
Lecture 05
References and Mutable Data

1

hw02 technical notes

Testing for expected outcome

• assert my_function() == b

This works for integers, strings, and Booleans

What about floating point numbers?

• assert 3.14159265 - eps < calc_pi() and

calc_pi() < 3.14159265 + eps

Note: ‘eps’ should be some small floating point number (e.g., 1e-6)

hw02 technical notes (con’t)

Conversions of data types and constants:

• float()
• int()
• str()

Checking the Python version:

Add this to the top of your .py script

import sys
print(sys.version)

This should produce version 3.x.y

3.5.3 (default, Sep 27 2018, 17:25:39)
[GCC 6.3.0 20170516]

• float(‘inf’)
• -float(‘inf’)
• float(‘nan’)

Recall: Variables as Boxes

• You can picture a variable as a named "box" in memory.

• Example from an early lecture:

num1 = 100
num2 = 120 num1 num2

 100 120

4

Variables and Values

• In Python, when we assign a value to a variable,
we're not actually storing the value in the variable.

• Rather:

• the value is somewhere else in memory

• the variable stores the memory address of the value.

• Example: x = 7

4001x

7

4000

Memory

4001

4002

4003

...

5

References

We say that a variable stores a reference to its value.

• also known as a pointer

7

4000

Memory

4001

4002

4003

4001x

...

6

References (cont.)

• Because we don't care about the actual memory address,
we use an arrow to represent a reference:

7

4000

Memory

4001

4002

4003

4001x

...

7

Memory

x
7

Lists and References

prices = [25, 10, 30, 45]

• When a variable represents a list, it stores a reference
to the list.

• The list itself is a collection of references!

• each element of the list is a reference to a value

prices

25 10 30 45

8

Mutable vs. Immutable Data

• In Python, strings and numbers are immutable.

• their contents/components cannot be changed

• Lists are mutable.

• their contents/components can be changed

• example:

>>> prices = [25, 10, 30, 45]
>>> prices[2] = 50
>>> print(prices)
[25, 10, 50, 45]

9

Changing a Value vs. Changing a Variable

• There's no way to change an immutable value like 7.

 x = 7

• However, we can use assignment to change the
variable—making it refer to a different value:

 x = 4

• We're not actually changing the value 7.

• We're making the variable x refer to a different value.

7

Memory

x

7

Memory

x

4

10

Changing a Value vs. Changing a Variable

• Here's our original list:

• Lists are mutable, so we can change the value (the list)
by modifying its elements:

 prices[1] = 50

prices

25 10 30 45

prices

25 10 30 4550

11

Changing a Value vs. Changing a Variable

• We can also change the variable—making it refer
to a completely different list:

 prices = [18, 20, 4]

prices

25 30 4550

20 418

12

Simplifying Our Mental Model

• When a variable represents an immutable value,
it's okay to picture the value as being inside the variable.

x = 7

• a simplified picture, but good enough!

• The same thing holds for list elements that are immutable.

prices = [25, 10, 30, 45]

• We still need to use references for mutable data like lists.

7x

prices 25 10 30 45

13

Copying Variables

• The assignment

var2 = var1
 copies the reference of var1 into var2, e.g.,

x = 50
 y = x

• But when the data is in var1 is immutable you can use the box
notation, e.g.,

x = 50
 y = x

50

50y

x

50x

y

14

Copying References

• Consider this example:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1

• Given the lines of code above, what will the lines below print?

 list2[2] = 4
 print(list1[2], list2[2])

list2

list1 7 8 9 6 10 7 9 5

15

Copying References

• Consider this example:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1

• Given the lines of code above, what will the lines below print?

 list2[2] = 4
 print(list1[2], list2[2])
 4 4
 4 4

• Copying a list variable simply copies the reference.

• It doesn't copy the list itself!

list2

list1 7 8 4 6 10 7 9 5

16

Copying a List, using slicing

• We can copy a list like slicing:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1[:]

• What will this print now?

 list2[2] = 4
 print(list1[2], list2[2])

list2

list1 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

17

Copying a List, using slicing

• We can copy a list like this one using a full slice:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1[:]

• What will this print now?

 list2[2] = 4
 print(list1[2], list2[2])
 9 4
 9 4

list2

list1 7 8 9 6 10 7 9 5

7 8 4 6 10 7 9 5

18

list1 = [1, 2, 3]
list2 = list1[:]
list3 = list2
list2[1] = 7
print(list1, list2, list3)

What does this program output?

