Lecture 15

MATLAB II: Conditional
Statements and Arrays

m\

. &

-
“I

Conditional Statements

Recall boolean Expressions

*The boolean operators in MATLAB are:

> greater than

< less than

>= greater than or equals
<= less than or equals

== equality

~= inequality

* The resulting type is logical 1 for true or o for false

* The logical operators are:
|| or for scalars
&& and for scalars
~ not

* Also, xor function which returns logical true if only one of the
arguments is true

If Statement

*The if statement is used to determine whether or not a
statement or group of statements is to be executed

e General form:
if condition
action
end

*the condition is any boolean expression

*the action is any number of valid statements (including, possibly,
just one)

*if the condition is true, the action is executed - otherwise, it is
skipped entirely

If-else Statements

* The if-else statement chooses between two actions

* General form:
1f condition
actionl
else
action?
end
*One and only one action is executed; which one depends

on the value of the condition (action1 if it is logical true or
action2 if it is false)

Nested if-else statements are ugly :-(

if condl
actionl
else
if cond2
action2
else
if cond3

% condl and cond2 False, cond3 True
action3

else
actionN
end
end
end

if-elseif statements are better :-|
MATLAB has an elseif clause which shortens nested if-else

if condl
actionl

elseif cond2
action2

elseif cond3

% condl and cond2 False, cond3 True
actions

else
% 1f no other conditions met
default action

end

switch statements are (sometimes) best :-)
MATLAB also has a switch statement!

switch var
case casel % var == casel
actionl;
case caseZ2 $ var == case?2
action2;
case {case3,case4}
5

% var == case3 || var == case4
action3;

otherwise
% var doesn’t match any case
default action;

end

%%
X==5;
%%
% Implements x = abs(x);
if x<@
X = =X;
end
%%
% Forces x into the interval
if x>b
X = b3
elseif x<a

X =sas
gnd

%%
% Forces x into the interval [a,b]l, and changes it's value to x"2.
X =23 a=3; b=7;
if x>b
X:="ph%23
elseif x<a
X = a*2;
else
X = X°2;
end
x
% Is there a better way?
%%
g = 33 x=25; ‘thresh § .1
% One step of Heron's squareroot
if abs(g”~2-x)>thresh

nd

iIClicker Question

x = 3; a=2; b=7;
if x>b
X = b;

elseif x<a

x = a’2;
else

x = x 3;
end
A)x=3
C)x=9

: What is the value of x?

B) x = 27
D) undefined

10

iIClicker Question

x = 3; a=2; b=7;
if x>b
X = b;

elseif x<a

x = a’2;
else

x = x 3;
end
A)x=3
C)x=9

: What is the value of x?

B) x = 27
D) undefined

11

Common Pitfalls

«Using = instead of == for equality in conditions
* Putting a space in the keyword elseif

*Not using quotes when comparing a char variable to
character,

letter ==y
instead of
letter =="y"

* Writing conditions that are more complicated than necessary,
such as

if (x < 5) == instead of just if (x < 5H)

12

- function xmin = myQuadMin(a,b,¢
-% xmin = quadMinizer(a,b,c,L,R)

% Returns x in the interval [L,R] that minimizes the quadratic function
% ax”2+bx+c. Assumes a>=0, and L<R.

(K

if a>@ % Parabola

X0 = -b/(2%a); % argmin ax"2+bx+c for a>0

if R<x0
% [L,R] is to left of x0
xmin = R;

elseif L<=x0 && x0@<=R
% [L,R] contains x@
xmin = x0;

else
% [L,R] is to right of x@
xmin =-L3

end

elseif a==0@0 % Straight line

if b>0
% bx+c is sloping up
xmin = L;

elseif b<@
% bx+c is sloping down
xmin = R;

else
% bx+c is flat
xmin = 'Ls

end

- end|

Programming Style Guidelines

* Use indentation to show the structure of a script or function.

In particular, the actions in an if statement should be
indented.

