
Lecture 06
File Processing and Dictionaries

A young Joy, reading her Barney dictionary

based in part on notes from the CS-for-All curriculum developed at Harvey Mudd College

1

Working with Text Files

• A text file can be thought of as one long string.

• The end of each line is stored as a newline character ('\n').

• Example: the following three-line text file

is equivalent to the following string:
 'Don't forget!\n\nTest your code fully!\n'

Don't forget!

Write test cases first!

2

Opening a Text File

• Before we can read from a text file, we need to open
a connection to the file.

• Example:

f = open('reminder.txt', 'r')

where:

• 'reminder.txt' is the name of the file we want to read

• 'r' indicates that we want to read from the file
(if we leave this out, Python will assume it)

• Doing so creates an object known as a file handle.

• we use the file handle to perform operations on the file

• this is why we store the file handle in the variable f!

3

Processing a File Using Methods

• A file handle is an object.

• We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')
>>> f.readline() # Read in a single line
"Don't forget!\n"
>>> f.readline()
'\n'
>>> f.readline()
'Test your code fully!\n'
>>> f.readline()
''
>>> f = open('reminder.txt', 'r') # start over at top
>>> f.read() # Read in the whole file
"Don't forget!\n\nTest your code fully!\n"

reminder.txt
Don't forget!

Test your code fully!

4

Processing a File Using a for Loop

• We often want to read and process a file one line at a time.

• We could use readline() inside a loop, but...

• what's the problem we would face?
we don't know how many lines there are

• Python makes it easy!

for line in <file-handle>:
 # code to process line goes here

• reads one line at a time and assigns it to line

• continues looping until there are no lines left

5

Processing a CSV File

• CSV = comma-separated values

• each line is one record

• the fields in a given record
are separated by commas

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

6

How Should We Fill in the Blank?

Print CS courses
file = open('courses.txt', 'r')

count = 0
for line in file:
 line = line[:-1]
 fields = ____________
 if fields[0] == 'CS':
 print(fields[0],fields[1])
 count += 1

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. file.split()
B. line.split()

C. file.split(',')

D. line.split(',')

E. none of the above
7

How Should We Fill in the Blank?

Print CS courses
file = open('courses.txt', 'r')

count = 0
for line in file:
 line = line[:-1]
 fields = line.split(',')
 if fields[0] == 'CS':
 print(fields[0],fields[1])
 count += 1

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. file.split()
B. line.split()

C. file.split(',')

D. line.split(',')

E. none of the above
8

Processing a CSV File
file = open('courses.txt', 'r')

count = 0
for line in file:
 line = line[:-1]
 fields = line.split(',')
 if fields[0] == 'CS':
 print(fields[0],fields[1])
 count += 1

line fields output count

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

9

Processing a CSV File
file = open('courses.txt', 'r')

count = 0
for line in file:
 line = line[:-1]
 fields = line.split(',')
 if fields[0] == 'CS':
 print(fields[0],fields[1])
 count += 1

line fields output count
 0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS','111','MWF 10-11'] CS 111 1
'MA,123,TR 3-5\n'
'MA,123,TR 3-5' ['MA','123','TR 3-5'] none 1
'CS,105,MWF 1-2\n'
'CS,105,MWF 1-2' ['CS','105','MWF 1-2'] CS 105 2
...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

10

Closing a File

• When you're done with a file, close your connection to it:

file.close() # file is the file handle

• another example of a method inside an object!

• This isn't crucial when reading from a file (but you should do it
anyway)

• It is crucial when your finished writing to a file

• Otherwise text that you write to file may not make it
to disk until you close the file handle!

• This is because disk writes are “cached” (i.e. buffered) in
memory because writing (and reading) from a disk is quite slow

• When you close the file everything in the cache is “flushed” (i.e.
written) to the disk

11

Extracting Relevant Data from a File

• Assume that the results of a track meet are summarized in a
comma-delimited text file (a CSV file) that looks like this:

 Mike Mercury,BU,mile,4:50:00
 Steve Slug,BC,mile,7:30:00
 Len Lightning,BU,half-mile,2:15:00
 Tom Turtle,UMass,half-mile,4:00:00

• We'd like to have a function that reads in such a results file
and extracts just the results for a particular school.

