

0
10
30
60
100
150

10
20
30
40
50

Another Example

• What would this code output?

num_iters = 0
for val in [2, 4, 16, 8, 10]:
 num_iters += 1
 print(val * 10)
print(num_iters)

• Use a table to help you:

more? val num_iters output

43

Another Example

• What would this code output?

num_iters = 0
for val in [2, 4, 16, 8, 10]:
 num_iters += 1 # num_iters = num_iters + 1
 print(val * 10)
print(num_iters)

• Use a table to help you:

more? val num_iters output

yes | 2 | 1 | 20
yes | 4 | 2 | 40
yes | 16 | 3 | 160
yes | 8 | 4 | 80
yes | 10 | 5 | 100
no | 10 | 5 | 5

44

Element-Based for Loop

def sum(vals):
 result = 0
 for x in vals:
 result += x
 return result

vals = [3, 15, 17, 7]

x

45

Index-Based for Loop

def sum(vals):
 result = 0
 for i in range(len(vals)):
 result += vals[i]
 return result

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

46

Tracing an Index-Based Cumulative Sum
def sum(vals):
 result = 0
 for i in range(len(vals)): →
 result += vals[i]
 return result

print(sum([10, 20, 30, 40, 50]))

i vals[i] result

47

Tracing an Index-Based Cumulative Sum
def sum(vals): # vals = [10, 20, 30, 40, 50]
 result = 0 # initializer
 for i in range(len(vals)): # range(5) → 0,1,2,3,4
 result += vals[i]
 return result # return 150

print(sum([10, 20, 30, 40, 50])) # print(150)

i vals[i] result
 0

 0 10 10
1 20 30

 2 30 60
 3 40 100
 4 50 150

 no more values in range(5), so we're done
 return 150, output: 150

48

Tracing an Index-Based Cumulative Sum
def sum(vals):
 #result = 0
 for i in range(len(vals)): →
 result += vals[i]
 return result

print(sum([10, 20, 30, 40, 50]))

49

What happens if we omit the initializer?

A. Nothing, it works fine
B. Undefined, initialized with random number
C. Error, local variable referenced before

initialization
D. Python would look for global variable

Tracing an Index-Based Cumulative Sum
def sum(vals):
 #result = 0
 for i in range(len(vals)): →
 result += vals[i]
 return result

print(sum([10, 20, 30, 40, 50]))

50

What happens if we omit the initializer?

A. Nothing, it works fine
B. Undefined, initialized with random number
C. Error, local variable referenced before

initialization
D. Python would look for global variable

What is the output of this program?
def mystery(vals):
 result = 0
 for i in range(len(vals)):
 if vals[i] == vals[i – 1]:
 result += 1
 return result

print(mystery([5, 7, 7, 2, 3, 3, 5]))

i vals[i] vals[i – 1] result

A. 0
B. 1
C. 2
D. 3
E. 7

51

What is the output of this program?
def mystery(vals): # vals = [5, 7, 7, 2, 6, 6, 5]
 result = 0
 for i in range(len(vals)): # range(7) → 0,1,2,3,4,5,6
 if vals[i] == vals[i – 1]:
 result += 1
 return result # return 3

print(mystery([5, 7, 7, 2, 3, 3, 5])) # print 3

i vals[i] vals[i – 1] result

A. 0
B. 1
C. 2
D. 3
E. 7

52

0
0 5 5 1
1 7 5 1

 2 7 7 2
 3 2 7 2
 4 6 2 2

5 6 6 3
6 5 6 3

More on Cumulative Arithmetic

• Here's a loop-based factorial in Python:

def fac(n):
 result = 1
 for x in range(n)
 result *= x
 return result

• Does this function work?

53

More on Cumulative Arithmetic

• Here's a loop-based factorial in Python:

def fac(n):
 result = 1
 for x in range(n)
 result *= x
 return result

• Does this function work? No!

def fac(n):
 result = 1
 for x in range(n) # [0,1,2,…,n-1]
 result *= x # 1* 0 = 0…
 return result # result = 0

54

More on Cumulative Arithmetic

• How can we make this do what we want?

def fac(n):
 result = 1
 for x in range(_________): # fill in the
blank
 result *= x
 return result

55

Hint:

range([start], stop[, step])

start: Starting number of the sequence.
stop: Generate numbers up to, but not including this number.
step: Difference between each number in the sequence.

