Lecture 16
 MATLAB III: More Arrays and Design Recipe

Last Time (lectures 14 \& 15)

Lecture 14: MATLAB I

- "Official" Supported Version in CS4: MATLAB 2018a
- How to start using MATLAB:
- CS Dept. Machines - run 'cs4_matlab'
- Total Academic Handout (TAH) Local Install software.brown.edu
- MATLAB Online (currently 2019a) - matlab.mathworks.com
- Navigating the Workspace (command window, variables, etc.)
- Data types in MATLAB (everything is a 64-bit double float by default!)
- MATLAB Programs
- scripts (like Python)
- functions (file-based, outputs defined in signature)
- Anonymous functions and overwriting function names (oops!)

Last Time (lectures 14 \& 15)

Lecture 15: MATLAB II

- Conditional Statements
- if...end
- if...else...end
- if...elseif...else...end
- switch...end
- Arrays and Matrices (default numeric type)
- scalars (1x1 value)
- 1D vectors (1 xN or Nx 1 arrays)
- 2D matrices (MxN)
- linspace(a, b, n) vs.first:step:max
- Array concatenation, slicing, and indexing
- Array Manipulation
- zero-padding
- removing elements
- row-to-column x(:)
- Size of arrays (numel and size; not length)

Lecture 16 Goals: MATLAB III

- Multi-dimensional arrays:
- Applying built-in functions to matrices
- Scalar operations on matrices
- Element-wise operations on matrices
- Logical array comparisons
- Array indexing with 'find'
- 3D arrays

Arrays as function arguments

\square Many MATLAB functions that work on single numbers will also work on entire arrays; this is very powerful!
\square Results have the same dimensions as the input, results are produced "elementwise"
\square For example:

$$
\begin{aligned}
& \gg \mathrm{av}=\mathrm{abs}\left(\left[\begin{array}{llll}
-3 & 0 & 5 & 1
\end{array}\right]\right) \\
& \mathrm{av}= \\
& 3
\end{aligned} 0 \begin{array}{lll}
& 5 & 1
\end{array}
$$

Powerful Array Functions

\square There are a number of very useful function that are built-in to perform operations on vectors, or column-wise on matrices:

- min the minimum value
- max the maximum value
- sum the sum of the elements
\square prod the product of the elements
- cumprod cumulative product

■ cumsum cumulative sum

min, max Examples

```
>> vec = [llllll}40-2 5 11]
>> min(vec)
ans =
    -2
>> mat = randi ([1, 10], 2,4)
mat =
    6
    3 
>> max (mat)
ans =
    6 7 7 7 10
```

- Note: the result is a scalar when the argument is a vector; the result is a $1 x n$ vector when the argument is an $m x n$ matrix

sum, cumsum vector Examples

\square The sum function returns the sum of all elements; the cumsum function shows the running sum as it iterates through the elements (4 , then $4+-2$, then $4-2+5$, and finally $4-2+5+11$)
\gg vec $=\left[\begin{array}{llll}4 & -2 & 5 & 11\end{array}\right] ;$
>> sum(vec)
ans $=$ 18
>> cumsum (vec)
ans $=$

4	2	7	18

What is the value of b ?

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{llllllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; & 7 & -1
\end{array}\right] ; \\
& b=\min (a) ;
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

What is the value of b ?

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{llllllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; & 7 & -1
\end{array}\right] ; \\
& b=\min (a) ;
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

What is the value of b ?

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{llllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; 8 \\
b & 7 & -1
\end{array}\right] ; \\
& \min \left(a^{\prime}\right) ;
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

What is the value of b ?

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{llllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; \\
b & 7 & -1
\end{array}\right] ; \\
& \mathrm{bin}\left(\mathrm{a}^{\prime}\right) ;
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

What is the value of b ?

$$
\begin{aligned}
\mathrm{a} & =\left[\begin{array}{llllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; \\
\mathrm{b} & =\min (\mathrm{a}(:)) ;
\end{array}\right.
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

What is the value of b ?

$$
\begin{aligned}
\mathrm{a} & =\left[\begin{array}{llllll}
2 & 3 & 1 ; & -2 & 0 & -6 ; \\
\mathrm{b} & =\min (\mathrm{a}(:)) ;
\end{array}\right.
\end{aligned}
$$

