Lecture 09
Filter, Map, Reduce, and Lambda

Barron has successfully reduced scratching, but the overhead is huge!

based in part on notes from the CS-for-All curriculum developed at Harvey Mudd College

Last Time (lecture 08)

Recursion takeaways

« Any recursive algorithm can be implemented with iteration
« Recursion is a trade-off in efficiency vs. readability
« Avoid multiple recursive calls whenever possible

e e.g,0(n)vs.0(2"n)

Multiple base cases

« Not always an empty or singular sequence
e e.g, Palindrome checker: front and back must be equal

Recursion vs. Iteration

« [Is the Fibonacci sequence a good function to recurse in

practice?
« Searching through directed graphs or file structures are
better suited for recursion

Lecture 09 Goals

Lecture 09A:

1. Introduce high-level functions: filter(), map(), & reduce()
2. Introduce anonymous functions: lambda

Lecture 09B:

1. Introduction to Object Oriented Programming (OOP)
2. How to find help on objects

filter()

e A higher-order function
e Syntax:
filter (function, sequence)

e applies function to each element of sequence
and returns elements for which the function returns true

 filter returns a subset of sequence
® to generate the actual list, we need to apply 1list()

filter() Examples

def isDivBy3(x): # is divisible by 3?
return x % 3 ==

def isEven(x): # is even?
return x % 2 ==

def isCap(s): # is first character capitalized?
return 'A' <= s[0] <= 'Z'

>>> list(filter(isDivBy3, range(0,31)))

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

>>> list(filter(isEven, filter(isDivBy3, range(0,31))))

[0, 6, 12, 18, 24, 30]

>>> list(filter(isCap, ['he’,'Martha‘, 'tree’, 'George’, 'chop']l))
['Martha', 'George']

>>> list(filter(isCap, 'Martha Dandridge-Washington‘))

2?27

filter() Examples

def isDivBy3(x): # is divisible by 3?
return x % 3 ==

def isEven(x): # is even?
return x % 2 ==

def isCap(s): # is first character capitalized?
return 'A' <= s[0] <= 'Z'

>>> list(filter(isDivBy3, range(0,31)))

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

>>> list(filter(isEven, filter(isDivBy3, range(0,31))))

[0, 6, 12, 18, 24, 30]

>>> list(filter(isCap, ['he’,'Martha‘, 'tree’, 'George’, 'chop']l))
['Martha', 'George']

>>> list(filter(isCap, 'Martha Dandridge-Washington'))

[IMI, |D|’ |w|]

map()

e A higher-order function
e Syntax:
map (function, sequence)

e applies function to each element of sequence
and returns the results

e Aswith range:
® you can think of map as producing a list
® in many cases it can be used like one
® to generate the actual list, we need to use map () with 1ist()

>>>

map() Examples

triple(x):
3*x

square(x):
X*X

first char(s):
S[O]

map(triple, [0, 1, 2, 3, 4, 5])

[0, 3, 6, 9, 12, 15]

>>>

[0,

>>>
277

>>>
?277?

map(square, range(6))
1, 4, 9, 16, 25]

map(first_char, ['python', 'is'

map(triple, 'python')

I

"fun!'])

map() Examples

triple(x):
3*X

square(x):
X*X
first char(s):
S[O]

>>> map(triple, [0, 1, 2, 3, 4, 5])
[0, 3, 6, 9, 12, 15]

>>> map(square, range(6))
[OI 1: 41 9! 16' 25]

>>> map(first_char, ['python', 'is', 'fun!'])
[|p|, 'i', 'f']

>>> map(triple, 'python')
['ppp', 'yyy', 'ttt', 'hhh', 'ooo', 'nnn']

reduce()

* Required: from functools import reduce
e Syntax:
reduce(f,s)

* reduce continually applies the function f(x,y) to the sequence s. It returns a
single value.

Fors = [s1, s2, s3, ... , sn], f(x,y) isapplied to the first two elements.
Note: f() has 2 input parameters!

