Lecture 16
MATLAB III: More Arrays

and Design Recipe

Last Time (lectures 14 & 15)

Lecture 14: MATLAB I

“Official” Supported Version in CS4: MATLAB 2018a

How to start using MATLAB:
e (S Dept. Machines - run ‘cs4_matlab’
e Total Academic Handout (TAH) Local Install -
software.brown.edu
e MATLAB Online (currently 2019a) - matlab.mathworks.com

Navigating the Workspace (command window, variables,
etc.)

Data types in MATLAB (everything is a 64-bit double float
by default!)

MATLAB Programs

e scripts (like Python)

« functions (file-based, outputs defined in signature)
Anonymous functions and overwriting function names

(oops!)

http://software.brown.edu
https://matlab.mathworks.com/

Last Time (lectures 14 & 15)
Lecture 15: MATLAB II

« Conditional Statements
e if..end
o if..else...end
o if..elseif...else...end
e switch..end
« Arrays and Matrices (default numeric type)
e scalars (1x1 value)
e 1D vectors (1xN or Nx1 arrays)
e 2D matrices (MxN)
e linspace(a, b, n)vs.first:step:max
e Array concatenation, slicing, and indexing
o Array Manipulation
e zero-padding
e removing elements
e row-to-column x(:)
« Size of arrays (numel and size; not length)

Lecture 16 Goals: MATLAB III

o Multi-dimensional arrays:
« Applying built-in functions to matrices
« Scalar operations on matrices
« Element-wise operations on matrices
« Logical array comparisons
o Array indexing with ‘find’
« 3D arrays

Arrays as function arguments

Many MATLAB functions that work on single numbers will
also work on entire arrays; this is very powerful!

Results have the same dimensions as the input, results are
produced “elementwise”
For example:
>> av = abs([-3 0 5 1])
av =
3 0 5 1

Powerful Array Functions

o There are a number of very useful function that are built-in
to perform operations on vectors, or column-wise on
matrices:

mmin the minimum value

m max the maximum value

msum the sum of the elements

m prod the product of the elements
mcumprod cumulative product
mEcumsum cumulative sum

min, max Examples

> vec = [4 -2 5 11];
>> min (vec)

ans =
-2
>> mat = randi([1, 10], 2,4)
mat =
6 5 7 4
3 7 4 10
>> max (mat)
ans =
6 7 7 10

* Note: the result is a scalar when the argument is a vector; the resultisa 1 xn
vector when the argument is an m x n matrix

sum, cumsum vector Examples

0 The sum function returns the sum of all elements; the
cumsum function shows the running sum as it iterates
through the elements (4, then 4+-2, then 4-2+5, and finally
4-2+5+11)

> vec = [4 -2 5 11];
>> sum(vec)
ans =
18
>> cumsum (vec)
ans =
4 2 7 18

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min (a) ;

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min (a) ;

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

10

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min(a’) ;

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

11

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min(a’) ;

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

12

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min(a(:));

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

13

What is the value of b?

[2 3 1; -2 0 -6; 8 7 -1];

min(a(:));

o o
o

What is the value of b?
A) -6 B) [-2 0 -6]
C)[1-6-1] D) [-6 -6 -6]

14

sum, cumsum matrix Examples

0 For matrices, most functions operate column-wise:
>> mat = randi([1, 10], 2,4)
mat =

1 10 1 4
9 8 3 7
>> sum(mat)
ans =
10 18 4 11
>> cumsum (mat)
ans =
1 10 1 4
10 18 4 11

The sum is the sum for each column; cumsum shows the
cumulative sums as it iterates through the rows

5

prod, cumprod Examples

0 These functions have the same format as

sum/cumsum, but calculate products
> v = [2:4 10]
G =
2 3 4 10
>> cumprod (v)
ans =

2 6 24 240
>> mat = randi([1, 10], 2,4)
mat =

2 2 5 8

8 7 8 10

>> prod (mat)
ans =
16 14 40 80

Overall functions on matrices

* When functions operate column-wise for matrices, make
nested calls to get the function result over all elements of a

matrix, e.g.:
>> mat = randi([1, 10], 2,4)
mat =
9 7 1 6
4 2 8 5
>> min(mat)
ans =
4 2 1 5

>> min(min(mat))
ans =
1

17

Overall functions on arrays

o Alternatively, since linear indexing arranges all the
elements of an array into a column, you can also use this
approach.

> m = max(A(:)) % Find max of A, regardless of
dim.

18

Scalar operations

*Numerical operations can be performed on every element
In an array

*For example, Scalar multiplication: multiply every
element by a scalar
> [4 0 11] * 3
ans =
12 0 33

*Another example: scalar addition; add a scalar to every

element
>> zeros(1l,3) + 5
ans =
5 5 5

g

Array Operations

*Array operations on two matrices A and B:
* these are applied between individual elements
* this means the arrays must have the same dimensions
* In MATLAB:
* matrix addition: A + B
* matrix subtraction: A-B or B-A
*For operations that are based on multiplication
(multiplication, division, and exponentiation), a dot must be
placed in front of the operator. Unless you're doing linear
algebra, this point-wise approach is generally what you want.
* array multiplication: A .* B
* array division: A ./ B, A .\ B
* array exponentiation A ./ 2
» matrix multiplication: A*B is NOT an element-wise operation