A. [1, 2, 3] [1, 7, 3] [1, 2, 3]
B. [1, 7, 3] [1, 7, 3] [1, 2, 3]

C. [1, 2, 3] [1, 7, 3] [1, 7, 3]

D. [1, 7, 3] [1, 7, 3] [1, 7, 3]

19

list1 = [1, 2, 3]
list2 = list1[:]
list3 = list2
list2[1] = 7
print(list1, list2, list3)

What does this program output?

A. [1, 2, 3] [1, 7, 3] [1, 2, 3]
B. [1, 7, 3] [1, 7, 3] [1, 2, 3]

C. [1, 2, 3] [1, 7, 3] [1, 7, 3]

D. [1, 7, 3] [1, 7, 3] [1, 7, 3]

list2

list1 1 2 3

1 7 3

list3

20

list1 = [1, 2, 3]
list2 = list1[:]
list3 = list2
list2[1] = 7
print(list1, list2, list3)

What does this program output?

A. [1, 2, 3] [1, 7, 3] [1, 2, 3]
B. [1, 7, 3] [1, 7, 3] [1, 2, 3]

C. [1, 2, 3] [1, 7, 3] [1, 7, 3]

D. [1, 7, 3] [1, 7, 3] [1, 7, 3]

128

312list2

list1 1 2 3

1 2 3
312list3

128 (memory address)

312 (memory address)

21

Passing an Immutable Value to a Function

• When an immutable value (like a number or string) is passed
into a function, we can think of the function as getting a copy of
value (though really it gets a reference).

• If the function changes its copy of the value,
that change will not be there when the function returns, this is
because any assignment to the local variable updates it’s
reference and not the referenced value.

• Consider the following program:

 def main():
 a = 2
 triple(a)
 print(a) # what will be printed?

 def triple(x):
 x = x * 3

22

Passing an Immutable Value to a Function (cont.)

2
a

main
before call to triple()

def triple(x):
 x = x * 3

def main():
 a = 2
 triple(a)
 print(a)

23

Passing an Immutable Value to a Function (cont.)

2

a
main

2

x

a
2

main

triple
during call to triple()

before call to triple()
def triple(x):
 x = x * 3

def main():
 a = 2
 triple(a)
 print(a)

24

Passing an Immutable Value to a Function (cont.)

2

a
main

2

x

a
2

main

triple
during call to triple()

before call to triple()

6

a
2

main

triple
x

def triple(x):
 x = x * 3

def main():
 a = 2
 triple(a)
 print(a)

25

Passing an Immutable Value to a Function (cont.)

2

a
main

2

x

a
2

main

triple
during call to triple()

before call to triple()

6

a
2

main

triple
x

2

a
main

after call to triple()

def main():
 a = 2
 triple(a)
 print(a) # prints 2

26

Passing a List to a Function

• When a list is passed into a function:

• the function gets a copy of the reference to the list

• it does not get a copy of the list itself

• Thus, if the function changes the components of the list,
those changes will be there when the function returns.

• Consider the following program:

 def main():
 a = [1, 2, 3]
 triple(a)
 print(a) # what will be printed?

 def triple(vals):
 for i in range(len(vals)):
 vals[i] = vals[i] * 3

27

Passing a List to a Function (cont.)

a
main

1 2 3

before call to triple()
def main():
 a = [1, 2, 3]
 triple(a)
 print(a)

28

Passing a List to a Function (cont.)

a
main

1 2 3

vals

a
main

1 2 3

triple
during call to triple()

def main():
 a = [1, 2, 3]
 triple(a)
 print(a)

before call to triple()

29

Passing a List to a Function (cont.)

a
main

1 2 3

def triple(vals) :
 for i in range(len(vals)):
 vals[i] = vals[i] * 3

vals

a
main

1 2 3

triple

a
main

3 6 9

triple
vals

before call to triple()

during call to triple()

30

Passing a List to a Function (cont.)

vals

a
main

1 2 3

a
main

1 2 3

triple

a
main

3 6 9

a
main

3 6 9

triple

def main():
 a = [1, 2, 3]
 triple(a)
 print(a) # prints [3, 6, 9]

vals

before call to triple()

during call to triple()

after call to triple()

31

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

What does this program output?