The list on which reduce() works looks now like this:
e [f(s1,s2),s3,...,sn], In the next step the list is
* [f(f(s1, s2),s3),..,sn]

Continue like this until just one element is left and return this element as the result
of reduce()

reduce() Examples

add(x, y):
X+y

>>> reduce(add, [47, 11, 42, 13])
113

Calculated via add(add(add(47,11), 42), 13)

7 BT I

| 5§

reduce() Examples

add(x, y):
X+y

mult(x, y):
X*y

>>> reduce(add, range(1,6))

15

>>> reduce(mult, range(1,6))

120

>>> reduce(add, ['Just', 'ice,', ' Now!'])

e

>>>

15
>>>

120
>>>

reduce() Examples

add(x, y):
X+y
mult(x, y):
X*y

reduce(add, range(1,6))
reduce(mult, range(1,6))

reduce(add, ['Just', 'ice,', ' Now!'])

‘Justice, Now!’

What will this code output?

from functools import reduce

def mult(x, y):
return x*y

def mystery(n):
return reduce(mult, range(1,n+1))

print(mystery(4))
A. 4
B. 12
C. 24
D. [4 12 24]
E. none of the above

What will this code output?

from functools import reduce

def mult(x, y):
return x*y

def mystery(n):
return reduce(mult, range(1,n+1))

print(mystery(4))
A. 4
B. 12
C. 24
D. [4 12 24]
E. none of the above

What does this code do?

from math import log

def 1g0ddi: s =-

det 9g U%Rgrgam£225dd, map(log, filter(is0dd,range(1, n+1))))
print(odd_log_sum(5))

Other Useful Built-In Functions

e sum(list): computes & returns the sum of a list of numbers
>>> sum([4, 10, 2])
16

e Here's how we could define it recursively:

sum(values):
""" computes the sum of a list of numbers.
input values: an arbitrary list of 0 or more #s
values == []: # base case
0

sum_rest = sum(values[1:]) # recursive case
values[0] + sum_rest

Other Useful Built-In Functions

e sum(list): computes & returns the sum of a list of numbers
>>> sum([4, 10, 2])
16

e Here's how we could define it using reduce:

add(x,y):
X + Yy

sum(vals):
(add, vals)

Lambda Expressions and
Anonymous Functions

Lambda Expressions
Python allows one to define functions in a single expression, i.e.,
>>> isDivBy3 = (lambda x: x%3==1)

>>> list(filter(isDivBy3, range(0,31)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Here keyword lambda indicates we're defining a function, x is its
argument, and x%3==1 indicates the return value

Lambda Expressions
Python allows one to define functions in a single expression, i.e.,

>>> isDivBy3 = (lambda x: x%3==1)
>>> list(filter(isDivBy3, range(0,31)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Here keyword lambda indicates we're defining a function, x is its
argument, and x%3==1 indicates the return value

The code above is entirely equivalent to

def isDivBy3(x): # is divisible by 3
return x % 3 ==

>>> list(filter(isDivBy3, range(0,31)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Anonymous Functions
Python allows one to define functions in a single expression, i.e.,
>>> isDivBy3 = (lambda x: x%3==1)

>>> list(filter(isDivBy3, range(0,31)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Here we have assigned the definition of this function to the variable
isDivBy3, but we could just as well have used it immediately

>>> list(filter(lambda x: x%3==1, range(0,31)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

This last example is an example of the use of an anonymous function
— it never had a name, but it did do its job.

Lambda practice

def isEven(x): # is even?
return x % 2 ==

def isCap(s): # is first character capitalized?
return 'A' <= s[0] <= 'Z’

>>> x = list(filter(lambda , range(0,10)))
[0, 2, 4, 6, 8, 10]

>>> list(filter(lambda y \
['he’, 'Martha’, 'tree’, 'George’, 'chop']l))
['Martha', 'George']

Lambda practice

def isEven(x): # is even?
return x % 2 ==

def isCap(s): # is first character capitalized?
return 'A' <= s[0] <= 'Z’

>>> x = list(filter(lambda x: x % 2 == 0, range(0,10)))
[0, 2, 4, 6, 8, 10)

>>> list(filter(lambda s: 'A' <= s[0] <= 'Z’', \
['he’, 'Martha’, 'tree’, 'George’, 'chop']l))
['Martha', 'George']

Lambda practice

>>> map (lambda , [0, 1, 2, 3, 4, 5])
[0, 3, 6, 9, 12, 15]

>>> map(lambda , range(6))
[0, 1, 4, 9, 16, 25]

Lambda practice

>>> map(lambda x: 3*x, [0, 1, 2, 3, 4, 5])
[0, 3, 6, 9, 12, 15]

>>> map(lambda x: x**2, range(6))
[0, 1, 4, 9, 16, 25]

>>>
27?77

>>>
27?77

Lambda practice

map(lambda c: c[1],

map(lambda c: c*2,

['python',

'python')

1S

I

"fun!'])

