
Lecture 15
MATLAB II: Conditional 
Statements and Arrays
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Conditional Statements
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•The boolean operators in MATLAB are:
> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
~= inequality

•The resulting type is logical 1 for true or 0 for false
•The logical operators are:

|| or for scalars
&& and for scalars
~ not

•Also, xor function which returns logical true if only one of the 
arguments is true
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•The if statement is used to determine whether or not a 
statement or group of statements is to be executed
•General form:

if condition
    action
end

• the condition is any boolean expression
• the action is any number of valid statements (including, possibly, 
just one)
• if the condition is true, the action is executed – otherwise, it is 
skipped entirely
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•The if-else statement chooses between two actions
•General form:

if condition
    action1
else
    action2
end

•One and only one action is executed; which one depends 
on the value of the condition (action1 if it is logical true or 
action2 if it is false)
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if cond1
    action1
else
    if cond2
        action2
    else
        if cond3
            % cond1 and cond2 False, cond3 True
            action3
            …
        else
            actionN
        end
    end
end
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if-elseif statements are better :-|
MATLAB has an elseif clause which shortens nested if-else

if cond1
    action1
elseif cond2
    action2
elseif cond3
    % cond1 and cond2 False, cond3 True
    action3
…
else
    % if no other conditions met
    default_action
end
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switch statements are (sometimes) best :-)
MATLAB also has a switch statement!

switch var
    case case1 % var == case1
        action1;
    case case2 % var == case2
        action2;
    case {case3,case4}
        % var == case3 || var == case4
        action3;
    …
    otherwise
        % var doesn’t match any case
        default_action;
end
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Example: branching.m



iClicker Question:  What is the value of x?

x = 3; a=2; b=7;

if x>b
    x = b;
elseif x<a
    x = a^2;
else
    x = x^3;
end

A) x = 3                                B) x = 27
C) x = 9                        D) undefined
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Common Pitfalls

•Using = instead of == for equality in conditions
•Putting a space in the keyword elseif
•Not using quotes when comparing a char variable to 
character, 

letter == y
instead of 

letter == 'y'
•Writing conditions that are more complicated than necessary, 
such as 

if (x < 5) == 1  instead of just       if (x < 5)

12



Example: myQuadMin.m
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Example: myQuadMin.m
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Programming Style Guidelines

•Use indentation to show the structure of a script or function.  
In particular, the actions in an if statement should be 
indented.
•When the else clause isn’t needed, use an if statement 
rather than an if-else statement 
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Arrays



•Array_Basics.mlx
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•An array is used to store sets of values of same 
type; each value is stored in an element of the 
array
•A matrix is a two-dimensional array
•A vector is a one-dimensional array

•Other programming languages mostly work with 
numbers one at a time, MATLAB® was designed 
from the ground up to operate primarily on whole 
matrices and arrays
•Most MATLAB classes come with 
multidimensional array support
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1-Dimensional Arrays (Vectors)
•Point in R^n, Polynomial Coefficients
•Time Series – temp(t), annual snow falls, music, v(t), 
price(t)
•Strings, texts, webpages, DNA sequences

2-Dimensional Arrays (Matrices)
•System of equations, Linear Transforms, Covariance
• Images (m by n black and white image)
•Digital elevation data, Collections of points 
•Stock market prices 

3-Dimensional Arrays (3-D Matrix)
•Black and White Video
•Color Images
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•A matrix (2-D array) looks like a table; it has both rows and 
columns
•A matrix with m rows and n columns is said to be “m by n”. 
Write this “m x n”.  Its first dimension is m; the second is n.

•This is a 2 x 3 matrix:

•The first row of is [9 6 3], the second row is [5 7 2]
•The first column is [9 5]’, the last column is [3 2]’
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◻ A vector (1-D array) is a special case of a matrix in which 
one of the dimensions is 1
⬜ a row vector with n elements is 1 x n, e.g. 1 x 4:

⬜ a column vector with m elements is m x 1, e.g. 3 x 1:

◻ A scalar is an even more special case ; it is 1 x 1, or in 
other words, just a single value
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◻ Direct method: Use square brackets, with elements separated 
by either commas or spaces  

>> v = [1  2  3  4]
v = 1  2  3  4  

>> v = [1, 2, 3, 4]
v = 1  2  3  4

>> x = [-10 v]
x = -10  1  2  3  4 
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The colon operator creates evenly spaced row vectors;
start:step:max

produces a vector whose first element is start and whose subsequent 
elements are step apart, the last element is <= max.

>> 5:3:14 
ans = [5 8 11 14] 
>> 2:4 % default step size is 1
ans = [2 3 4]
>> 4:-1:1 % can go in reverse
ans = [4 3 2 1]
>> 0:.3:1 % fractional step sizes OK
ans = [0 .3 .6 .9]
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linspace(a,b,n) creates a linearly (evenly) spaced row 
vector with n values starting at a and ending at b.