A. 7 [7, 7]
B. 14 [7, 7]

C. 7 [111, 7]

D. 14 [111, 7] 32

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

What does this program output?

A. 7 [7, 7]
B. 14 [7, 7]

C. 7 [111, 7]

D. 14 [111, 7] 33

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
mystery1(x) # throws return value away!
mystery2(vals)
print(x, vals)

What does this program output?

global
vals
 x

7 7
7

global
vals
 x 7

before mystery1 during mystery1 after mystery1

global
vals
 x

7 7

mystery1

 x

7

7
14

7 7
34

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals) # output: 7 [111, 7]

What does this program output?

global
vals
 x

7 7
7

global
vals
 x 7

before mystery2 during mystery2 after mystery2

global
vals
 x

7 7

mystery2

vals

7
111 7

111

35

def foo(vals, i):
 i += 1
 vals[i] *= 2

i = 0
l1 = [1, 1, 1]
l2 = l1
foo(l2, i)
print(i, l1, l2)

What does this program print?
Draw your own memory diagrams!

global
 l2
 l1
 i

before foo during foo after foo

foo

global
 l2
 l1
 i

global
 l2
 l1
 i 36

def foo(vals, i):
 i += 1
 vals[i] *= 2

i = 0
l1 = [1, 1, 1]
l2 = l1
foo(l2, i)
print(i, l1, l2) # output: 0 [1, 2, 1] [1, 2, 1]

What does this program print?
Draw your own memory diagrams!

global
 l2
 l1
 i 0

before foo during foo after foo

foo
 i

vals

1 1 1
global
 l2
 l1
 i 0

1 1 1
global
 l2
 l1
 i 0

1 2 1

0
1

2

37

Extra practice: What about this program?

A. 7 [7, 7]
B. 111 [7, 7]

C. 7 [111, 111]

D. 111 [111, 111]

def mystery3(x):
 x = 111
 return x
def mystery4(vals):
 vals = [111, 111]
 return vals

x = 7
vals = [7, 7]
mystery3(x)
mystery4(vals)
print(x, vals)

38

Extra practice: What about this program?

A. 7 [7, 7]
B. 111 [7, 7]

C. 7 [111, 111]

D. 111 [111, 111]

def mystery3(x):
 x = 111
 return x
def mystery4(vals):
 vals = [111, 111]
 return vals

x = 7
vals = [7, 7]
mystery3(x)
mystery4(vals)
print(x, vals)

39

def mystery3(x):
 x = 111
 return x
def mystery4(vals):
 vals = [111, 111]
 return vals

x = 7
vals = [7, 7]
mystery3(x) # throw return value away!
mystery4(vals)
print(x, vals)

Extra practice: What about this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery3

 x

7

7

global
vals
 x

7 7
7

before mystery3 during mystery3 after mystery3

111

40

def mystery3(x):
 x = 111
 return x
def mystery4(vals):
 vals = [111, 111]
 return vals

x = 7
vals = [7, 7]
mystery3(x)
mystery4(vals)
print(x, vals) # output: 7 [7, 7]

Extra practice: What about this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery4

vals

7

111 111

global
vals
 x

7 7
7

before mystery4 during mystery4 after mystery4

x

41

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

How can we make the global x
reflect mystery1's change?

Recall Our Earlier Example...

42

def mystery1(x):
 x *= 2
 return x
def mystery2(vals):
 vals[0] = 111
 return vals

x = 7
vals = [7, 7]
x = mystery1(x) # assign the return value!
mystery2(vals)
print(x, vals)

global
vals
 x

7 7
7

global
vals
 x 7

before mystery1 during mystery1 after mystery1

global
vals
 x

7 7

mystery1

 x

7

7
14

7 7
14

How can we make the global x
reflect mystery1's change?

Recall Our Earlier Example...

43

2-D Lists

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

44

2-D Lists

• Recall that a list can include sublists

mylist = [17, 2, [2, 5], [1, 3, 7]]

45

What is len(mylist)?