More on Cumulative Arithmetic

• How can we make this do what we want?

def fac(n):
 result = 1
 for x in range(1, n + 1):
 result *= x
 return result

56

Hint:

range([start], stop[, step])

start: Starting number of the sequence.
stop: Generate numbers up to, but not including this number.
step: Difference between each number in the sequence.

More on Cumulative Arithmetic

• Here's a loop-based factorial in Python:

def fac(n):
 result = 1 # the accumulator variable
 for x in range(1, n + 1):
 result *= x # accumulates the
factorial
 return result

• Is this loop element-based or index-based?
element-based – the loop variable takes on elements
from the sequence that we're processing

57

More on Cumulative Arithmetic

• Here's a loop-based factorial in Python:

def fac(n):
 result = 1 # the accumulator variable
 for x in range(1, n + 1):
 result *= x # accumulates the
factorial
 return result

• Is this loop element-based or index-based?

58

Cumulative Arithmetic with Strings

• Let’s define an iterative remove_vowels function that takes in a
string s and returns the string without any vowels:
def remove_vowels(s):

your code here!

• Examples:
>>> s = remove_vowels('recurse')
>>> print(s)
'rcrs'
>>> s = remove_vowels('vowels')
>>> print(s)
'vwls'

59

Cumulative Arithmetic with Strings (cont.)

• Here's one loop-based version:

def remove_vowels(s):
 result = '' # the accumulator
 for c in s:
 if c not in 'aeiou':
 result += c # accumulates the
result
 print result

60

Cumulative Arithmetic with Strings (cont.)

• Here's one loop-based version:

def remove_vowels(s):
 result = ''
 for c in s:
 if c not in 'aeiou':
 result += c
 return result

• Let's trace through remove_vowels('vowels'):

s = 'vowels'
 c result

61

Cumulative Arithmetic with Strings (cont.)

• Here's one loop-based version:

def remove_vowels(s):
 result = ''
 for c in s:
 if c not in 'aeiou':
 result += c
 return result

• Let's trace through remove_vowels('vowels'):

s = 'vowels'
 c result

 ''
 'v' '' + 'v' → 'v'
 'o' 'v' (no change)
 'w' 'v' + 'w' → 'vw'
 'e' 'vw' (no change)
 'l' 'vw' + 'l' → 'vwl'
 's' 'vwl' + 's' → 'vwls'

62

List Comprehensions

• List comprehensions use for loops within brackets to construct
a list

• We can create a list of integers up to i by using list
comprehensions

• Format: [expression for item in list]
• The above syntax is useful for creating lists in one line. It

includes all items in that list.
• You can also use list comprehensions to modify an existing list.

Why not just use ‘result = range(size)’?
63

def create_list(size):
 result = [i for i in range(size)]
 return result

def squares(length):
 return [x**2 for x in range(length)]

List Comprehensions (cont.)

• We can include if-else statements to perform more complex
operations.

• Let’s try the remove vowel function with list comprehensions.

• This syntax allows us to use complex expressions to make a list
in a single line.

• 2 valid formats:

[expression1 if condition else expression2 for item in list]

[expression for item in list if condition]
64

def remove_vowels(str):
 result = [c for c in str if c not in ‘aeiou’]
 return result

What is the output of the following
expression?

def double_evens(int_list):
 return [2*i if i%2==0 else i for i in int_list]

double_evens([i for i in range(10)]

A. [0,1,4,3,8,5,12,7,16,9]
B. [0,1,2,3,4,5,6,7,8,9]
C. [0,1,4,3,4,5,12,7,16,9,20]
D. [0,4,8,12,16]
E. Error message

65

What is the output of the following
expression?

def double_evens(int_list):
 return [2*i if i%2==0 else i for i in int_list]

double_evens([i for i in range(10)]

A. [0,1,4,3,8,5,12,7,16,9]
B. [0,1,2,3,4,5,6,7,8,9]
C. [0,1,4,3,4,5,12,7,16,9,20]
D. [0,4,8,12,16]
E. Error message

66

s = 'time to think! '
result = ''
for i in range(len(s)):
 if s[i – 1] == ' ':
 result += s[i]
print(result)