>> linspace(4,7,3)
ans =  [4  5.5  7]

If n is omitted, the default is 100 points
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•Use first:step:max when you need to specify the first 
element and the step size.  Last element returned is <= max.
•Use linspace(a, b, n) when you need to specify the 
first element a and last element b.  Step size calculated base 
on number points n.
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•Vectors can be created by joining together existing vectors, or 
adding elements to existing vectors
•This is called concatenation
•For example:
>> v = 2:5;
>> x = [33  11  2];

>> w = [v  x] % concatenate v and x
w = 2     3     4     5    33    11     2

>> v = [v  44] % append 44 to v
v = 2   3   4   5   44
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•The elements in a vector are indexed sequentially; an 
example index is shown above the elements here:

•Refer to an element using its index or subscript in 
parentheses,

vec(4) is the 4th element of a vector
•Can also refer to a subset of a vector by using an index vector 
which is a vector of indices e.g.

vec([2 5]) refers to the 2nd and 5th elements of vec;   
vec([1:4]) refers to the first 4 elements
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Elements in a vector can be changed via the assignment
>> vec(3) = 11;  
>> vec(1:4) = [3 6 3 1];
>> vec(5:10) = 7;

Assignment to elements that do not yet exist is allowed (but 
not good style); if there is a gap between the end of the vector 
and the new specified element(s), zeros are filled in, e.g.

>> vec = [3 9];
>> vec(4:6) = [33 2 7]
vec =
     3     9     0    33     2     7
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A column vector is an m x 1 vector; can create in square 
brackets with semicolons e.g.
>> x=[4; 7; 2]

x =    

 4

 7

 2

•The colon operator only creates row vectors, but you can 
transpose row vectors to get a column vectors (and vice-versa) 
using the transpose operator ’ 
>> x=[4 7 2]'

x =    

 4

 7

 2
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◻ Separate values within rows with blanks or commas, and 
separate the rows with semicolons

◻ Can use any method to get values in each row (any 
method to create a row vector, including colon operator)

>> mat = [1:3;  6 11 -2]
mat =
     1     2     3
     6    11    -2

◻ There must ALWAYS be the same number of 
values in every row!!
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•There are many built-in functions to create matrices
• rand(n) creates an nxn matrix of uniform random numbers 

(real)
• rand(m,n) create an mxn matrix of uniform random numbers 

(real)
• randi([range],m,n) creates an mxn matrix of random integers in 

the specified range
• zeros(n) creates an nxn matrix of all zeros
• zeros(m,n) creates an mxn matrix of all zeros
• ones(n) creates an nxn matrix of all ones
• ones(m,n) creates an mxn matrix of all ones
Note: there is no twos function – or thirteens – just zeros and 

ones!
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•To refer to an element in a matrix, you use the matrix variable 
name followed by the index of the row, and then the index of the 
column, in parentheses

>> mat = [1:3; 6 11 -2]
mat =
     1     2     3
     6    11    -2
>> mat(2,1)
ans =
     6

•ALWAYS refer to the row first, column second
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•There are several functions to determine the dimensions 
of a vector or matrix:

• length(vec) returns the # of elements in a vector
• length(mat) returns the largest dimension (row or column) for a 

matrix - :o( DO NOT USE length on arrays that are not vectors! 
• size returns the # elements in each dimension of an array
• Important: can capture multiple values in an assignment 

statement
[r c] = size(mat)

• numel returns the total # of elements in an array

•Very important to be general in programming: do not assume fixed 
dimensions of a vector or matrix – use numel or size to find out or 
avoid knowing via use of end and : inside the paranthesis!!
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Many functions change the dimensions of a matrix:
◻ reshape changes dimensions of a matrix to any 

matrix with the same number of elements, linear 
order does not change     
◻rot90 rotates a matrix 90 degrees 

counter-clockwise       
◻fliplr  flips columns of a matrix from left to right     
◻flipud flips rows of a matrix up to down      
◻repmat replicates a matrix; creates m x n copies of 

the matrix      
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•See Array_Indexing.mlx
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• Isolated colon : refers to entire dimension
mat(i,:) – the ith row of mat
this is equivalent to mat(i, 1:size(mat,2))

• To refer to the last row or column use end
mat(end,k) - the kth value in the last row

• Value of end and isolated colon : is determined by context within 
subscript.
mat(end, end) – value of mat(size(mat,1), size(mat,2))

• Use of index vectors is also allowed
m([2 4], [1 5]) returns the matrix
[m(2,1) m(2,5) ; m(4,1) m(4,5)]
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The following works on all arrays (1-D, 2-D, etc.)
◻A(:)  forces A into a column vector containing all elements of A
◻A(k)  is the kth element of A(:)
◻A(M) is a array with the same dimensions as M.  For matrix M, the 

result would have elements A(M(i,j))
a =

    16     2     3    13

     5    11    10     8

     9     7     6    12

     4    14    15     1

>> a([1 2; 3 4])

ans =

    16     5

     9     4
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◻ An empty vector is a vector with no elements; an empty 
vector can be created using square brackets with nothing 
inside [ ]

◻ Delete element(s) from a vector by assigning []
>> vec(1)=[];  % remove first element
>> vec[end-2:end]=[];  % remove last 3 elements

◻ Delete row(s) or column(s) from a matrix by assigning []
>> mat([1 end],:)=[]; % remove first and last 
row

Note: cannot delete an individual element from a matrix.  Can you 
see why?
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2012 Honda Pilot
90,000 miles
$0 / month

2019 Jeep Wrangler
0 miles

$800 / month

2015 Jeep Wrangler
50,000 miles
$500 / month

2019 Honda Ridgeline
0 miles

$800 / month

A B C

D E

2019 Chevy Silverado
0 miles

$800 / month