12

Extracting Relevant Data from a File

def print_results(filename, target_school):
 file = open(filename, 'r')

 for line in file:
 line = line[:-1] # chop off newline at end

 # fill in the rest of the loop body

 file.close()
Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00 13

Extracting Relevant Data from a File

def print_results(filename, target_school):
 file = open(filename, 'r')

 for line in file:
 line = line[:-1] # chop off newline at end

 fields = line.split(',')

 if fields[1] == target_school:
 print(fields[0], fields[2], fields[3])

 file.close()

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00 14

Using a Counter to Handle Schools with No Records

def print_results(filename, target_school):
 file = open(filename, 'r')

 count = 0
 for line in file:
 line = line[:-1] # chop off newline at end

 fields = line.split(',')

 if fields[1] == target_school:
 print(fields[0], fields[2], fields[3])

 count += 1

 if count == 0:
 print(target_school, 'not found')

 file.close()

15

Another Data-Processing Task

 Mike Mercury,BU,mile,4:50:00
 Steve Slug,BC,mile,7:30:00
 Len Lightning,BU,half-mile,2:15:00
 Tom Turtle,UMass,half-mile,4:00:00

• Now we'd like to count the number of results from each school, and
report all of the counts:

>>> school_counts('results.txt')
There are 3 schools in all.
BU has 2 result(s).
BC has 1 result(s).
UMass has 1 result(s).

• Python makes this easy if we use a dictionary.

16

Extracting Relevant Data from a File

def extract_results(filename, target_school):
 file = open(filename, 'r')

 for line in file:
 line = line[:-1] # chop off newline char at end

 fields = line.split(',') #split line on ‘,’
 athlete = fields[0]
 school = fields[1]
 event = fields[2]
 result = fields[3]

 if school == target_school:
 print(athlete, event, result)

 file.close()
Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:0017

On to Dictionaries!

18

What is a Dictionary?

• A dictionary is a set of key-value pairs.
>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

• We can use the key like an index to lookup the associated value!
>>> counts['BU']
2

• It is similar to a "physical" dictionary:
• keys = words
• values = definitions
• use the word to lookup its definition

• Big difference- a digital dictionary is unordered

general syntax:
 {key1: value1, key2: value2, key3: value3...}

19

Using a Dictionary

>>> counts = {} # create an empty dictionary

>>> counts['BU'] = 2

>>> counts['BC'] = 1

>>> counts # a set of key: value pairs
{'BU': 2, 'BC': 1}

>>> counts['BU'] # use the key to get the value
2
>>> counts['BC']
1

>>> counts['UMass'] = 1
>>> counts
{'BU': 2, 'UMass': 1, 'BC': 1} # order is not fixed

key value

20

Other Dictionary Operations

>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

>>> len(counts)
3

>>> 'BU' in counts # is 'BU' one of the keys?
True

>>> 'Harvard' in counts
False

>>> 'Harvard' not in counts
True

>>> 2 in counts
False # 2 is not a key!

21

Processing All of the Items in a Dictionary

counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
 print(key, counts[key])

the above outputs:
BU 2
UMass 1
BC 1

• More generally:

for key in <dictionary>:
 # code to process key-value pair goes here

• gets one key at a time and assigns it to key variable
• continues looping until there are no keys left

• Remember: Order is random 22

Processing All of the Items in a Dictionary

counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
 print(key, counts[key])

key counts[key] output
 →

 →
 →

23

Processing All of the Items in a Dictionary

counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
 print(key, counts[key])

key counts[key] output
'BU' counts['BU'] → 2 BU 2
'UMass' counts['Umass'] → 1 UMass 1
'BC' counts['BC'] → 1 BC 1

24

What Is the Output?

d = {4: 10, 11: 2, 12: 3}

count = 0
for x in d:
 if x > 5:
 count += 1

print(count)

A. 0
B. 1
C. 2
D. 3
E. none of these

25

What Is the Output?

d = {4: 10, 11: 2, 12: 3}

count = 0
for x in d: # x gets one key at a time!
 if x > 5:
 count += 1

print(count)

A. 0
B. 1
C. 2
D. 3
E. none of these

26

Using a Dictionary to Compute Counts

def school_counts(filename):
 file = open(filename, 'r')

 counts = {}

 for line in file:
 fields = line.split(',')

 school = fields[1]
 if school not in counts:
 counts[school] = 1 # new key-value pair
 else:
 counts[school] += 1 # existing k-v pair

 file.close()

 print('There are', len(counts), 'schools in all.')
 for school in counts:
 print(school, 'has', counts[school], 'result(s).')

