
Lecture 04
More Iteration, Nested Loops

1

Meet UTA Jarrett’s dog Greta, lying in her “nest”

Indefinite Loops

Based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

2

Chase tail

Got tail!

Rest

Almost got it...

So far: Two Types of for Loops

def sum(vals):
 result = 0
 for x in vals:
 result += x
 return result

 element-based loop

Both are examples of definite loops (i.e., fixed number of iterations)

vals = [3, 15, 17, 7]

x

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

def sum(vals):
 result = 0
 for i in range(len(vals)):
 result += vals[i]
 return result

 index-based loop

3

Indefinite Loops

• Use an indefinite loop when the # of repetitions you need is:

• not obvious or known

• impossible to determine before the loop begins, e.g.,
• Finding an element
• Computing an estimate up to some error bound
• Playing a game of rock, paper, scissors (as
opposed to one round)

• Toy problem: print_multiples(n, bound)
• should print all multiples of n that are less than bound
• output for print_multiples(9, 100):

9 18 27 36 45 54 63 72 81 90 99

4

Rock, Paper, Scissors, Lizard, Spock

5

Indefinite Loop for Printing Multiples

while loops are how you code indefinite loops in Python:

 def print_multiples(n, bound):
 mult = n
 while mult < bound:
 print(mult, end=" ")
 mult = mult + n
 print()

6

while Loops

while <loop test>:
 <body of the loop>

Steps:

1. evaluate the loop test
(a boolean expression)

2. if it's True, execute the
statements in the body,
and go back to step 1

3. if it's False, skip the
statements in the body
and go to the statement
after the loop

loop
test

False

True

7

Tracing a while Loop

• Let's trace the loop for print_multiples(15, 70):

mult = n
while mult < bound:

 print(mult, end=' ')
 mult = mult + n

print()

mult < bound output thus far mult

n bound

8

Prints everything on the same line
with spaces in between! Neat!

Tracing a while Loop

• Let's trace the loop for print_multiples(15, 70):

mult = n
while mult < bound:

 print(mult, end=' ')
 mult = mult + n

print()

mult < bound output thus far mult
 15

15 < 70 (True) 15 30
30 < 70 (True) 15 30 45
45 < 70 (True) 15 30 45 60
60 < 70 (True) 15 30 45 60 75

75 < 70 (False)
so we exit the loop and print()

n bound

9

Important!

• In general, a while loop's test includes a key "loop variable".

• We need to update that loop variable in the body of the loop.

• Failing to update it can produce an infinite loop!

• Recall the loop in print_multiples:

 mult = n
while mult < bound:

 print(mult, end=' ')
 mult = mult + n

What is the loop variable?
Where is it updated?

10

Important!

• In general, a while loop's test includes a key "loop variable".

• We need to update that loop variable in the body of the loop.

• Failing to update it can produce an infinite loop!

• Recall the loop in print_multiples:

 mult = n
while mult < bound:

 print(mult, end=' ')
 mult = mult + n

What is the loop variable? mult
Where is it updated? In the body of the loop

11

Important!

• In general, a while loop's test includes a key "loop variable".

• We need to update that loop variable in the body of the loop.

• Failing to update it can produce an infinite loop!

• Showing every iteration makes progress towards making the
while loop condition false is one way to show a while loop will
terminate

12

Factorial Using a while Loop

• We don't need an indefinite loop, but we can still use while!

 def fac(n):
 result = 1
 while n > 0:
 result *= n
 ____________ # what do we need here?
 return result

• Let's trace fac(4):

n n > 0 result

13

Factorial Using a while Loop

• We don't need an indefinite loop, but we can still use while!

 def fac(n):
 result = 1
 while n > 0:
 result *= n
 n = n – 1
 return result

• Let's trace fac(4):

n n > 0 result

14

Factorial Using a while Loop

• We don't need an indefinite loop, but we can still use while!

 def fac(n):
 result = 1
 while n > 0:
 result *= n
 n = n – 1
 return result

• Let's trace fac(4):

n n > 0 result
 4 1

4 4 > 0 (True) 1*4 = 4
3 3 > 0 (True) 4*3 = 12
2 2 > 0 (True) 12*2 = 24
1 1 > 0 (True) 24*1 = 24
0 0 > 0 (False)

 so we exit the loop and return 24

15

Factorial Four Ways!

 def fac(n):
 if n == 0:
 return 1
 else:
 rest = fac(n-1)
 return n * rest

def fac(n):
 result = 1
 for x in range(1, n+1):
 result *= x
 return result

def fac(n):
 return reduce(lambda x,y : x*y,\
 range(1,max(2,n+1)))

map

recursion for loop

def fac(n):
 result = 1
 while n > 0:
 result *= n
 n = n - 1
 return result

while loop

16

More on these later!