2-D Lists

• Recall that a list can include sublists

mylist = [17, 2, [2, 5], [1, 3, 7]]

What is len(mylist)? 4

• To capture a rectangular table or grid of values,
use a two-dimensional list:

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

• a list of sublists, each with the same length

• each sublist is one "row" of the table

46

2-D Lists: Try These Questions!

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

• what is len(table)?

• what does table[0] represent?

 table[1]?

 table[-1]?

• what is len(table[0])?

• what is table[3][1]?

• how would you change the 1 in the lower-left corner to a 7?
47

2-D Lists: Try These Questions!

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

• what is len(table)? 5 (
• what does table[0] represent?

 table[1]?

 table[-1]?

• what is len(table[0])? 8 (

• what is table[3][1]? 14

• how would you change the 1 in the lower-left corner to a 7?
table[4][0] = 7 # table[-1][0] = 7 also works!

row index column index

48

Dimensions of a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

len(table) is the # of rows in table

table[r] is the row with index r

len(table[r]) is the # of elements in row r

len(table[0]) is the # of columns in table

49

Picturing a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

• Here's one way to picture the above list:

0 15 8 3 16 12 7 9 5
1 6 11 9 4 1 5 8 13
2 17 3 5 18 10 6 7 21
3 8 14 13 6 13 12 8 4
4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices 50

Picturing a 2-D List (cont)

• Here's a more accurate picture:

15 8 3 16 12 7 9 5

6 11 9 4 1 5 8 13

17 3 5 18 10 6 7 21

8 14 13 6 13 12 8 4

1 9 5 16 20 2 3 9

table

51

Accessing an Element of a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

table[r][c] is the element at row r column c in table

>>> print(table[2][1])
3

row index
column index

52

Accessing an Element of a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 0, 9]]

table[r][c] is the element at row r column c in table

>>> print(table[2][1])
3

>>> table[-1][-2] = 0

row index
column index

53

Using Nested Loops to Process a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
 [6, 11, 9, 4, 1, 5, 8, 13],
 [17, 3, 5, 18, 10, 6, 7, 21],
 [8, 14, 13, 6, 13, 12, 8, 4],
 [1, 9, 5, 16, 20, 2, 3, 9]]

for r in range(len(table)):
 for c in range(len(table[0])):
 # process table[r][c]

54

Using Nested Loops to Process a 2-D List

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] > 15:
 count += 1
print(count)

r c table[r][c] count

55

Using Nested Loops to Process a 2-D List

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] > 15:
 count += 1
print(count) # prints 5

r c table[r][c] count
0

0 0 15 0
0 1 19 1
0 2 3 1
0 3 16 2
1 0 6 2
1 1 21 3
...
2 0 17 4
...
2 3 18 5

56

Which Of These Counts the Number of Evens?

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] % 2 == 0:
 count += 1

count = 0
for r in len(table):
 for c in len(table[0]):
 if c % 2 == 0:
 count += 1

count = 0
for r in range(len(table[0])):
 for c in range(len(table)):
 if table[r][c] % 2 == 0:
 count += 1

A.

B.

C.

D. either A or B E. either A or C 57

Which Of These Counts the Number of Evens?

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] % 2 == 0:
 count += 1

count = 0
for r in len(table):
 for c in len(table[0]):
 if c % 2 == 0:
 count += 1

count = 0
for r in range(len(table[0])):
 for c in range(len(table)):
 if table[r][c] % 2 == 0:
 count += 1

A.

B.

C.

D. either A or B E. either A or C 58

Using Nested Loops to Process a 2-D List

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] % 2 == 0:
 count += 1
print(count)

r c table[r][c] count

59

Using Nested Loops to Process a 2-D List

table = [[15, 19, 3, 16],
 [6, 21, 9, 4],
 [17, 3, 5, 18]]

count = 0
for r in range(len(table)):
 for c in range(len(table[0])):
 if table[r][c] % 2 == 0:
 count += 1
print(count) # prints 4

r c table[r][c] count
0

0 0 15 0
0 1 19 0
0 2 3 0
0 3 16 1
1 0 6 2
1 1 21 2
...
1 3 4 3
...
2 3 18 4

60

What is the output of this program?