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

27

Using a Dictionary to Compute Counts

def school_counts(filename):
 file = open(filename, 'r')

 counts = {}

 for line in file:
 fields = line.split(',')

 school = fields[1]
 if school not in counts:
 counts[school] = 1
 else:
 counts[school] += 1

 file.close()

 print('There are', len(counts), 'schools in all.')
 for school in counts:
 print(school, 'has', counts[school], 'result(s).')

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

28

Using a Dictionary to Compute Counts

def school_counts(filename):
 file = open(filename, 'r')

 counts = {}

 for line in file:
 fields = line.split(',')

 school = fields[1]
 if school not in counts:
 counts[school] = 1
 else:
 counts[school] += 1

 file.close()

 print('There are', len(counts), 'schools in all.')
 for school in counts:
 print(school, 'has', counts[school], 'result(s).')

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

29

def word_frequencies(filename):
 file = open(filename, 'r')
 text = file.read() # read it all in at once!
 file.close()

 words = text.split()

 d = {}

 for word in words:
 if word not in d:
 d[word] = 1
 else:
 d[word] += 1

 return d # so we can use it later!

Another Example
of Counting

30

Shakespeare, Anyone?

>>> freqs = word_frequencies('romeo.txt')

>>> freqs['Romeo']
1

>>> freqs['ROMEO:'] # case and punctuation matter
47

>>> freqs['love']
12

>>> len(freqs)
2469

• In his plays, Shakespeare used 31,534 distinct words!

• He also coined a number of words:

gust besmirch unreal

swagger watchdog superscript

Act I of Romeo & Juliet.
See Text Processing Project

http://www-math.cudenver.edu/~wbriggs/qr/shakespeare.html

http://www.pathguy.com/shakeswo.htm
http://www.shakespeare-online.com/biography/wordsinvented.html 31

Generate Text Based on Shakespeare!

>>> d = create_dictionary('romeo.txt')

>>> generate_text(d, 50)
ROMEO: Out of mine own word: If you merry! BENVOLIO:
Come, go to. She hath here comes one of the year, Come
hither, nurse. ROMEO: Well, in spite, To be gone.
BENVOLIO: For men depart.[Exeunt all Christian souls!-
Were of wine. ROMEO: Bid a sea nourish'd with their
breaths with

32

Projects 1&2: Markstrings and Modeling

• Project 1: Generate Text via Markov, due 2/28/18 at Midnight
Section B: Model and Classify Text, due 3/21/18 at Midnight
 (but we suggest you turn them in sooner!)

• More room for creativity than a homework!

33

Generate Text Based on Shakespeare
...Or Anyone Else!

Brown University is an international, comprehensive,
private research university, committed to educating
students to be reflective, resourceful individuals
ready to live, adapt, and lead in an interconnected
world. Brown University is committed to generating new
knowledge to benefit society.

We remain dedicated to our founding principles: that
higher education should be accessible to all and that
research, scholarship, artistic creation, and
professional practice should be conducted in the
service of the wider community—local and international.
These principles endure in the University’s insistence
on the value of diversity, in its tradition and
standards of excellence, and in its dynamic engagement
with the City of Providence and the world.

Brown University comprises a remarkable range of
undergraduate, graduate, and professional programs
built on a strong foundation of the liberal arts and
sciences. With the support and oversight of the Board
of Trustees, the University, through our faculty,
continually innovates in education and research to
ensure that we meet the needs of students and an
ever-changing world.

mission.txt

34

>>> d2 = create_dictionary('mission.txt')

>>> generate_text(d2, 20)
We remain dedicated to benefit society. Brown
University is an ever-changing world. Brown University
comprises a strong foundation of diversity,

Generate Text Based on Shakespeare
...Or Anyone Else!

