
Lecture 14
MATLAB I: Welcome to Matlab!

(Programs and Functions)

1

MATLAB Resources

•https://www.mathworks.com
•Excellent Documentation
• Intro Videos

•We will be using version MATLAB R2018A
•Free academic license
https://www.brown.edu/information-technology/software/catalog/matlab

• Matlab primer located on course website
• Can download on department machine using command
cs4_matlab

2

https://www.brown.edu/information-technology/software/catalog/matlab

Command Window
• The command window at the bottom of the
interface allows you to interact with MATLAB:
you can define variables, call functions, and so
much more!

• Similar to using the Python shell

3

Workspaces

•Variables defined in the command window are
said to be stored in the ‘Global Workspace’.

•whos displays dimensions, amount of storage
and class of variables in workspace, e.g.
>> whos
 Name Size Bytes Class
 myPi 1x1 8 double
 name 1x11 22 char
 b 1x1 1 logical
Can also use Workspace Window

4

Workspaces

• If you’ve forgotten a variable name, you
can use whos or the Workspace Window
(located all the way to the right) to find it

•The Workspace Window provides the
ability to interactively examine and
change variable values

•When a function in MATLAB executes, it
gets its own Workspace. This is done to
avoid clashes with variables that you have
already defined.

5

Housekeeping

◻ clear x deletes variable x (and frees up storage)
◻ clear all deletes all variable in workspace

..

6

Fundamental MATLAB Classes

7

Working with Classes

class(a) returns the class name of variable a
>> class(a)
ans = double

classname(value) returns a value of class classname
>> class(logical(0))
ans = logical

8

Mixing Types

•What happens when we mix variable types in an arithmetic
expression?

>> class(myPi + b) % double + logical
ans = double
>> class(‘Walt Disney’ + 1) % char + double
ans = double
>> class(‘Walt Disney’ + true) % char + logical
ans = double

•Three most common classes promote to double

9

Additional Numeric Classes

• Integers
• int8, int16, int32, int64 (signed)
•uint8, uint16, uint32, uint64 (unsigned)

• Unsigned means that the integer will only be positive
•Number in name represents number of bits required for
storage

•Values in {0,1,…, 2^N} or {-2^(N-1), …, 2^(N-1)-1}
•Use when more compact or accurate than double

10

Additional Numeric Classes

•Real numbers: single
•More compact (4 bytes), less accurate than double
•Follows IEEE 754 standard for single precision floating
point numbers (1 bit for sign, 23 for fraction, 8 bits for
exponent)

11

Additional Numeric Classes

◻ Complex Numbers: complex
⬜ stores real and imaginary part as double
>> z=2+3*sqrt(-1)
z = 2.0000 + 3.0000i
>> z*conj(z)
ans = 13

12

Mixing Integers and Doubles

•Arithmetic results from mixing integer classes with class
double retain integer type – this can cause all sorts of
problems

•Fractional parts are rounded!
•Results that are too large are converted to class intmax
•Results that are too small are converted to class intmin
•For uint8, intmax is 2^8-1=255 and intmin is zero.

>> uint8(16) + 1000.67
ans = 255
>> class(ans)
ans = uint8

13

Programs

14

Example Script (triAreaScript.m)

15

Scripts
•MATLAB allows one to store a sequence of
commands (programs!) as a script or a function.

•You can edit them in the editor window
•Scripts

•Behave exactly as if you ‘cut and paste’ from them
to the command line. They share the Global
Workspace and do not allow one to pass any
arguments to them

•This is both very useful and very inconvenient
•It allows one to ‘work incrementally’ on a solution,
with full access to the scripts variables

•However, scripts can also be very dangerous due to
the fact they all share the same Workspace

16

FUNCTIONS

17

Example Function (triArea.m)

18

• Functions are denoted with the keyword
“function” and are closed with the keyword
“end”

Functions (file based!)

•Functions
•Allow you to pass arguments to them and have a private
(local) Workspace

•Functions execute as if they have their own copy of
MATLAB with its behavior (value it returns) determined by
the values of the arguments passed to it

• Functions, unlike scripts, allow one to easily build
complex programs from smaller programs

•We ♥ functions
•NOTE: If a line does not end in a semicolon, the output of
that line will be printed in the console window

• Useful for debugging, but it can cause too much
output to appear

19

Example Function (triArea.m)

function a = triAreaFunc(b,h)

% Returns the area of a triangle

% with base b and height h.

a = 0.5*(b * h);

end

The first line in a function specifies the value(s) it will return
(it’s outputs), the function name, and it’s arguments (it’s
inputs)

20

Example Function (triArea.m)

21

• Note: We store the return value in the variable
to which we assign the function - this is
important!

Functions are Flexible

Arguments mean we can apply the function to all sorts triangles
a1 = triAreaFunc(1,5)

a1 =

 2.5000

a2 = triAreaFunc(2,10)

a2 =

 10

a3 = triAreaFunc(3,6)

a3 =

 9

22

Remarks

function a = triAreaFunc(b,h)

% Returns the area of a triangle

% with base b and height h.

a = 0.5*(b * h);

end

The comments (lines that start with %) immediately
after the first line are displayed when help or doc is
invoked on the function name
>> help triArea
 Returns the area of a triangle with
 base b and height h.

23

Writing Function Headers

function a = triAreaFunc(b,h)

% Returns the area of a triangle

% with base b and height h.

a = 0.5*(b * h);

end

In CS4 you must use function headers of this form:
1) function statement must be on first line
2) Following comment lines must concisely describe

(declare) what the function does (and NOT how it does
it).