*\When the else clause isn’t needed, use an if statement
rather than an if-else statement

15

Arrays

Arrays and Matrices

*Array_Basics.mix

Arrays and Matrices

*An array is used to store sets of values of same
type; each value is stored in an element of the
array

A matrix is a two-dimensional array
*A vector is a one-dimensional array

*Other programming languages mostly work with
numbers one at a time, MATLAB® was designed
from the ground up to operate primarily on whole
matrices and arrays

‘Most MATLAB classes come with
multidimensional array support

Examples

1-Dimensional Arrays (Vectors)

*Point in RAn, Polynomial Coefficients

* Time Series — temp(t), annual snow falls, music, v(t),

price(t)

« Strings, texts, webpages, DNA sequences
2-Dimensional Arrays (Matrices)

« System of equations, Linear Transforms, Covariance

*Images (m by n black and white image)

*Digital elevation data, Collections of points

« Stock market prices

3-Dimensional Arrays (3-D Matrix)
Black and White Video
 Color Images

g

Matrices

* A matrix (2-D array) looks like a table; it has both rows and
columns

. . . o « »
* A matrix with m rows and n columns is said to be “m by n”.
Write this “m x n”. Its first dimension is m; the second is n.

*This is a 2 x 3 matrix:
9 6 3

5 7 2

* The first row of'is [9 6 3], the second row is [5 7 2]
* The first column is [9 5], the last column is [3 2]’

20

Vectors and Scalars

0 A vector (1-D array) is a special case of a matrix in which
one of the dimensions is 1

[0 arow vector with n elementsis 7 xn, e.g. 1 x 4.

5 88 3 11

[0 a column vector with m elementsismx 7, e.g. 3 x 1:
3

7

4

0 Ascalar is an even more special case ; itis 7 x 7, or in
other words, just a single value

5

Creating Row Vectors

o Direct method: Use square brackets, with elements separated
by either commas or spaces

> v =1[1 2 3 4]
v=1 2 3 4

> v = [1, 2, 3, 4]
v=1 2 3 4

>> x = [-10 v]
x=-10 1 2 3 4

22

Colon Operator

The colon operator creates evenly spaced row vectors;
start:step:max

produces a vector whose first element is start and whose subsequent
elements are step apart, the last element is <= max.

>> 5:3:14

ans = [5 8 11 14]

>> 2:4 % default step size is 1

ans = [2 3 4]

>> 4:-1:1 % can go in reverse

ans = [4 3 2 1]

>> 0:.3:1 % fractional step sizes OK
ans = [0 .3 .6 .9]

23

linspace

linspace(a,b,n) creates a linearly (evenly) spaced row
vector with n values starting at a and ending at b.

>> linspace (4,7, 3)
ans = [4 5.5 7]

If n is omitted, the default is 100 points

24

colon vs. linspace

*Use first:step:max when you need to specify the first
element and the step size. Last element returned is <= max.

*Use linspace(a, b, n) when you need to specify the
first element a and last element b. Step size calculated base
on number points n.

25

Concatenation

*Vectors can be created by joining together existing vectors, or
adding elements to existing vectors

* This is called concatenation

* For example:
>> v = 2:5;
>> x = [33 11 2];

>> w [v x] % concatenate v and x
w =2 3 4 5 33 11 2

>> v = [v 44] % append 44 to v
v = 2 3 4 5 44

26

Referring to Elements

*The elements in a vector are indexed sequentially; an
example index is shown above the elements here:

1 2 3 4 5
5 33 11 -4 2

* Refer to an element using its index or subscript in
parentheses,

vec(y) is the 4" element of a vector

*Can also refer to a subset of a vector by using an index vector
which is a vector of indices e.g.
vec([2 5]) refers to the 2"! and 5™ elements of vec;
vec([1:4]) refers to the first 4 elements

27

Modifying Vectors

Elements in a vector can be changed via the assignment
>> vec(3) = 11;
>> vec(l:4) = [3 6 3 1];
>> vec(5:10) = 7;

Assignment to elements that do not yet exist is allowed (but
not good style); if there is a gap between the end of the vector
and the new specified element(s), zeros are filled in, e.g.
>> vec = [3 9];
>> vec(4:6) = [33 2 7]
vec =
3 9 0 33 2 7

28

Column Vectors

A column vector is an m x 1 vector; can create in square
brackets with semicolons e.g.