Extreme Looping!

• What does this code do?

 print('It keeps')

 while True:
 print('going and')

 print('Phew! Done!')

17

Extreme Looping!

• What does this code do?

 print('It keeps')

 while True:
 print('going and')

 print('Phew! Done!') # never gets here!

• An infinite loop!

Use Ctrl-C to stop a program inside python

Use W-F2 to stop a program in PyCharm

18

Breaking Out of A Loop

import random

while True:
 print('Help!')
 if random.choice(range(10000)) == 111:

 break
 print('Let me out!')

print('At last!')

• What are the final two lines that are printed?

19

Breaking Out of A Loop

import random

while True:
 print('Help!')
 if random.choice(range(10000)) == 111:

 break
 print('Let me out!')

print('At last!')

• What are the final two lines that are printed?

Help!
At last!

• How could we count the number of repetitions?

 20

Counting the Number of Repetitions

import random

count = 1
while True:
 print('Help!')

 if random.choice(range(10000)) == 111:
 break

 print('Let me out!')
count += 1

print('At last! It took', count, 'tries to
escape!')

21

Important!

• In general, a while loop's test includes a key "loop variable".

• We need to update that loop variable in the body of the loop.

• Failing to update it can produce an infinite loop!

• Can rely on a statistical argument (e.g., rock, paper, scissors)

• Counting the number of iterations and exiting after a maximum
has been reached is a safer way to loop indefinitely

22

Counting the Number of Repetitions

import random

count = 1
while count<=5000:
 print('Help!')

 if random.choice(range(10000)) == 111:
 break

 print('Let me out!')
count += 1

print('At last! It took', count, 'tries to
escape!')

23

a = 40
while a > 2:
 a = a // 2
 print(a - 1)

How many values does this loop print?

a > 2 a prints

A. 2
B. 3
C. 4
D. 5
E. none of these

24

a = 40
while a > 2:
 a = a // 2
 print(a - 1)

How many values does this loop print?

a > 2 a prints
40

True 20 19
True 10 9
True 5 4
True 2 1
False

A. 2
B. 3
C. 4
D. 5
E. none of these

25

def mystery(n):
 while n != 1:
 if n % 2 != 0:
 return False
 n = n // 2
 return True

For what inputs does this function return True?

Try tracing these two cases:
mystery(12) mystery(8)

 n n
 12 8

A. odd numbers
B. even numbers
C. multiples of 4
D. powers of 2
E. none of these

26

def mystery(n):
 while n != 1:
 if n % 2 != 0:
 return False
 n = n // 2
 return True

For what inputs does this function return True?

Try tracing these two cases:
mystery(12) mystery(8)

 n n
 12 8

6 4
3 2

 False 1
True

A. odd numbers
B. even numbers
C. multiples of 4
D. powers of 2
E. none of these

27

28
Wesley says it’s break time so it’s break time

for y in range(84):
 for m in range(12):
 for d in range(f(m,y)):
 for h in range(24):
 for mn in range(60):
 for s in range(60):
 tick()

Nested Loops!

29

Nested Loops!

30

• Nested Loops are loops where a loop appears
inside the body of another loop.
• The loop inside the body is called the inner

loop. The other is called the outer loop.
• The inner loop completes all passes for a

single pass of the outer loop
• This is very useful for many types of

algorithms, especially with data that has
more than one dimension.

