Lecture 08
More Recursion!

f?’ *“‘“’ o e e

Fractals are a great example of recursion in action

Lecture 08 Goals

def study_recursion(lecture):

if lecture > 9:
return False

else:
knowledge = study_recursion(lecture + 1)
it knowledge:

return True

else:

return False

What will this code return?

def study_recursion(lecture):
if lecture > 9:
return False
else:
knowledge = study_recursion(lecture + 1)

it knowledge:

return True A. L
B. False
else:
C. None
return False
D. 0
E. itwon’t (infinite loop)

What will this code return?

def study_recursion(lecture):
if lecture > 9:
return False
else:
knowledge = study_recursion(lecture + 1)

it knowledge:

return True A. L
B. False
else:
C. None
return False
D. 0
E. itwon’t (infinite loop)

Google recursion

Web Images Apps Videos Books More v Search tools

About 6,670,000 results (0.33 seconds)

Did you mean: recursion

Finding the Largest Element in a List

* my_max(values)
* input: a non-empty list of numbers
* returns: the largest element in the list

* examples:

>>> my_max([5, 8, 10, 2])
10

>>> my_max([30, 2, 18])
30

How can we code this?

* my_max(values)
* input: a non-empty list of numbers
* returns: the largest element in the list

* examples:

>>> my_max([5, 8, 10, 2])
10

>>> my_max([30, 2, 18])
30

How can we code this?

e Use Recursion

* Use Reduce (will talk about later)

What is signature and some test cases?

* my_max(values)
* input: a non-empty list of numbers
* returns: the largest element in the list

* examples:

>>> my_max([5, 8, 10, 2])
10

>>> my_max([30, 2, 18])
30

What is signature and some test cases?

« my_max(values)
* input: a non-empty list of numbers
* returns: the largest element in the list

* examples:
>>> my_max([5, 8, 10, 21)
10

>>> my_max([30, 2, 18])
30

def my_max(values):

"'"'returns the largest element in a non-empty list
def test_my_max():

assert my_max([-1])==-1

assert my_max([0, 1, -1])==

[A

Design Questions for my_max()

When can I determine the largest element in a list
without needing to look at a smaller list?

How could I use the largest element in a smaller list
to determine the largest element in the entire list?

list1 = [30, 2, 18] list2 = [5, 12, 25, 2]
largest element = 18 largest element = 25

my_max(list1) —» ?7? my_max(list2) —» ??

Design Questions for my_max()

When can I determine the largest element in a list
without needing to look at a smaller list? when there's only
one element

How could I use the largest element in a smaller list
to determine the largest element in the entire list?

list1 = [30, 2, 18] list2 = [5, 12, 25, 2]
largest element = 18 largest element = 25

1. compare the first element to largest element in the rest of the list
2. return the larger of the two

Let the recursive call handle the rest of the list!

Recursively Finding the Largest Element in a
List
my_max(values):

""" returns the largest element 1n a list
input: values 1s a *non-empty* list

base case

recursive case

Recursively Finding the Largest Element in a
List
my_max(values):
""" returns the largest element in a list
input: values 1s a *non-empty* list
len(values) == 1: # base case
values[O0]
; # recursive case
max_1in_rest = my_max(values[1:])
values[0] > max_1n_rest:
values[0]

max_1n_rest

How many times will my_max() be called?

my_max(values):
len(values) == 1: # base case
values[0]
: # recursive case
max_in_rest = my_max(values[1:])
values[0] > max_1in_rest:
values[0]

max_1in_rest

print(my_max([5, 30, 10, 8]))

m o 0w
o 1 A W -

How many times will my_max() be called?

my_max(values):
len(values) == 1: # base case
values[0]
: # recursive case
max_in_rest = my_max(values[1:])
values[0] > max_1in_rest:
values[0]

max_1in_rest

print(my_max([5, 30, 10, 8]))

m o 0w
o U A W =

my_max(values):

How recursion e
works...

max_in_rest = my_max(values[1:])
values[0] > max_in_rest:
values[0]

max_in_rest

my_max([0,1,2,3])

\
my_max([1,2,3])

\
my_max([2,3])