>> x=[4; 7; 2]

*The colon operator only creates row vectors, but you can

transpose row vectors to get a column vectors (and vice-versa)
using the transpose operator’
>> x=[4 7 2]

X =

20

Creating Matrix Variables

0 Separate values within rows with blanks or commas, and
separate the rows with semicolons

o Can use any method to get values in each row (any
method to create a row vector, including colon operator)

>> mat = [1:3; 6 11 -2]
mat =

1 2 3

6 11 -2

o There must ALWAYS be the same number of
values in every row!!

30

Functions that create matrices

* There are many built-in functions to create matrices
e rand(n) creates an nxn matrix of uniform random numbers

(real)

e rand(m,n) create an mxn matrix of uniform random numbers

(real)

e randi([range],m,n) creates an mxn matrix of random integers in
the specified range

e zeros(n) creates an nxn matrix of all zeros

e zeros(m,n) creates an mxn matrix of all zeros
e ones(n) creates an nxn matrix of all ones

* ones(m,n) creates an mxn matrix of all ones

Note: there is no twos function - or thirteens - just zeros and
ones!

31

Matrix Elements

*To refer to an element in a matrix, you use the matrix variable
name followed by the index of the row, and then the index of the
column, in parentheses

>> mat = [1:3; 6 11 -2]

mat =

1 2 3

6 1 -2
>> mat(2,1)
ans =

6

* ALWAYS refer to the row first, column second

32

Dimensions

*There are several functions to determine the dimensions
of a vector or matrix:
e length(vec) returns the # of elements in a vector

e length(mat) returns the largest dimension (row or column) for a
matrix - :0(DO NOT USE length on arrays that are not vectors!

*size returns the # elements in each dimension of an array

 Important: can capture multiple values in an assignment
statement
[r c] = size(mat)
e numel returns the total # of elements in an array

* Very important to be general in programming: do not assume fixed
dimensions of a vector or matrix — use numel or size to find out or
avoid knowing via use of end and : inside the paranthesis!!

33

Functions that change dimensions

Many functions change the dimensions of a matrix:

0 reshape changes dimensions of a matrix to any
matrix with the same number of elements, linear
order does not change

orot90 rotates a matrix 90 degrees
counter-clockwise

ofliplr flips columns of a matrix from left to right
Oflipud flips rows of a matrix up to down

aorepmat replicates a matrix; creates m x n copies of
the matrix

34

Advanced Indexing

*See Array_Indexing.mlx

35

Advanced Indexing

* |solated colon : refers to entire dimension

mat (i, :) -the ith row of mat

this is equivalent to mat (i, 1l:size (mat,2))
* To refer to the last row or column use end

mat (end, k) - the kth value in the last row

* Value of end and isolated colon : is determined by context within
subscript.

mat (end, end) —value of mat (size (mat,1l), size (mat,?2))

» Use of index vectors is also allowed
m([2 4], [1 5]) returns the matrix
[m(2,1) m(2,5) ; m(4,1) m(4,5)]

36

rowy 2

rowy 3

rowy 4

Advanced Indexing

- (] -t
[= c
E E E
= = =
] o =
O O o
16 2 3 13
5 11 10 —
9 7 & 2
4 14 15 1 —

11 8
7 12
14 1

A([2 3 4],

[1 2 4])

Linear Array Indexing

The following works on all arrays (1-D, 2-D, etc.)
OA (:) forces A into a column vector containing all elements of A
DA (k) is the kth element of 2 (:)

OA (M) is a array with the same dimensions as M. For matrix M, the
result would have elements A (M (1, J))

a =

16 2 3 13
5 11 10 8
9 7 6 12

14 15 1

>> a([l 2; 3 4])

ans =

16

38

Removing Elements

An empty vector is a vector with no elements; an em%ty

vector can be created using square brackets with nothing
inside [|

Delete element(s) from a vector by assigning]
>> vec(l)=[]; % remove first element
>> vec[end-2:end]=[]; % remove last 3 elements

Delete row(s) or column(s) from a matrix by assigning]

>> mat([1l end],:)=[]; % remove first and last
row

Note: cannot delete an individual element from a matrix. Can you
see why?

39

iClicker Question: Which vehicle is for Prof. G?

2012 Honda Pilot 2019 Chevy Silverado 2015 Jeep Wrangler

A 90,000 miles 0 miles 50,000 miles
$0 / month $800 / month $500 / month

2019 Honda Ridgeline

D 0 miles E 0 miles 10

2019 Jeep Wrangler

$800 / month $800 / month