Lambda practice

>>> map(lambda c: c[1], ['python', 'is', 'fun!'])
['y', IS’I lu’]
>>> map(lambda c: c*2, 'python')

[lppI’ lny’ lttI’ lth’ IOOI’ lnnl]

Lambda practice

>>> reduce(lambda , range(1,6))
15
>>> reduce(lambda , range(1,6))
120
>>> reduce(lambda p o\

['Just', 'ice,’, ‘ Now!'])

‘Justice, Now!'’

Lambda practice

>>> reduce(lambda x,y: x+y, range(1,6))
15
>>> reduce(lambda x,y: x*y, range(1,6))
120
>>> reduce(lambda x,y: x+y, \

['Just', 'ice,', ' Now!'])
‘Justice, Now!'’

When not to use anonymous functions

Anonymous functions
1. do not allow testing
2. do notsupport doc strings
3. can make code really, really confusing

Do not use complex anonymous functions, i.e. ones that are not
readily understandable, or easily verifiable by inspection

Concise code is good

Opaque code is bad

See also: https://treyhunner.com/2018/09/stop-writing-lambda-expressions/

https://treyhunner.com/2018/09/stop-writing-lambda-expressions/

When to use anonymous functions

There are no existing functions that do what you need
The function is trivial: the function doesn’t need a name

Having a lambda expression makes your code more
understandable than the function names you can think of

Lambda Expression Summary

This function returns the sum of its two arguments
(lambda x,y: x+y)

Lambda functions can be used wherever function objects are
required. They are syntactically restricted to a single expression.

Semantically, they are just syntactic sugar for a normal function
definition, i.e., both definitions below are functionally the same

add = (lambda x,y: x+y)

def add(x,y): # add two numbers
return x+y

Bringing it all together

Use Filter, Map and/or Reduce to compute with a lambda function

def num_vowels(s):
"' 'Returns the number of vowels in a string of letters''’

#Hint: The function string.count(substring) returns the
total number of times each substring appears in string

def mymax(values):
‘"' returns the largest element in a non-empty list

[A

Bringing it all together

Use Filter, Map and/or Reduce to compute with a lambda function

def num_vowels(s):
'''Returns the number of vowels in a string of letters

reduce(X,y: x+y, map(s.lower().count, 'aeiou'))

LI B J

def mymax(values):
‘" returns the largest element 1n a non-empty list
reduce(X,y: X if X >y else y, values)

[A

Lecture 09B:

Object Oriented Programming

36

e In Python, a string is an object.

Recall: Strings Are Objects

e attributes:

e the characters in the string
» the length of the string

* methods: functions inside the string that we can use

to operate on the string

string object for

string object for

uppe

find()

contents | 'h'

lel

length)

r() replace()

lower() split()

count()

contents | o' | 'y' | ‘e

length| 3

upper() replace()
lower() split()
find()

count()

Recall: String Methods (partial list)

s.lower(): return a copy of s with all lowercase characters
s.upper(): return a copy of s with all uppercase characters

s.find(sub): return the index of the first occurrence of the
substring sub in the string s (-1 if not found)

s.count(sub): return the number of occurrences of the
substring sub in the string s (0 if not found)

s.replace(target, repl): return a new string in which
all occurrences of target in s are replaced with repl

Examples of Using String Methods

>>> chant = 'We are the Bears!'

>>> chant.upper()
>>> chant.lower()

>>> chant.replace('e’, '0')

>>> chant

Examples of Using String Methods

>>> chant = 'We are the Bears!'

>>> chant.upper()
'WE ARE THE BEARS!'

>>> chant.lower()
'we are the bears!'