AN

my_max([3]

number of calls for a list of length 4 = 4

number of calls for a list of length n = n < grows reasonably.
double the number elements => twice as many calls, linear growth

What's wrong (if anything) with this alternative?

my_max(values):
""" returns the largest element in a list
input: values is a *non-empty* list
len(values) ==
values[0]

max_in_rest = my_max(values[1:])
values[0] > my_max(values[1:]):
values[O0]

my_max(values[1:])

What's wrong (if anything) with this alternative?

my_max(values):
""" returns the largest element in a list
input: values is a *non-empty* list
len(values) ==
values[0]

max_in_rest = my_max(values[1:])
values[0] > my_max(values[1:]):
values[O0]

my_max(values[1:])

Clicker Quiz:

Does this function produce the same results as the alternative?
A) Yes
B) No
C) Ildon’t know

What's wrong (if anything) with this alternative?

my_max(values):
""" returns the largest element in a list
input: values is a *non-empty* list
len(values) ==
values[0]

max_in_rest = my_max(values[1:])
values[0] > my_max(values[1:]):
values[O0]

my_max(values[1:])

Clicker Quiz:

Does this function produce the same results as the alternative?
A) Yes
B) No
C) Ildon’t know

What's wrong (if anything) with this alternative?

my_max(values):
""" returns the largest element in a list
input: values is a *non-empty* list
len(values) ==
values[0]

max_in_rest = my_max(values[1:])
values[0] > my_max(values[1:]):
values[O0]

my_max(values[1:])

Clicker Quiz:
Is the alternative function as efficient? (Hint: Try to determine worst case input)
A) Always
B) Sometimes
C) Never
D) | Don’t Know

What's wrong (if anything) with this alternative?

my_max(values):
""" returns the largest element in a list
input: values is a *non-empty* list
len(values) ==
values[0]

max_in_rest = my_max(values[1:])
values[0] > my_max(values[1:]):
values[O0]

my_max(values[1:])

Clicker Quiz:

Is the alternative function as efficient?
A) Always
B) Sometimes => Consider my_ max([0,1,2,3])
C) Never

D) | Don’t Know

my_max(values):
len(values) ==

How recursion values[0]

works...
values[0] > my_max(values[1:]):
values[0]

my_max(values[1:])

my_max([0,1,2,3])

/ \
my_max([1,2,3]) my_max([1,2,3])

my_max([2,3]) my_max([2,3]) my_max([2,3]) my_max([2,3])

/N /N /N /N

my_max([31my_max([3]my_max([3]my_max([3])my_max([3]my_max([3]ny_max([3]my_max([3])

Max number of calls for a list of length 4 = 15
Max number of calls for a list of length n= 2" -1 « gets big fast!!!

Increasing length by one => twice as many calls. Exponential growth!

Efficient solutions are desirable

Here the first solution made a linear number of calls for an input of
length (n), whereas the second made an exponential number calls
to itself for an input of length (n)

Last class we created a power function that used

b”n = b*b” (n-1)

as it's recursive step. What if we created a new version of power
that uses

b*n =[b”*(n/2))]*2, if n even
b”n = b*b”*(n-1), if n odd

Which do you think will be more efficient?

What is the output of this program?
myst(s):

len(s) <= 1:
S

s[-1] + myst(s[:-1]) + s[-1]

print(myst('bar'))

m Y aw»

rabar
rabbar
barab
barrab

none of these

What is the output of this program?
myst(s):

len(s) <= 1:
S

s[-1] + myst(s[:-1]) + s[-1]

print(myst('bar'))

m Y aw»

rabar
rabbar
barab
barrab

none of these

_ myst(s):
How recursion len(s) <= 1:

works... | S
. S[-1] + myst(s[:-1]) + s[-1]

myst('bar')
AN
4 A
'r' + myst('ba') + 'r'
AN
4 A

lal + myst(lbl) + lal

lbl

_ myst(s):
How recursion len(s) <= 1:

works... | S
. S[-1] + myst(s[:-1]) + s[-1]

myst('bar')
AN
4 A
'r' + myst('ba') + 'r'
A A

/
lal + lbl + la

_ myst(s):
How recursion len(s) <= 1:

works... i S
. S[-1] + myst(s[:-1]) + s[-1]

myst('bar')
AN

lr.l + labal + lr.l

How recursion
works...

myst(s):

len(s) <= 1:
S

S[-1] + myst(s[:-1]) + s[-1]

myst('bar')

result:

'rabar’

A Recursive Palindrome Checker

* A palindrome is a string that reads the same forward and backward.