What is the value of b ?
A) -6
B) $\left[\begin{array}{lll}-2 & 0 & -6\end{array}\right]$
C) $\left[\begin{array}{lll}1 & -6 & -1\end{array}\right]$
D) $\left[\begin{array}{lll}-6 & -6 & -6\end{array}\right]$

sum, cumsum matrix Examples

\square For matrices, most functions operate column-wise:

```
>> mat = randi([1, 10], 2,4)
mat =
    1
    9 8
>> sum(mat)
ans =
    10}18\quad4\quad1
>> cumsum(mat)
ans =
    1 10}1010
    10}18\quad481
```

The sum is the sum for each column; cumsum shows the cumulative sums as it iterates through the rows

prod, cumprod Examples

\square These functions have the same format as sum/cumsum, but calculate products

$$
\gg v=\left[\begin{array}{ll}
2: 4 & 10]
\end{array}\right.
$$

$$
v=
$$

\quad| 2 | 3 | 4 | 10 |
| :---: | :---: | :---: | :---: |
| \gg cumprod (v) | | | |

ans $=$
\gg mat $\left.\left.=\begin{array}{ccc}2 & 6 & 24 \\ \text { randi } & 240 \\ {[1,} & 10\end{array}\right], 2,4\right)$
mat $=$

2	2	5	8
8	7	8	10
\gg prod (mat)			
ans $=$			
16	14	40	80

Overall functions on matrices

-When functions operate column-wise for matrices, make nested calls to get the function result over all elements of a matrix, e.g.:

```
    \(\gg\) mat \(=\operatorname{randi}([1,10], 2,4)\)
```

 mat =
 \(\begin{array}{llll}9 & 7 & 1 & 6\end{array}\)
 \(4 \quad 2 \quad 8 \quad 5\)
 $\gg \min ($ mat $)$
ans =
$\begin{array}{llll}4 & 2 & 1 & 5\end{array}$
$\gg \min (\min ($ mat $))$
ans =
1

Overall functions on arrays

\square Alternatively, since linear indexing arranges all the elements of an array into a column, you can also use this approach.

```
>> m}=m\operatorname{max}(A(:)) % Find max of A, regardless of
    dim.
```


Scalar operations

-Numerical operations can be performed on every element in an array
-For example, Scalar multiplication: multiply every element by a scalar

$$
\begin{gathered}
\gg\left[\begin{array}{ccccc}
4 & 0 & 11]
\end{array}\right. \\
\text { ans }= \\
12
\end{gathered}
$$

- Another example: scalar addition; add a scalar to every element

```
>> zeros (1,3) + 5
ans =
    5 5 5
```


Array Operations

- Array operations on two matrices A and B:
- these are applied between individual elements
- this means the arrays must have the same dimensions
- In MATLAB:
- matrix addition: A + B
- matrix subtraction: A - B or B - A
- For operations that are based on multiplication (multiplication, division, and exponentiation), a dot must be placed in front of the operator. Unless you're doing linear algebra, this point-wise approach is generally what you want.
- array multiplication: A .* B
- array division: A ./ B , A . $\$ B
- array exponentiation A.^ 2
- matrix multiplication: $\mathrm{A}^{*} \mathrm{~B}$ is NOT an element-wise operation

Logical Vectors and Indexing

- Using relational and logical operators on a vector or matrix results in a logical vector or matrix

$$
\begin{aligned}
& \gg v e c=\left[\begin{array}{llllll}
44 & 3 & 2 & 9 & 11 & 6
\end{array}\right] ; \\
& \gg \log v=\mathrm{vec}>6 \\
& \log v= \\
& \begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

- Can use this to index into a vector or matrix, index and matrix dimensions must agree (logical linear indexing also OK)
>> vec (logv)
ans =
$44 \quad 9 \quad 11$

Element-wise logical operators

- | and \& applied to arrays operate elementwise; i.e. go through element-by-element and return logical 1 or o
>> [11 $243-11]>\left[\begin{array}{lllll}0 & 1 & 2 & 1 & 0\end{array}\right]$
ans $=1 \times 5$ logical array
$\begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array}$
- || and \&\& are used for scalars

True/False

\square false equivalent to logical(o)

- true equivalent to logical(1)
- false(\mathbf{m}, \mathbf{n}) and true($\mathbf{m}, \mathbf{n})$ create matrices of all false or true values

Logical Built-in Functions

- any, works column-wise, returns true for a column, if it contains any true values
\square all, works column-wise, returns true for a column, if all the values in the column are true

```
>> M = randi([-5 100], m, n)
>> any(M<0 | M==5) % returns a 1 x n vector
    % elements are true if corresponding
    % column in M has any negative
    % entries or any 5s in it.
>> all(M(:)>0) % true if all elements strictly positive
```