A. 7 [7, 7]
B. -7 [1, 1]

C. 7 [0, 7]

D. 7 [1, 1]

E. -7 [0, 7]

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

61

What is the output of this program?

A. 7 [7, 7]
B. -7 [1, 1]

C. 7 [0, 7]

D. 7 [1, 1]

E. -7 [0, 7]

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

62

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x) # throw return value away!
mystery6(vals, vals)
print(x, vals)

What is the output of this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery5

 x

7

7

global
vals
 x

7 7
7

before mystery5 during mystery5 after mystery5

-7

63

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

What is the output of this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery6
 l1
 l2

7

before mystery6 during mystery6

64

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

What is the output of this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery6
 l1
 l2

7

before mystery6 during mystery6

0

65

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

What is the output of this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery6
 l1
 l2

7

before mystery6 during mystery6

x
0

1 1

66

def mystery5(x):
 x = x * -1
 return x
def mystery6(l1, l2):
 l1[0] = 0
 l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals) # output: 7 [0, 7]

What is the output of this program?

global
vals
 x

7 7
7

global
vals
 x

7 7

mystery6
 l1
 l2

7

global
vals
 x

0 7
7

before mystery6 during mystery6 after mystery6

x
0

1 1

67

Recall: Copying a List

• We can't copy a list by a simple assignment:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1

• We can copy this list using a full slice:

 list1 = [7, 8, 9, 6, 10, 7, 9, 5]
 list2 = list1[:]

list2

list1 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

list2

list1 7 8 9 6 10 7 9 5

68

Copying a 2-D List

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]

This doesn't copy a list grid2 = grid1

• Does this? grid3 = grid1[:]

1 2

grid1

3 4 5 6 7 8grid2

69

Copying a 2-D List

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]

• Does this? grid3 = grid1[:] not fully!

1 2

grid1

3 4 5 6 7 8grid2

grid3

70

A Shallow Copy

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]
grid3 = grid1[:]

• grid1 and grid3 now share the same sublists.

• known as a shallow copy

• What would this print?
grid1[1][1] = 0
print(grid3)

1 2

grid1

3 4 5 6 7 8

grid3

71

A Shallow Copy

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]
grid3 = grid1[:]

• grid1 and grid3 now share the same sublists.

• known as a shallow copy

• What would this print?
grid1[1][1] = 0
print(grid3)

1 2

grid1

3 0 5 6 7 8

grid3

72

A Shallow Copy

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]
grid3 = grid1[:]

• grid1 and grid3 now share the same sublists.

• known as a shallow copy

• What would this print?
grid1[1][1] = 0
print(grid3) [[1, 2], [3, 0], [5, 6], [7, 8]]

1 2

grid1

3 0 5 6 7 8

grid3

73

A Deep Copy: Nothing is Shared

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]

• Here's one way to achieve this:
 grid3 = []
 for sublist in grid1:
 grid3 = grid3 + [sublist[:]]

1 2

grid1

3 4 5 6 7 8

grid3

1 2 3 4 5 6 7 8

In hw03,
you'll take a

different
approach!

74

Recall: List Multiplication

>>> vals = [1, 2] * 3
>>> vals
[1, 2, 1, 2, 1, 2]

• original list:

• get 3 copies of it, concatenated together:

vals

1 2

1 2 1 2 1 2

75

List Multiplication of a 2-D List

>>> grid = [[1, 2]] * 3
>>> grid
[[1, 2], [1, 2], [1, 2]]

• original list:

• get 3 copies of it concatenated together:

• the reference to the sublist is copied, not the sublist

1 2

grid

1 2

76

List Multiplication of a 2-D List (cont.)

>>> grid = [[1, 2]] * 3
>>> grid
[[1, 2], [1, 2], [1, 2]]

• What will this print?

grid[1][1] = 5
 print(grid)

1 2

grid

77

List Multiplication of a 2-D List (cont.)

>>> grid = [[1, 2]] * 3
>>> grid
[[1, 2], [1, 2], [1, 2]]

• What will this print?

grid[1][1] = 5
 print(grid) # output: [[1, 5], [1, 5], [1, 5]]

1 2

grid

78

