
Lecture 15
MATLAB II: Conditional
Statements and Arrays

1

Conditional Statements

2

•The boolean operators in MATLAB are:
> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
~= inequality

•The resulting type is logical 1 for true or 0 for false
•The logical operators are:

|| or for scalars
&& and for scalars
~ not

•Also, xor function which returns logical true if only one of the
arguments is true

3

•The if statement is used to determine whether or not a
statement or group of statements is to be executed
•General form:

if condition
 action
end

• the condition is any boolean expression
• the action is any number of valid statements (including, possibly,
just one)
• if the condition is true, the action is executed – otherwise, it is
skipped entirely

4

•The if-else statement chooses between two actions
•General form:

if condition
 action1
else
 action2
end

•One and only one action is executed; which one depends
on the value of the condition (action1 if it is logical true or
action2 if it is false)

5

if cond1
 action1
else
 if cond2
 action2
 else
 if cond3
 % cond1 and cond2 False, cond3 True
 action3
 …
 else
 actionN
 end
 end
end

6

if-elseif statements are better :-|
MATLAB has an elseif clause which shortens nested if-else

if cond1
 action1
elseif cond2
 action2
elseif cond3
 % cond1 and cond2 False, cond3 True
 action3
…
else
 % if no other conditions met
 default_action
end

7

switch statements are (sometimes) best :-)
MATLAB also has a switch statement!

switch var
 case case1 % var == case1
 action1;
 case case2 % var == case2
 action2;
 case {case3,case4}
 % var == case3 || var == case4
 action3;
 …
 otherwise
 % var doesn’t match any case
 default_action;
end

8

9

Example: branching.m

iClicker Question: What is the value of x?

x = 3; a=2; b=7;

if x>b
 x = b;
elseif x<a
 x = a^2;
else
 x = x^3;
end

A) x = 3 B) x = 27
C) x = 9 D) undefined

10

iClicker Question: What is the value of x?

x = 3; a=2; b=7;

if x>b
 x = b;
elseif x<a
 x = a^2;
else
 x = x^3;
end

A) x = 3 B) x = 27
C) x = 9 D) undefined

11

Common Pitfalls

•Using = instead of == for equality in conditions
•Putting a space in the keyword elseif
•Not using quotes when comparing a char variable to
character,

letter == y
instead of

letter == 'y'
•Writing conditions that are more complicated than necessary,
such as

if (x < 5) == 1 instead of just if (x < 5)

12

Example: myQuadMin.m

13

Example: myQuadMin.m

14

Programming Style Guidelines

•Use indentation to show the structure of a script or function.
In particular, the actions in an if statement should be
indented.
•When the else clause isn’t needed, use an if statement
rather than an if-else statement

15

Arrays

•Array_Basics.mlx

17

•An array is used to store sets of values of same
type; each value is stored in an element of the
array
•A matrix is a two-dimensional array
•A vector is a one-dimensional array

•Other programming languages mostly work with
numbers one at a time, MATLAB® was designed
from the ground up to operate primarily on whole
matrices and arrays
•Most MATLAB classes come with
multidimensional array support

18

1-Dimensional Arrays (Vectors)
•Point in R^n, Polynomial Coefficients
•Time Series – temp(t), annual snow falls, music, v(t),
price(t)
•Strings, texts, webpages, DNA sequences

2-Dimensional Arrays (Matrices)
•System of equations, Linear Transforms, Covariance
• Images (m by n black and white image)
•Digital elevation data, Collections of points
•Stock market prices

3-Dimensional Arrays (3-D Matrix)
•Black and White Video
•Color Images

19

•A matrix (2-D array) looks like a table; it has both rows and
columns
•A matrix with m rows and n columns is said to be “m by n”.
Write this “m x n”. Its first dimension is m; the second is n.

•This is a 2 x 3 matrix:

•The first row of is [9 6 3], the second row is [5 7 2]
•The first column is [9 5]’, the last column is [3 2]’

20

◻ A vector (1-D array) is a special case of a matrix in which
one of the dimensions is 1
⬜ a row vector with n elements is 1 x n, e.g. 1 x 4:

⬜ a column vector with m elements is m x 1, e.g. 3 x 1:

◻ A scalar is an even more special case ; it is 1 x 1, or in
other words, just a single value

21

◻ Direct method: Use square brackets, with elements separated
by either commas or spaces

>> v = [1 2 3 4]
v = 1 2 3 4

>> v = [1, 2, 3, 4]
v = 1 2 3 4

>> x = [-10 v]
x = -10 1 2 3 4

22

The colon operator creates evenly spaced row vectors;
start:step:max

produces a vector whose first element is start and whose subsequent
elements are step apart, the last element is <= max.

>> 5:3:14
ans = [5 8 11 14]
>> 2:4 % default step size is 1
ans = [2 3 4]
>> 4:-1:1 % can go in reverse
ans = [4 3 2 1]
>> 0:.3:1 % fractional step sizes OK
ans = [0 .3 .6 .9]

23

linspace(a,b,n) creates a linearly (evenly) spaced row
vector with n values starting at a and ending at b.

>> linspace(4,7,3)
ans = [4 5.5 7]

If n is omitted, the default is 100 points

24

•Use first:step:max when you need to specify the first
element and the step size. Last element returned is <= max.
•Use linspace(a, b, n) when you need to specify the
first element a and last element b. Step size calculated base
on number points n.