What does this program output?

i s[i-1]s[i] result

A. tt
B. ttt
C. tothink!
D. timetothink!
E. none of these

67

s = 'time to think! '
result = ''
for i in range(len(s)):
 if s[i – 1] == ' ':
 result += s[i]
print(result)

What does this program output?

i s[i-1]s[i] result
 ''

0 ' ' 't' 't'
1 't' 'i' 't'
2 'i' 'm' 't'
3 'm' 'e' 't'
4 'e' ' ' 't'
5 ' ' 't' 'tt'
6 't' 'o' 'tt'
7 'o' ' ' 'tt'
8 ' ' 't' 'ttt'
9 't' 'h' 'ttt'
10 'h' 'i' 'ttt'
11 'i' 'n' 'ttt'
12 'n' 'k' 'ttt'
13 'k' '!' 'ttt'
14 '!' ' ' 'ttt'

A. tt
B. ttt
C. tothink!
D. timetothink!
E. none of these

68

s = 'time to think! '
result = ''
for i in range(len(s)):
 if s[i – 1] == ' ':
 result += s[i]
print(result)

What does this program output?

A. tt
B. ttt
C. tothink!
D. timetothink!
E. none of these

Could you do the
same thing using an
element-based for loop?

s = 'time to think! '
result = ''
for c in s:
 if ________ == ' ':
 result += _____
print(result)

i s[i-1]s[i] result
 ''

0 ' ' 't' 't'
1 't' 'i' 't'
2 'i' 'm' 't'
3 'm' 'e' 't'
4 'e' ' ' 't'
5 ' ' 't' 'tt'
6 't' 'o' 'tt'
7 'o' ' ' 'tt'
8 ' ' 't' 'ttt'
9 't' 'h' 'ttt'
10 'h' 'i' 'ttt'
11 'i' 'n' 'ttt'
12 'n' 'k' 'ttt'
13 'k' '!' 'ttt'
14 '!' ' ' 'ttt'

69

s = 'time to think! '
result = ''
for i in range(len(s)):
 if s[i – 1] == ' ':
 result += s[i]
print(result)

What does this program output?

A. tt
B. ttt
C. tothink!
D. timetothink!
E. none of these

Could you do the
same thing using an
element-based for loop? no

s = 'time to think! '
result = ''
for c in s:
 if ???? == ' ':
 result += c
print(result)

i s[i-1]s[i] result
 ''

0 ' ' 't' 't'
1 't' 'i' 't'
2 'i' 'm' 't'
3 'm' 'e' 't'
4 'e' ' ' 't'
5 ' ' 't' 'tt'
6 't' 'o' 'tt'
7 'o' ' ' 'tt'
8 ' ' 't' 'ttt'
9 't' 'h' 'ttt'
10 'h' 'i' 'ttt'
11 'i' 'n' 'ttt'
12 'n' 'k' 'ttt'
13 'k' '!' 'ttt'
14 '!' ' ' 'ttt'

70

def sum(vals):
 result = 0
 for x in vals:
 result += x
 return result

 element-based loop

vals = [3, 15, 17, 7]

x

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

def sum(vals):
 result = 0
 for i in range(len(vals)):
 result += vals[i]
 return result

 index-based loop

 Simpler More Flexible

71

Stretch Break!

72

Meet UTA Alex Liu’s Nephew Wesley. When Wesley rests, we all rest

Side Note: Staying on the Same Line When
Printing

• By default, print puts an invisible newline character
at the end of whatever it prints.

• causes separate prints to print on different lines

• Example: What does this output?

 for i in range(7):
 print(i * 5)

73

Side Note: Staying on the Same Line When
Printing

• By default, print puts an invisible newline character
at the end of whatever it prints.

• causes separate prints to print on different lines

• Example: What does this output?

 for i in range(7):
 print(i * 5)

0
5
10
15
20
25
30

74

Staying on the Same Line When Printing (cont.)

• To get separate prints to print on the same line,
we can replace the newline with something else.

• Examples:

for i in range(7):
 print(i * 5, end=' ')

0 5 10 15 20 25 30

for i in range(7):
 print(i * 5, end=',')

0,5,10,15,20,25,30,

75