Repeating a Repetition!

for i in range(3):
 for j in range(4):
 print(i, j) inner loop outer loop

31

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0

32

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1

33

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1
0 2

34

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1
0 2
0 3

35

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3

36

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3

37

Repeating a Repetition!

for i in range(3):
 for j in range(4):
 print(i, j)
 print('---')

38

inner loop outer loop

Repeating a Repetition!

for i in range(3):
 for j in range(4):
 print(i, j)
 print('---')

0 0
0 1
0 2
0 3

1 0
1 1
1 2
1 3

2 0
2 1
2 2
2 3

39

inner loop outer loop

How many lines are printed?

for i in range(5):
 for j in range(7):
 print(i, j)

A. 4
B. 5
C. 7
D. 24
E. 35

40

How many lines are printed?

for i in range(5):
 for j in range(7):
 print(i, j)

A. 4
B. 5
C. 7
D. 24
E. 35 = 5*7 executions of inner code block

full output:
0 0
0 1
0 2
0 3
0 4
0 5
0 6
1 0
1 1
1 2
1 3
1 4
1 5
1 6
2 0
2 1
2 2
2 3
2 4
2 5
2 6
3 0
3 1
3 2
3 3
3 4
3 5
3 6
4 0
4 1
4 2
4 3
4 4
4 5
4 6

41

Tracing a Nested for Loop

for i in range(5): # [0,1,2,3,4]
 for j in range(i):
 print(i, j)

i range(i) j value printed

42

Tracing a Nested for Loop

for i in range(5): # [0,1,2,3,4]
 for j in range(i):
 print(i, j)

i range(i) j value printed
0 [] none nothing (we exit the inner loop)
1 [0] 0 1 0
2 [0,1] 0 2 0

1 2 1
3 [0,1,2] 0 3 0

1 3 1
2 3 2

4 [0,1,2,3] 0 4 0
1 4 1
2 4 2
3 4 3

full output:
1 0
2 0
2 1
3 0
3 1
3 2
4 0
4 1
4 2
4 3

43

Second Example: Tracing a Nested for Loop

for i in range(4):
 for j in range(i, 3):
 print(i, j)
 print(j)

i range(i, 3) j value printed

44

Second Example: Tracing a Nested for Loop

for i in range(4): # [0, 1, 2, 3]
 for j in range(i, 3):
 print(i, j)
 print(j)
would go here next

i range(i, 3) j value printed
0 [0, 1, 2] 0 0 0

 1 0 1
2 0 2

2
1 [1, 2] 1 1 1

2 1 2
 2

2 [2] 2 2 2
2

3 [], so body of inner loop doesn't execute
2

full output:
0 0
0 1
0 2
2
1 1
1 2
2
2 2
2
2

45

Side Note: Staying on the Same Line When
Printing

• By default, print puts an invisible newline character
at the end of whatever it prints.

• causes separate prints to print on different lines

• Example: What does this output?

 for i in range(7):
 print(i * 5)

0
5
10
15
20
25
30

46

Staying on the Same Line When Printing (cont.)

• To get separate prints to print on the same line,
we can replace the newline with something else.

• Examples:

for i in range(7):
 print(i * 5, end=' ')

0 5 10 15 20 25 30

for i in range(7):
 print(i * 5, end=',')

0,5,10,15,20,25,30,

47

48

for row in range(3):
 for col in range(4):
 print('#', end=' ')
 print() # go to next line

#
#
#

col

ro
w

1 2 30

2

1

0

Printing Patterns

48

49

for row in range(3):
 for col in range(6):
 print(_____, end=' ')
 print() # go to next line

Fill in the Blank #1

0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

col

ro
w

49

50

for row in range(3):
 for col in range(6):
 print(col, end=' ')
 print() # go to next line

0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

col

ro
w

50

Fill in the Blank #1

51

for row in range(3):
 for col in range(6):
 print(_____, end=' ')
 print() # go to next line

Fill in the Blank #2

0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2

col

ro
w

51

52

for row in range(3):
 for col in range(6):
 print(row, end=' ')
 print() # go to next line

Fill in the Blank #2

0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2

col

ro
w

52

53

for row in range(5):
 for col in ___________:
 print(_____, end=' ')
 print() # go to next line

What is needed in the blanks to get this pattern?

A. range(row) row
B. range(row) col
C. range(5 - row) row
D. range(5 - row) col
E. none of the above

first blank second blank

0 0 0 0 0
1 1 1 1
2 2 2
3 3
4

53

54

for row in range(5):
 for col in ___________:
 print(_____, end=' ')
 print() # go to next line

What is needed in the blanks to get this pattern?

A. range(row) row
B. range(row) col
C. range(5 - row) row
D. range(5 - row) col
E. none of the above

first blank second blank

0 0 0 0 0
1 1 1 1
2 2 2
3 3
4

54