Finding elements

\square find finds locations and returns indices
>> vec
vec =
44
2
9
11
6
>> find (vec>6)
ans =
1
4
5

- find also works on higher dimensional arrays

```
[i,j] = find(M>0) % returns non-zero matrix
    indices
ind = find(A>0) % returns linear array indices
```


Comparing Arrays

\square The isequal function compares two arrays, and returns logical true if they are equal (all corresponding elements) or false if not

```
    >> v1 = 1:4;
    >> v2 = [1 0034\(]\);
    >> isequal (v1,v2)
    ans =
        0
    >> v1 == v2
    ans \(=\)
        \(1 \quad 0 \quad 1 \quad 1\)
    >> all(v1 == v2)
    ans =
        0
```


3D Matrices

\square A three dimensional matrix has dimensions $m \times n \times p$
\square Can create with built-in functions, e.g. the following creates a $3 \times 5 \times 2$ matrix of random integers; there are 2 layers, each of which is a 3×5 matrix

>> randi $([0$	$50]$,	$3,5,2)$		
ans $(:,:, 1)=$				
36	34	6	17	38
38	33	25	29	13
14	8	48	11	25
ans $(:,:, 2)$	$=$			
35	27	13	41	17
45	7	42	12	10
48	7	12	47	12

Functions diff and meshgrid

ㅁ diff returns the differences between consecutive elements in a vector

- meshgrid receives as input arguments two vectors, and returns as output arguments two matrices that specify separately x and y values

```
>> [x y] = meshgrid(1:3,1:2)
X =
    2 3
    1 2 3
y =
    1
```

Where could meshgrid be useful?

Common Pitfalls

- Attempting to create a matrix that does not have the same number of values in each row
- Confusing matrix multiplication and array multiplication. Array operations, including multiplication, division, and exponentiation, are performed term by term (so the arrays must have the same size); the operators are .*, ./, . , and .^.
- Attempting to use an array of double is and os to index into an array (must be logical, instead)
- Attempting to use || or \&\& with arrays. Always use | and \& when working with arrays; $\|$ and \&\& are only used with logical scalars.

Programming Style Guidelines

- Extending vectors or matrices is not very fast, avoid doing this too much
- To be general, avoid assuming fixed dimensions for vectors, matrices or arrays. Instead, use end and colon : in context, or use size and numel

```
>> len = numel(vec);
>> [r, c] = size(mat);
>> last_col = mat(:, end);
```

- Use true instead of logical(1) and false instead of logical(o), especially when creating vectors or matrices.

DESIGN Recipe

Testing

- Even simple functions can be deceptively hard to verify as correct just by "looking at them"
- However, it is easy to test functions on data you understand (and know what the correct answer should be)
- As functions and programs (which may use lots of functions) get more complicated this becomes very important

assert

In MATLAB, the assert function allows one to easily perform a test
assert (expr, message)
Stops execution and prints our the message when expr evaluates to false.

Examples

-test_triArea.m
-test_myQuadRoots.m

Testing is Programming

-We've discovered developing tests first (before writing any functions) often speeds the development process and helps ensure programs work correctly

- In fact, designing tests should be viewed as a part of programming even though you aren't actively coding a solution.

Design Recipe

Design Recipe

1.Develop important Test Cases - (actually code them, requires you to first create function header)
2.Code function body
3.Test!
4.Fix code, re-Test until working correctly

Example: myFtoC

- Use the Design Recipe to solve the following problem:
"Write a function converts degrees Fahrenheit to degrees Celsius."

Example: myFtoC

1. Write test_myFtoC
2. Write myFtoC
3. Run test_myFtoC
4. Fix code, re-test until working correctly
5. Look at code, identify any pertinent additional tests
6. Retest, until working correctly

Done!

Example: myFtoC

\quad test_myFtoC.m
-myFtoC.m

Example: quadMin

- Use the Design Recipe to solve the following problem:
"Write a function that finds x that minimizes
$a x^{\wedge} 2+b x+c$
in the interval $[L, R]$. Assume $a>=0, L<R$."

Example: quadMin

"Write a function that finds x that minimizes

$$
a x^{\wedge} 2+b x+c
$$

in the interval $[L, R]$. Assume $a>=0, L<R$."

What kind of tests should we have?
What are the cases?

Example: quadMin

-test_quadMin.m