* examples: "radar”, "mom", "abcddcba”

* Let's write a function that determines if a string is a palindrome:

>>> 1s_pal('radar")
True
>>> is_pal('abccda")
False

 We need more than one base case. What are they?

 How should we reduce the problem in the recursive call?

A Recursive Palindrome Checker

* A palindrome is a string that reads the same forward and backward.

* examples: "radar”, "mom", "abcddcba”

* Let's write a function that determines if a string is a palindrome:

>>> 1s_pal('radar")
True
>>> is_pal('abccda")
False

 We need a signature

e We need test cases

A Recursive Palindrome Checker

* A palindrome is a string that reads the same forward and backward.

* examples: "radar”, "mom", "abcddcba”

* Let's write a function that determines if a string is a palindrome:

>>> 1s_pal('radar")
True

>>> 1s_pal('abccda')
False

 We need more than one base case. What are they?
* empty string
* single character
* outer characters don't match

 How should we reduce the problem in the recursive call?

A Recursive Palindrome Checker

is_pal(s):
""" returns True if s 1s a palindrome
and False otherwise.
input s: a string containing only letters
(no spaces, punctuation, etc.)

A Recursive Palindrome Checker

is_pal(s):
""" returns True if s 1s a palindrome
and False otherwise.
input s: a string containing only letters
(no spaces, punctuation, etc.)
it len(s) <= 1: # empty string or one letter
return True
elif s[0] != s[-1]:
return False
else:
is_pal_rest = 1s_pal(s[1:-1])
return 1s_pal_rest

A Recursive Palindrome Checker
(with temporary printins for debugging)
is_pal(s):
""" returns True if s 1s a palindrome
and False otherwise.
input s: a string containing only letters
(no spaces, punctuation, etc.)
print('beginning call for', s)
if len(s) <= 1: # empty string or one letter
print('call for', s, 'returns True')
return True
elif s[0] != s[-1]:
print('call for', s, 'returns False')
return False
else:
is_pal_rest = 1s_pal(s[1:-1]1)
print('call for', s, 'returns', 1s_pal_rest)

DON'T
CURSE.

RECURSE!

More Recursive Design

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

Practicing Design

replace(s, old, new)
* inputs: astring s
two characters, o1d and new

e returns: aversion of S in which all occurrences of old
are replaced by new

examples:
>>> replace('boston', '001.‘5 ‘e’) new
'besten’ ‘ ' boston
>>> replace('banana’', 'a', 'o') '
'bonono' beSten
>>> replace('mama', 'm', 'd")

'dada'

Practicing Design

 replace(s, old, new)
* inputs: astrings
two characters, old and new

* returns: a version of s in which all occurrences of old
are replaced by new

e Signature? b(l) ST (I) N

'besten’

e Test Cases?

Design Questions for replace()

When do I know that I can stop trying to replace
characters in a string S?

How could I use the "replaced"” version of a
sitaller string to get the "replaced” version of s?

replace(s2, 'e', 'i")

If you knew the "replaced" version
of the covered portion, how would
you form the "replaced” version
of the entire string s2?

replace(s1, 'a', 'o")

If you knew the "replaced" version
of the covered portion, how would
you form the "replaced” version
of the entire string s1?

Design Questions for replace()

When do I know that I can stop trying to replace

characters in a string S? when the o1d character
doesn't appearin s

How could I use the "replaced"” version of a
sitaller string to get the "replaced” version of s?

s1="al ' s2="r

replace(s2, 'e', 'i")

If you knew the "replaced" version
of the covered portion, how would

replace(s1, 'a', '0")

If you knew the "replaced" version

of the covered portion, how would
you form the "replaced" version you form the "replaced" version
of the entire string s17? of the entire string s27?

'0' + ré,ﬁ_t[_glg-_@(qcy@ive call handle the-cayep%mgigéqq!. .)

Don't forget to do your one step!