24

Returning more than one value

◻Just add variables to the list of values to be returned
◻They will be returned in the order given

function [r1, r2] = myQuadRoots(a,b,c)
% Returns the roots r1 and r2 of the
% quadratic equation defined by ax^2+bx+c.
% Assumes a is nonzero.

25

Returning two values

function [r1, r2] = myQuadRoots(a,b,c)

% Returns the roots r1 and r2 of the
quadratic

% equation defined by ax^2+bx+c.
% Assumes a is nonzero.

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;

26

Returning two values

Let’s find the roots of x^2+3x+2.

>> [x1, x2] = myQuadRoots(1, 3, 2)
x1 =
 -1
x2 =
 -2

Check:
x^2+3x+2 = (x+1)(x+2)

27

iClicker Question 3.1

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x1, x2] = myQuadRoots(1,0,-9)
What are the values x1 and x2?
A) undefined B) x1 = -3, x2 = 3
C) x1 = 3, x2 = -3 D) I don’t know

28

iClicker Question 3.1

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x1, x2] = myQuadRoots(1,0,-9)
What are the values x1 and x2?
A) undefined B) x1 = -3, x2 = 3
C) x1 = 3, x2 = -3 D) I don’t know

29

iClicker Question 3.2

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x2, x1] = myQuadRoots(1,0,-9)
What are the values x1 and x2?
A) undefined B) x1 = -3, x2 = 3
C) x1 = 3, x2 = -3 D) I don’t know

30

iClicker Question 3.2

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x2, x1] = myQuadRoots(1,0,-9)
What are the values x1 and x2?
A) undefined B) x1 = -3, x2 = 3
C) x1 = 3, x2 = -3 D) I don’t know

31

iClicker Question 3.3

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x1, x2] = myQuadRoots(1,0,-9)
What is the value of disc?
A) disc = 36 B) disc = -9
C) disc = 9 D) undefined

32

iClicker Question 3.3

function [r1, r2] = myQuadRoots(a,b,c)

disc = b^2-4*a*c;
r1 = (-b+sqrt(disc))/2*a;
r2 = (-b-sqrt(disc))/2*a;
After executing
>> clear all
>> [x1, x2] = myQuadRoots(1,0,-9)
What is the value of disc?
A) disc = 36 B) disc = -9
C) disc = 9 D) undefined

33

iClicker Question 3.4

% triAreaScript.m – Computes triangle area

b = 5;
h = 3;
a = 0.5*(b * h);
After executing
>> clear all
>> triAreaScript
What are the value of b,h and a?
A) undefined B) b,h undefined, a = 7.5
C) b=5, h=3, a=7.5 D) I don’t know

34

iClicker Question 3.4

% triAreaScript.m – Computes triangle area

b = 5;
h = 3;
a = 0.5*(b * h);
After executing
>> clear all
>> triAreaScript
What are the value of b,h and a?
A) undefined B) b,h undefined, a = 7.5
C) b=5, h=3, a=7.5 D) I don’t know

35

Variables in Functions

•Functions usually can only “see” values passed to them
•Therefore it is usually enough to look at function’s header to
understand what it does

•This also limits unintended consequences and leads to
clearer code

36

Variables in functions are local

function a = triAreaBad(h)

% Returns the area of a triangle with
% base b and height h.
a = 0.5*(b .* h);

>> b=10; triAreaBad(10)

Undefined function or variable 'b'.

Error in triAreaBad (line 4)

a = 0.5*(b .* h);

37

Example: Binomial.m

38

Naming Scripts and Functions

◻ Same as for variables
◻ Use specific names (for example, findRoots instead of
doCalc)

◻ Matlab is case-sensitive: result and RESULT are
different, avoid using both!

◻ Do not use names of built-in functions

39

Search Order

•During evaluation of a variable, script or function, MATLAB
first looks in the current Workspace and current directory
and then searches path directories in order

>> path
/Users/Dan/Documents/MATLAB
/Applications/MATLAB_R2014b.app/toolbox/matlab/demos
/Applications/MATLAB_R2014b.app/toolbox/matlab/graph

2d
/Applications/MATLAB_R2014b.app/toolbox/matlab/graph

3d
/Applications/MATLAB_R2014b.app/toolbox/matlab/graph

ics
…

40

Redefinition

◻ Incorrect current folder and accidental redefinition of
built-ins is a very common mistake
◻Use of the which command can help
>> which pi
built-in
(/Applications/MATLAB_R2014b.app/toolbox/matl
ab/elmat/pi)

41

Redefinition

>> cos = 1;
>> cos(.1) % oops
Subscript indices must either be real positive
integers or logicals.
>> cos(1) % eek!
ans = 1

pi = 3; % iffy, but ok, if you don’t use pi as pi

i = 101; % ok, if you don’t use i as sqrt(-1)

42

Anonymous functions

◻Sometimes the same calculation is used in many places
inside a function

A1 = b*h/2;

A2 = b1*h2/2;

A2 = b1*h3/2;

A4 = b*h0/2;

43

Anonymous Functions

◻Matlab allows you to define a function using a single
expression inline, e.g.,

areaT = @(b,h) b*h/2

A1 = areaT(b,h);

A2 = areaT(b1,h2);

A2 = areaT(b1,h3);

A4 = areaT(b,h0);

44

Passing, Redefining Functions

The @ operator is also used to refer to a function’s memory
location, use it when passing functions and when reassigning
functions, e.g.

someFun = @otherFun

higherOrderFun(3, @sin)

45