Brown University is an international, comprehensive, private research university, committed to
educating students to be reflective, resourceful individuals ready to live, adapt, and lead in an
interconnected world. Brown University is committed to generating new knowledge to benefit society.

We remain dedicated to our founding principles: that higher education should be accessible to all and
that research, scholarship, artistic creation, and professional practice should be conducted in the
service of the wider community—local and international. These principles endure in the University’s
insistence on the value of diversity, in its tradition and standards of excellence, and in its dynamic
engagement with the City of Providence and the world.

Brown University comprises a remarkable range of undergraduate, graduate, and professional programs
built on a strong foundation of the liberal arts and sciences. With the support and oversight of the
Board of Trustees, the University, through our faculty, continually innovates in education and
research to ensure that we meet the needs of students and an ever-changing world.

mission.txt

35

Markov Models

• What is a Markov Model?
• “A stochastic model used to model randomly changing systems”

• Allow us to model any sequence of real-world data.

• human speech
• written text
• sensor data
• etc.

• Can use the model to generate new sequences that are
based on existing ones.

• We'll use a first-order Markov model.

• each term in the sequence depends only on the one term
that immediately precedes it

36

A Markov Model in Dictionary Form

 {'$': ['Brown', 'It', 'It', 'It'],
 'Brown': ['University'],
 'University': ['is'],
 'is': ['a', 'committed', 'committed', 'amazing!'],
 'to': ???,
 'committed': ???,
 ... }

Brown University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

sentence-start symbol key = a word w
value = a list of the
words that follow w
in the text

37

A Markov Model in Dictionary Form

 {'$': [’Brown', 'It', 'It', 'It'],
 'Brown': ['University'],
 'University': ['is'],
 'is': ['a', 'committed', 'committed', 'amazing!'],
 'to': ['educating', 'be', 'live', 'lead', 'generating'],
 'committed': ???,
 ... }

Brown University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

sentence-start symbol key = a word w
value = a list of the
words that follow w
in the text

38

A Markov Model in Dictionary Form

 {'$': ['Brown', 'It', 'It', 'It'],
 'Brown': ['University'],
 'University': ['is'],
 'is': ['a', 'committed', 'committed', 'amazing!'],
 'to': ['educating', 'be', 'live', 'lead', 'generating'],
 'committed': ['to', 'to'],
 ... }

Brown University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

sentence-start symbol key = a word w
value = a list of the
words that follow w
in the text

39

A Markov Model in Dictionary Form

 {'$': ['Brown', 'It', 'It', 'It'],
 'Brown': ['University'],
 'University': ['is'],
 'is': ['a', 'committed', 'committed', 'amazing!'],
 'to': ['educating', 'be', 'live', 'lead', 'generating'],
 'committed': ['to', 'to'],
 ... }

• Sentence-ending words should not be used as keys.

• words that end with a '.', '?', or '!' (e.g., 'world.')

Brown University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

sentence-start symbol key = a word w
value = a list of the
words that follow w
in the text

40

Model Creation Function

def create_dictionary(filename):
 # read in file and split it into a list of words

 d = {}
 current_word = '$'

 for next_word in words:
 if current_word not in d:
 d[current_word] = [next_word]
 else:
 d[current_word] += [next_word]

 # update current_word...

 return d

key = a word w
value = a list of the
words that follow w
in the text

41

Model Creation Example
words = ['Brown', 'University', 'is', 'a', 'comprehensive',

'university.', 'It', 'is', 'committed', ...]
d = {}
current_word = '$'

for next_word in words:
 if current_word not in d:
 d[current_word] = [next_word]
 else:
 d[current_word] += [next_word]

 # update current_word to be either next_word or '$'...

current_word next_word action taken

 42

Model Creation Example
words = ['Brown', 'University', 'is', 'a', 'comprehensive',

'university.', 'It', 'is', 'committed', ...]
d = {}
current_word = '$'

for next_word in words:
 if current_word not in d:
 d[current_word] = [next_word]
 else:
 d[current_word] += [next_word]