Complete This Function Together!
replace(s, old, new):

""" returns a version of the string s
in which all occurrences of old
are replaced by new

1 7

S == ; # why not “ old s)"?

make the recursive call first
and store its return value
repl_rest = replace(, old, new)

do your one step!

Complete This Function Together!
replace(s, old, new):

""" returns a version of the string s
in which all occurrences of old
are replaced by new

| I A

S::
S

make the recursive call first
and store its return value
repl_rest = replace(s[1:], old, new)

do your one step!
s[0] == old:
new + repl_rest # replace s[0]

s[0] + repl_rest # leave it

Removing Vowels From a String

remove_vowels(s) - removes the vowels from the string s,
returning its "vowel-less" version!

>>> remove_vowels('recursive')
‘rcrsv’
>>> remove_vowels('vowel")

"vwl'
Can we take the usual approach to processing a string recursively? yes!

* delegate s[1:] to the recursive call
* we're responsible for handling S[0]

What are the possible cases for our part (s[0])?
* does what we do with our part depend on its value? yes!
e ifs[0] is avowel..
« ifsS[0] isn't a vowel...

Consider Concrete Cases
remove_vowels('after')

* what is its solution?
* what is the next smaller subproblem?
* what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

remove_vowels('recurse')
* what is its solution?
» what is the next smaller subproblem?
* what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

Consider Concrete Cases
remove_vowels('after')

e whatis its solution? 'ftr'
» what is the next smaller subproblem? remove_vowels('fter"')
» what is the solution to that subproblem? 'ftr'

* how can we use the solution to the subproblem?
What is our one step? just return the subproblem's solution!

remove_vowels('recurse')
e what is its solution? 'rcrs'
» what is the next smaller subproblem? remove_vowels('ecurse')
* what is the solution to that subproblem? 'crs'

* how can we use the solution to the subproblem?
What is our one step? 'r' + 'crs'..... Now write the function!

remove_vowels()

remove_vowels(s):
""" returns the "vowel-less" version of s
input s: an arbitrary string

remove_vowels()

remove_vowels(s):
""" returns the "vowel-less" version of s

input s: an arbitrary string

S —_——
return

make the recursive call first
and store its return value
rem_rest = remove_vowels(s[1:])

do our one step!
s[0] "aelou': # ok use of 1in

rem_rest

S[O0] + rem_rest

Recursion vs Iteration

« Any function that can be written recursively can also be written
iteratively.

Remember this slide?

recursion for loop
def fac(n): def fac(n):
if n == 0: result = 1
return 1 for x in range(1, n+1):
else: result *= x
rest = fac(n-1) return result

return n * rest

map while loop
def fac(n)- def fac(;):_
return re da x,y : x*y,\ result = 1

while n > O:
result *= n
n=n-1

return result

range(1,ma

Fibonacci

For another example, let’s look at the Fibonacci sequence.
The mathematical definition is generally written recursively.

The sequence:

10,1,1,2,3,5,8, 13,21, 34, ...}

The rule:
X0=0
x1=1
X =X . +X_ fornin?2, 3,4, ...

Fibonacci

iterative fib(n):
n == 0-

return O
val one = 1 #init value of f(n-1)
val two = 0 #init value of f(n-2)

1 1n range(1,n):

temp_val = val_one + val_two

val _two = val _one

val_one = temp_val

val one

Fibonacci

recursive_fib(n):

recursive _fib(n-2) + recursive fib(n-1)

Fibonacci

« Let's do a comparison of the recursive and iterative code

N Recursive lterative = Recursive lterative
Runtime Runtime Function Loops
(MS) (uS) Calls
5 6.2 6.7 15 4
10 17.3 7.0 177 9
20 11178 7.5 21891 19

40 > 1 min 8.1 NA 39

So....1s iteration better?

« In general, yes, iteration is a better solution than recursion for
many methods
« However,

Recursion is a way of thinking of problems that is in line
with mathematical reasoning e.g. the Fibonacci sequence is
better represented by its recursive form than an iterative
form

Certain data structures like graphs and trees are easier to
interact with recursively. Iterative methods would require
code to be complex and opaque. This is something we as
programmers want to avoid.

When not to implement recursion...