20

Logical Vectors and Indexing

* Using relational and logical operators on a vector or matrix
results in a logical vector or matrix
>>vec=[44 3 2 9 11 6];
>> logv = vec > 6
logv =
1 0] 0] 1 1 Q)
* Can use this to index into a vector or matrix, index and matrix
dimensions must agree (logical linear indexing also OK)
>> vec(logv)
ans =

44 9 1

21

Element-wise logical operators

*| and & applied to arrays operate elementwise; i.e. go through
element-by-element and return logical 1 or o

>> [1 2 3 -1 1]>[01 2 1 0]
ans = 1x5 logical array

1 1 1 0 1
*|| and && are used for scalars

22

True/False

O false equivalent to logical(o)
O true equivalent to logical(1)

0 false(m,n) and true(m,n) create matrices of
all false or true values

Logical Built-in Functions

O any, works column-wise, returns true for a column, if it
contains any true values

0 all, works column-wise, returns true for a column, if all the
values in the column are true

> M = randi([-5 100], m, n)

>> any(M<O0 | M==5) % returns a 1 x n vector

% elements are true if corresponding
% column in M has any negative

% entries or any 5s 1in it.

>> all(M(:)>0) % true if all elements strictly positive

24

Finding elements

O find finds locations and returns indices

>> vec
vec =
44 3 2 9 11 6
>> find(vec>6)
ans =
1 4 5

0 find also works on higher dimensional arrays

[1,7] = £find (M>0) % returns non-zero matrix
indices

ind = find(A>0) % returns linear array indices

25

Comparing Arrays

0 The isequal function compares two arrays, and returns
logical true if they are equal (all corresponding elements) or
false if not

>> vl = 1:4;
> v2 = [1 0 3 4];
>> isequal (v1,v2)
ans =

0
>> vl == v2
ans =

1 0 1 1
>> all (vl == v2)
ans =

0

26

3D Matrices

0 A three dimensional matrix has dimensionsmxnxp

o Can create with built-in functions, e.g. the following
creates a 3 x 6 x 2 matrix of random integers; there are 2

layers, each of which is a 3 x 5 matrix
>> randi ([0 50], 3,5,2)
ans(:,:,1) =

36 34 6 17 38

38 33 25 29 13

14 8 48 11 25
ans(:,:,2) =

35 277 13 41 17

45 7 42 12 10

48 7 12 477 12

Functions diff and meshgrid

O diff returns the differences between consecutive elements in
a vector

0 meshgrid receives as input arguments two vectors, and
returns as output arguments two matrices that specify
separately x and y values

>> [x y] = meshgrid(1:3,1:2)
X:

2 3
2 3
y:
1 1 1
2 2 2

Where could meshgrid be useful?

28

Common Pitfalls

* Attempting to create a matrix that does not have the same number
of values in each row

* Confusing matrix multiplication and array multiplication. Array
operations, including multiplication, division, and exponentiation,
are performed term by term (so the arrays must have the same size);
the operators are .%, ./, .\, and .M.

* Attempting to use an array of double 1s and os to index into an
array (must be logical, instead)

* Attempting to use || or && with arrays. Always use | and & when
working with arrays; || and && are only used with logical scalars.

29,

Programming Style Guidelines

* Extending vectors or matrices is not very fast, avoid doing this too
much

* To be general, avoid assuming fixed dimensions for vectors , matrices
or arrays. Instead, use end and colon : in context, or use size and
numel

>> len = numel (vec) ;
>> [r, c] = size(mat);
>> last col = mat(:, end);

* Use true instead of logical(1) and false instead of logical(o),
especially when creating vectors or matrices.

30

DESIGN Recipe

Testing

« Even simple functions can be deceptively hard to verify as
correct just by “looking at them”

*However, it is easy to test functions on data you understand
(and know what the correct answer should be)

* As functions and programs (which may use lots of functions)
get more complicated this becomes very important

32

assert

In MATLAB, the assert function allows one to easily perform a
test

assert (expr, message)

Stops execution and prints our the message when expr evaluates
to false.

33

*test triArea.m
*test_ myQuadRoots.m

Examples

34

Testing is Programming

*We’ve discovered developing tests first (before writing any
functions) often speeds the development process and helps
ensure programs work correctly

*In fact, designing tests should be viewed as a part of
programming even though you aren’t actively coding a
solution.

35

Design Recipe
Design Recipe

1.Develop important Test Cases — (actually code them, requires
you to first create function header)

2.Code function body

3.Test!
4.Fix code, re-Test until working correctly

36

Example: myFtoC
* Use the Design Recipe to solve the following problem:

“Write a function converts degrees Fahrenheit to degrees
Celsius.”

37

Example: myFtoC

Write test_myFtoC

Write myFtoC

Run test_myFtoC

Fix code, re-test until working correctly

Look at code, identify any pertinent additional tests
Retest, until working correctly

ool gm BE Y =

Done!

38

otest_myFtoC.m
omyFtoC.m

Example: myFtoC

39

Example: quadMin

* Use the Design Recipe to solve the following problem:

“Write a function that finds x that minimizes
axN\2+bx+c
in the interval [L,R]. Assume a>=0, L<R.”

40

Example: quadMin

“Write a function that finds x that minimizes
axN2+bx+c
in the interval [L,R]. Assume a>=0, L<R.”

What kind of tests should we have?
What are the cases?

41

*test_quadMin.m

Example: quadMin

42