 # update current_word to be either next_word or '$'...

current_word next_word action taken
'$' 'Brown' d['$'] = ['Brown']
'Brown' 'University' d['Brown'] = ['University']
'University' 'is' d['University'] = ['is']
'is' 'a' d['is'] = ['a']
'a' 'comprehensive' d['a'] = ['comprehensive']
'comprehensive' 'university.' d['comprehensive']=['university.']
'$'

 43

Model Creation Example
words = ['Brown', 'University', 'is', 'a', 'comprehensive',

'university.', 'It', 'is', 'committed', ...]
d = {}
current_word = '$'

for next_word in words:
 if current_word not in d:
 d[current_word] = [next_word]
 else:
 d[current_word] += [next_word]

 # update current_word to be either next_word or '$'...

current_word next_word action taken
'$' 'Brown' d['$'] = ['Brown']
'Brown' 'University' d['Brown'] = ['University']
'University' 'is' d['University'] = ['is']
'is' 'a' d['is'] = ['a']
'a' 'comprehensive' d['a'] = ['comprehensive']
'comprehensive' 'university.' d['comprehensive']=['university.']
'$' 'It' d['$'] → ['Brown', 'It']
'It' 'is' d['It'] = ['is']
'is' 'committed' d['is'] → ['a', 'committed'] 44

generate_text(word_dict, num_words)

start with current_word = '$'

repeat num_words times:

 next_word = random choice from the words that can follow
 current_word (use the model!)

 print next_word, followed by a space (use end=' ')

 update current_word to be either next_word or '$'

print()

45

WMSCI

46

Markov-generated submission
accepted to the conference!

http://pdos.csail.mit.edu/scigen/

WMSCI 2005

47

theirs was more than a first-order
model… 48

They presented the
paper in costume!

49
One of the MIT masterminds behind the paper^

Wesley, not presenting but
in costume ^

Project 2: Text Modeling and Classification

– first paragraph of The Cuckoo's Calling
 by Robert Galbraith

Though Robin Ellacott’s twenty-five years of life
had seen their moments of drama and incident,
she had never before woken up in the certain

knowledge that she would remember the coming
day for as long as she lived.

50

Project 2: Text Modeling and Classification

– first paragraph of The Cuckoo's Calling
 by Robert Galbraith

Though Robin Ellacott’s twenty-five years of life
had seen their moments of drama and incident,
she had never before woken up in the certain

knowledge that she would remember the coming
day for as long as she lived.

51

Project 2: Text Modeling and Classification

– first paragraph of The Cuckoo's Calling
 by Robert Galbraith

Though Robin Ellacott’s twenty-five years of life
had seen their moments of drama and incident,
she had never before woken up in the certain

knowledge that she would remember the coming
day for as long as she lived.

52

You won’t have to worry about this for a little while, but it’s good to know
what to expect when the project is released!

Modeling a Body of Text

• Based on features of the text.

• word-frequencies

• word-length frequencies

• stem-frequencies

• sentence-length frequencies

• one other feature of your choice!

{ "love": 25, "spell": 275, … }

{ "lov": 98, "spell": 306, … }

{ 4: 980, 5: 42005, … }

TextModel object

stems

word_lengths

words

sentence_lengths

name 'JKR'

{ 3: 450, 4: 1005, … }

Python dictionaries!

your_choice { … } 53

Text Modeling and Classification

Modeling, Section A, III-IV

• Build a model of a body of text.

• works by an author / of a certain genre / etc.

• articles from a given publication / type of publication

• scripts from a given TV series

• etc.

54

Text Modeling and Classification

Modeling, Section A, III-IV

• Build a model of a body of text.

• works by an author / of a certain genre / etc.

• articles from a given publication / type of publication

• scripts from a given TV series

• etc.

Modeling, Section B

• Improved Model

• Implement a similarity score that allows you to compare
two bodies of text.

• room for creativity here:
You pick some bodies of text and perform comparisons!

55

Text Processing Project

• You already know enough to complete Section A, I-IV

• dictionaries

• file-processing

• We'll discuss Section B next week

• the project write-up also includes more detail

56

