
Lecture 18
Linear Algebra, II

1

Lecture 18 Goals

• Matrix inversion, singularity, rank, and
determinants

• Solving systems of linear equations

2

Problem of inversion

3

Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

Problem of inversion

4

Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

That’s basic algebra!

x = y/A

Problem of inversion

5

Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

Or is it?

x = y/A

Recall that matrix multiplication is not commutative, so
we cannot divide B=C/A since AB/A is not equal to B.

What is Matrix “division” anyway?

Problem of inversion

6

Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

Correct solution (use the Matrix inverse):

A\Ax = A\y => x = A\y

Order matters, i.e.

AB = C => A\AB=A\C => B = A\C

Problem of inversion

7

Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and b is mx1.

Correct solution (use the Matrix inverse):

A\Ax = A\y => x = A\y

For matrices, the definition of the “inverse”, or “one over”
the matrix, has to be defined properly.

Key question: When does the inverse exist?

Answer: The Determinant

If the determinant is non-zero, the matrix can be
inverted and unique solution exists for Ax=y.

If the determinant is zero, the matrix cannot be
inverted, there can be either 0 or an infinite number of
solutions to Ax=y.

8

Wait. What’s the Determinant?
Geometric interpretation: The determinant describes how
the area (2D), volume (3D), or hypervolume (4D or higher)
defined by set of points X changes when matrix A is applied
to X.

9Interactive Demonstration: http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/

http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/

Determinants (square matrices)

10

Consider a 2 x 2 matrix

The determinant of a 2 x 2 matrix is

Determinants (square matrices)

11

Finding the determinant of a general n x n square matrix requires
evaluation of a complicated polynomial of the coefficients of the
matrix, but there is a simple recursive approach.

Solving Ax=y

•When A is non-singular (has non-zero determinant) A inverse
exists, and one can find x via

x = inv(A)*y

•However, depending on A, this is can be computationally
inefficient and or less precise then using x = A\y

•The MATLAB \ operation (called mldivide) takes the form of
A into account while trying to solve A\y

•doc mldivide

12

Operation of A\y in MATLAB

13

14

15

Linear Equations

•y = mx+b is a linear function, y(x)
•Setting mx + b = c is a linear equation
•Systems of equations

Have multiple Equations

Solving a system of equations involves finding a set (or
sets) of values that allow all the equations to hold.

These are not always solvable!

16

Linear equations - Example

17

Linear equations

can be written in matrix form

Or more symbolically as

where

Linear equations – General Form

18

m linear equations with n variables:

Can be written in matrix as where

Linear equations
For the equation Ax=y, there are 3 distinct cases

19

=

=
=

Square, equal number of
unknowns and equations

Underdetermined: more
unknowns than equations

Overdetermined: fewer
unknowns than equations

Types of solutions with “random” data
“Generally” the following observations would hold

20

=

=
=

One solution (eg., 2 lines
intersect at one point)

Infinite solutions (eg., 2 planes
intersect at many points)

No solutions (eg., 3 lines
don’t intersect at a point)

Linear equations
But other things can happen. For example:

21

=

=
=

No solution (2 parallel lines)
Many solutions (2 parallel lines)

No solutions (2 parallel planes)
Solutions (3 lines that do
intersect at a point)

What is a linear function?

22

Let be a function. It is said to be linear if

Superposition can be applied to linear systems!

Matrix representation of a linear function

23

What is a linear function?

24

Let be a function. It is said to be linear if

This is sometimes called superposition

When f is represented with
matrix A, it is clear it satisfies
the properties above, i.e.,

A(x+y) = Ax+Ay

A(cx) = cAx

Solving Ax=b

Two key questions
1) How can we tell when no solutions exist?
2) When solutions exist how can we find and represent
them?

25

Range of a matrix

26

Ax=b has a solution when b is in R(A)

27

Linear independence

28

Rank of a matrix

29

The rank of a matrix is equal to the maximal number of
linearly independent vectors in the range of the matrix.

A square matrix A of dimension n x n is said to be full rank if
the rank of the matrix is n, i.e. rank(A) = n

If a matrix is full rank, it can be inverted.