>>> chant.replace('e', '0')
'Wo aro tho Boars!’

>>> chant
'We are the Bears!'

Splitting a String

e The split() method breaks a string into a list of substrings.

>>> name = 'Martin Luther King'

>>> name.split()
227

>>> components = name.split()

>>> components|0]
77?7

e By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

¢ You can specify a different separator:

>>> date = '11/10/2014'
>>> date.split('/')
?7?77?

Splitting a String

e The split() method breaks a string into a list of substrings.

>>> name = 'Martin Luther King'
>>> name.split()

['Martin', 'Luther’, 'King']

>>> components = name.split()
>>> components|0]

'‘Martin'

e By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

¢ You can specify a different separator:
>>> date = '11/10/2014'
>>> date.split('/")
['11',"10', '2014"]

Discovering What An Object Can Do

« Use the documentation for the Python Standard Library:
docs.python.org/3/library

@ @ @ The Python Standard Library - x Dan
& C' @ Python Software Foundation [US] https://docs.python.org/3/library/index.html w OB 8 & [= v
@ Python » 3.6.0 &) Documentation » Go | | previous | next | modules | index

The Python Standard Library

Previous topic
10. Full Grammar

specification While The Python Language Reference describes the exact syntax and semantics of the

Python language, this library reference manual describes the standard library that is

Next topic distributed with Python. It also describes some of the optional components that are
1. Introduction commonly included in Python distributions.

This Page Python’s standard library is very extensive, offering a wide range of facilities as indicated by

ReporbalElg the long table of contents listed below. The library contains built-in modules (written in C)

ShovSoutes that provide access to system functionality such as file 1/O that would otherwise be

inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python
programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library
and often also include many additional components. For Unix-like operating systems Python
is normally provided as a collection of packages, so it may be necessary to use the
packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand
components (from individual programs and modules to packages and entire application
development frameworks), available from the Python Package Index.

http://docs.python.org/3/library

Discovering What An Object Can Do (cont)
e Here's the section on the str type (the type of string objects):

@ 4. Built-in Types — Python 3.0 Dan
S C' | @ Python Software Foundation [US] https://docs.python.org/3/library/stdtypes.htmizhi.. ¢ O B &8 @ M2

class str(object=")

class str(object=b", encoding="utf-8', errors='strict))
Return a string version of object. If object is not provided, returns the empty string.
Otherwise, the behavior of str() depends on whether encoding or errors is given, as
follows.

If neither encoding nor errors is given, str(object) returns object. str (), which
is the “informal” or nicely printable string representation of object. For string objects,
this is the string itself. If object does not have a _ str () method, then str() falls
back to returning repr(object).

If at leact ane of encndina ar errors is aiven nhiect should he a hutes-like nhiect (e a

e Scrolling down shows us the available methods:

str. capitalize()
Return a copy of the string with its first character capitalized
and the rest lowercased.

str. casefold()

Return a casefolded copy of the string. Casefolded strings
may be used for caseless matching

Discovering What An Object Can Do (cont)

e Scrolling down, we can find info. about a method called strip():

str.strip([chars]) 1

Return a copy of the string with the leading and trailing characters removed. The chars
argument is a string specifying the set of characters to be removed. If omitted or None,
the chars argument defaults to removing whitespace. The chars argument is not a prefix
or suffix; rather, all combinations of its values are stripped:

>>> ! spacious ' BEEip()
'spacious’

>>> 'www.example.com'.strip('cmowz. ')
'example'

What is the output of this program?

s ="' programming
s = s.strip()

s.upper()
s = s.split('r')
print(s)

p', 'og’, 'amming]
'p', 'og’, 'amming']

' P, 'OG, 'AMMING]
'P', 'OG', 'AMMING']

none of the above

oY aw»

What is the output of this program?
s="' programming
s =s.strip() # s = 'programming’
s.upper() # 'PROGRAMMING' (no change to s!)
s =s.split('r') #s=[p', 'og’, 'amming’]

print(s)
A. " p','og', 'amming ']
B. 'p', 'og’, '"amming']
C. ' P, 'OG, 'AMMING 1]
D. 'P', 'OG', 'AMMING']
E. none of the above