25

•Vectors can be created by joining together existing vectors, or
adding elements to existing vectors
•This is called concatenation
•For example:
>> v = 2:5;
>> x = [33 11 2];

>> w = [v x] % concatenate v and x
w = 2 3 4 5 33 11 2

>> v = [v 44] % append 44 to v
v = 2 3 4 5 44

26

•The elements in a vector are indexed sequentially; an
example index is shown above the elements here:

•Refer to an element using its index or subscript in
parentheses,

vec(4) is the 4th element of a vector
•Can also refer to a subset of a vector by using an index vector
which is a vector of indices e.g.

vec([2 5]) refers to the 2nd and 5th elements of vec;
vec([1:4]) refers to the first 4 elements

27

Elements in a vector can be changed via the assignment
>> vec(3) = 11;
>> vec(1:4) = [3 6 3 1];
>> vec(5:10) = 7;

Assignment to elements that do not yet exist is allowed (but
not good style); if there is a gap between the end of the vector
and the new specified element(s), zeros are filled in, e.g.

>> vec = [3 9];
>> vec(4:6) = [33 2 7]
vec =
 3 9 0 33 2 7

28

A column vector is an m x 1 vector; can create in square
brackets with semicolons e.g.
>> x=[4; 7; 2]

x =

 4

 7

 2

•The colon operator only creates row vectors, but you can
transpose row vectors to get a column vectors (and vice-versa)
using the transpose operator ’
>> x=[4 7 2]'

x =

 4

 7

 2

29

◻ Separate values within rows with blanks or commas, and
separate the rows with semicolons

◻ Can use any method to get values in each row (any
method to create a row vector, including colon operator)

>> mat = [1:3; 6 11 -2]
mat =
 1 2 3
 6 11 -2

◻ There must ALWAYS be the same number of
values in every row!!

30

•There are many built-in functions to create matrices
• rand(n) creates an nxn matrix of uniform random numbers

(real)
• rand(m,n) create an mxn matrix of uniform random numbers

(real)
• randi([range],m,n) creates an mxn matrix of random integers in

the specified range
• zeros(n) creates an nxn matrix of all zeros
• zeros(m,n) creates an mxn matrix of all zeros
• ones(n) creates an nxn matrix of all ones
• ones(m,n) creates an mxn matrix of all ones
Note: there is no twos function – or thirteens – just zeros and

ones!

31

•To refer to an element in a matrix, you use the matrix variable
name followed by the index of the row, and then the index of the
column, in parentheses

>> mat = [1:3; 6 11 -2]
mat =
 1 2 3
 6 11 -2
>> mat(2,1)
ans =
 6

•ALWAYS refer to the row first, column second

32

•There are several functions to determine the dimensions
of a vector or matrix:

• length(vec) returns the # of elements in a vector
• length(mat) returns the largest dimension (row or column) for a

matrix - :o(DO NOT USE length on arrays that are not vectors!
• size returns the # elements in each dimension of an array
• Important: can capture multiple values in an assignment

statement
[r c] = size(mat)

• numel returns the total # of elements in an array

•Very important to be general in programming: do not assume fixed
dimensions of a vector or matrix – use numel or size to find out or
avoid knowing via use of end and : inside the paranthesis!!

33

Many functions change the dimensions of a matrix:
◻ reshape changes dimensions of a matrix to any

matrix with the same number of elements, linear
order does not change
◻rot90 rotates a matrix 90 degrees

counter-clockwise
◻fliplr flips columns of a matrix from left to right
◻flipud flips rows of a matrix up to down
◻repmat replicates a matrix; creates m x n copies of

the matrix

34

•See Array_Indexing.mlx

35

• Isolated colon : refers to entire dimension
mat(i,:) – the ith row of mat
this is equivalent to mat(i, 1:size(mat,2))

• To refer to the last row or column use end
mat(end,k) - the kth value in the last row

• Value of end and isolated colon : is determined by context within
subscript.
mat(end, end) – value of mat(size(mat,1), size(mat,2))

• Use of index vectors is also allowed
m([2 4], [1 5]) returns the matrix
[m(2,1) m(2,5) ; m(4,1) m(4,5)]

36

37

The following works on all arrays (1-D, 2-D, etc.)
◻A(:) forces A into a column vector containing all elements of A
◻A(k) is the kth element of A(:)
◻A(M) is a array with the same dimensions as M. For matrix M, the

result would have elements A(M(i,j))
a =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

>> a([1 2; 3 4])

ans =

 16 5

 9 4

38

◻ An empty vector is a vector with no elements; an empty
vector can be created using square brackets with nothing
inside []

◻ Delete element(s) from a vector by assigning []
>> vec(1)=[]; % remove first element
>> vec[end-2:end]=[]; % remove last 3 elements

◻ Delete row(s) or column(s) from a matrix by assigning []
>> mat([1 end],:)=[]; % remove first and last
row

Note: cannot delete an individual element from a matrix. Can you
see why?

39

40

2012 Honda Pilot
90,000 miles
$0 / month

2019 Jeep Wrangler
0 miles

$800 / month

2015 Jeep Wrangler
50,000 miles
$500 / month

2019 Honda Ridgeline
0 miles

$800 / month

A B C

D E

2019 Chevy Silverado
0 miles

$800 / month