The rank of a matrix can be computed using the command
rank

Key Question #1: Existence

How can we tell when no solution exists to Ax=b?
•When rank([A b]) > rank(A) there isn’t a linear combination of
the columns of A that can be used to represent y, i.e. Ax = b
has no solution.

30

Key Question #2: Uniqueness?

How can we tell the solution to Ax=b is unique?
When multiple solutions exists how can we find and represent
them?

31

Nullspace of a matrix

32

Nullspace != {0} => Infinite Solutions

33

Existence and Uniqueness

•Ax=b
•Existence: Having a solution means

b in R(A)
•Having a unique solution means Az=0 iff z is an
appropriately sized zero vector

•Otherwise x+z != x, and A(x+z)=Ax+Az = Ax = b
•Uniqueness: Having a unique solution requires
 N(A)={0}

34

When do we need to compute N(A)?

For dim(A) m by n,
dim(Null(A)) is m by n-rank(A).

So when A is full rank (i.e. rank(A) = n), N(A) = {0}

35

Finding the nullspace in MATLAB

36

null(A) returns an orthonormal basis for the null space of A
null(A,’r’) returns a “rational” basis for the null space of A

For illustrative purposes, use the script initializeMatrices.m, which puts 4
matrices of size 4 x 4 into the workspace:

A is of rank 4
B is of rank 3
C is of rank 2
D is or rank 1

Finding the null space in MATLAB

37

Since A is of rank 4, the null space of A is reduced to zero.

The null space of the matrix B (of rank 3) is of dimension 1

The command null(A,’r’) will take the matrix
A and return the set of vectors which belong
to the null space of A. The ‘r’ is added so
Matlab returns fractional vectors when
possible.

Null space of A is empty, because the matrix
is invertible

Null space of B is of dimension 1

Sanity checks

38

Sanity checks

39

Sanity checks

40

Procedure to solve a linear system

41

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Procedure to solve a linear system

42

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Step: check if rank(A) = rank([A,y]) → no

43

If rank(A) is not equal to
rank([A,y]), y is not in the
range of A

i.e. There is no x such
that Ax = y

System has no solution

Procedure to solve a linear system

44

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Procedure to solve a linear system

45

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Step: rank(A) = number of unknowns? → yes

46

If the rank of A is the same as
the number of unknowns, the
system can be inverted, and the
system has a unique solution,
which can be computed by A\y

Procedure to solve a linear system

47

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Procedure to solve a linear system

48

rank(A)=rank([A,y])

number of
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of
sols

Use rref and null
to compute solutions

Single solution
Use A\y

to compute
solution

There is no
solution

Step: rank(A) = number of unknowns? → no

49

In this case rank(A) < number of unknowns (i.e. it is smaller).
An infinite number of solutions exist.

Imagine you can find a particular solution to this problem

Then if you take any vector in the null space, it is also a solution
to this problem:

Because

Step: rank(A) = number of unknowns? → no

50

The rank of A is not equal to the number of unknowns (i.e. it is
smaller).

An infinite number of solutions exist. Now you might have to
construct this infinite amount of solutions:

Step: rank(A) = number of unknowns? → no

51

The rank of A is not equal to the number of unknowns (i.e. it is
smaller).

An infinite number of solutions exist. Now you might have to
construct this infinite amount of solutions:

Step: rank(A) = number of unknowns? → no

52

The rank of A is not equal to the number of unknowns (i.e. it is
smaller).

An infinite number of solutions exist. Now you might have to
construct this infinite amount of solutions:

Step: rank(A) = number of unknowns? → no

53

The rank of A is not equal to the number of unknowns (i.e. it is
smaller).

An infinite number of solutions exist. Now you might have to
construct this infinite amount of solutions:

How far can you go?

You can go as far as the null space permits, i.e. pick v’s from columns of
null spaces. Their linear combinations span the null space.

Step: rank(A) = number of unknowns? → no

54

How to do this with matlab?

Use the command rref

y is in the range of A.
There is an infinity of
solutions

How to compute them

For this, you need to use

B = rref([A,y])

Step: rank(A) = number of unknowns? → no

55

Find a solution of this system (Gauss elimination has already been
done for you)

Gauss form of A Particular solution

Step: rank(A) = num. of unk.? → no

56

Find a solution of this system (Gauss elimination has already been
done for you)

Obvious solution: [-1;1;0]

Step: rank(A) = number of unknowns? → no

57

How do I find all solutions?

Add all the vectors from
the null space

Step: rank(A) = number of unknowns? → no

58

How do I find all solutions?

Add all the vectors from
the null space

Gauss Elimination (non-singular A)

Want to solve Ax = b
• Forward elimination

• Starting with the first row, add or
subtract multiples of that row to
eliminate the first coefficient from the
second row and beyond.

• Continue this process with the second
row to remove the second coefficient
from the third row and beyond.

• Stop when an upper triangular matrix
remains.

• Back substitution
• Starting with the last row, solve for the

unknown, then substitute that value into
the next highest row.

• Because of the upper-triangular nature
of the matrix, each row will contain only
one more unknown.

1/22/18 59

Order of Elimination

Gaussian Elimination in 3D

•Using the first equation to eliminate x from the next two
equations

Gaussian Elimination in 3D

•Using the second equation to eliminate y from the third
equation

Gaussian Elimination in 3D

•Using the second equation to eliminate y from the third
equation

Solving Triangular Systems

•We now have a triangular system which is easily solved
using a technique called Backward-Substitution.

Solving Triangular Systems

• If A is upper triangular, we can solve
Ax = b by:

Backward Substitution

•From the previous work, we have

•And substitute z in the first two equations

Backward Substitution

•We can solve y

Backward Substitution

•Substitute to the first equation

Gauss-Jordan Elimination
Keep going until augmented matrix is reduced row echelon form
(rref):

The rows (if any) consisting entirely of zeros are grouped together
at the bottom of the matrix.
In each row that does not consist entirely of zeros, the leftmost
nonzero element is a 1 (called a leading 1 or a pivot).
Each column that contains a leading 1 has zeros in all other
entries.
The leading 1 in any row is to the left of any leading 1’s in the
rows below it.

Stop process in step 2 if you obtain a row whose elements are all
zeros except the last one on the right. In that case, the system is
inconsistent and has no solutions. Otherwise, finish step 2 and read
the solutions of the system from the final matrix

1/22/18 69

Overdetermined systems

70

Overdetermined systems

71

The “Least Squares” Problem

If A is an n-by-m array, and b is an n-by-1 vector, let c* be the
smallest possible (over all choices of m-by-1 vectors x)
mismatch between Ax and b (ie., pick x to make Ax as much like
b as possible).

72

“is defined as”
“the minimum, over all
m-by-1 vectors x”

“the length (ie., norm) of
the difference/mismatch
between Ax and b.”

Four cases for Least Squares

Recall least squares formulation

There are 4 scenarios
c* = 0: the equation Ax=b has at least one solution

• only one x vector achieves this minimum
• many different x vectors achieves the minimum

c* > 0: the equation Ax=b has no solutions
• only one x vector achieves this minimum
• many different x vectors achieves the minimum

73

Four cases: x=A\b as solution of
No Mismatch:

c* = 0, and only one x vector achieves this minimum
Choose this x

c* = 0, and many different x vectors achieves the minimum
From all these minimizers, choose smallest x (ie., norm)

Mismatch:
c* > 0, and only one x vector achieves this minimum

Choose this x

c* > 0, and many different x vectors achieves the minimum
From all minimizers, choose an x with the smallest norm

74

The backslash operator
If A is an n-by-m array, and b is an n-by-1 vector, then

>> x = A\b
solves the “least squares” problem. Namely

• If there is an x which solves Ax=b, then this x is computed

• If there is no x which solves Ax=b, then an x which
minimizes the mismatch between Ax and b is computed.

In the case where many x satisfy one of the criterion above,
then a smallest (in terms of vector norm) such x is computed.

So, mismatch is handled first. Among all equally suitable x
vectors that minimize the mismatch, choose a smallest one.

75

