
Lecture 18
Linear Algebra, II
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Lecture 18 Goals

• Matrix inversion, singularity, rank, and 
determinants

• Solving systems of linear equations
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Problem of inversion
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Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.



Problem of inversion
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Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

That’s basic algebra!

x = y/A



Problem of inversion
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Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

Or is it?

x = y/A

Recall that matrix multiplication is not commutative, so 
we cannot divide B=C/A since AB/A is not equal to B.

What is Matrix “division” anyway?



Problem of inversion
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Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and y is mx1.

Correct solution (use the Matrix inverse):

A\Ax = A\y          =>            x = A\y

Order matters, i.e.

AB = C => A\AB=A\C => B = A\C



Problem of inversion
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Solve for unknown vector x:

Ax = y

where A is mxn, x is nx1, and b is mx1.

Correct solution (use the Matrix inverse):

A\Ax = A\y          =>            x = A\y

For matrices, the definition of the “inverse”, or “one over” 
the matrix, has to be defined properly.

Key question:  When does the inverse exist?



Answer: The Determinant

If the determinant is non-zero, the matrix can be 
inverted and unique solution exists for Ax=y. 

If the determinant is zero, the matrix cannot be 
inverted, there can be either 0 or an infinite number of 
solutions to Ax=y.
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Wait.  What’s the Determinant?
Geometric interpretation:  The determinant describes how 
the area (2D), volume (3D), or hypervolume (4D or higher) 
defined by set of points X changes when matrix A is applied 
to X.

9Interactive Demonstration:  http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/

http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/


Determinants (square matrices)
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Consider a 2 x 2 matrix 

The determinant of a 2 x 2 matrix is



Determinants (square matrices)
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Finding the determinant of a general n x n square matrix requires 
evaluation of a complicated polynomial of the coefficients of the 
matrix, but there is a simple recursive approach.



Solving Ax=y

•When A is non-singular (has non-zero determinant) A inverse 
exists, and one can find x via

x = inv(A)*y

•However, depending on A, this is can be computationally 
inefficient and or less precise then using x = A\y

•The MATLAB \ operation (called mldivide) takes the form of 
A into account while trying to solve A\y

•doc mldivide
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Operation of A\y in MATLAB
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Linear Equations

•y = mx+b is a linear function, y(x)
•Setting mx + b = c is a linear equation
•Systems of equations 

Have multiple Equations

Solving a system of equations involves finding a set (or 
sets) of values that allow all the equations to hold.

These are not always solvable!
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Linear equations - Example
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Linear equations 

can be written in matrix form

Or more symbolically as

where



Linear equations – General Form
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m linear equations with n variables:

Can be written in matrix as                  where



Linear equations
For the equation Ax=y, there are 3 distinct cases
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=

=
=

Square, equal number of 
unknowns and equations

Underdetermined: more 
unknowns than equations

Overdetermined: fewer 
unknowns than equations



Types of solutions with “random” data
“Generally” the following observations would hold
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=

=
=

One solution (eg., 2 lines 
intersect at one point)

Infinite solutions (eg., 2 planes 
intersect at many points)

No solutions (eg., 3 lines 
don’t intersect at a point)



Linear equations
But other things can happen.   For example:
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=

=
=

No solution (2 parallel lines) 
Many solutions (2 parallel lines)

No solutions (2 parallel planes)
Solutions (3 lines that do 
intersect at a point)



What is a linear function?
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Let          be a function. It is said to be linear if   

Superposition can be applied to linear systems!



Matrix representation of a linear function
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What is a linear function?
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Let            be a function. It is said to be linear if   

This is sometimes called superposition

When f is represented with 
matrix A,  it is clear it satisfies 
the properties above, i.e., 

A(x+y) = Ax+Ay

A(cx) = cAx



Solving Ax=b

Two key questions
1) How can we tell when no solutions exist?
2) When solutions exist how can we find and represent 
them? 
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Range of a matrix
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Ax=b has a solution when b is in R(A)

27



Linear independence
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Rank of a matrix
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The rank of a matrix is equal to the maximal number of 
linearly independent vectors in the range of the matrix.

A square matrix A of dimension n x n is said to be full rank if 
the rank of the matrix is n, i.e. rank(A) = n

If a matrix is full rank, it can be inverted. 

The rank of a matrix can be computed using the command 
rank

 



Key Question #1: Existence

How can we tell when no solution exists to Ax=b?
•When rank([A b]) > rank(A) there isn’t a linear combination of 
the columns of A that can be used to represent y, i.e. Ax = b 
has no solution.
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Key Question #2: Uniqueness?

How can we tell the solution to Ax=b is unique?
When multiple solutions exists how can we find and represent 
them? 
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Nullspace of a matrix
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Nullspace != {0} => Infinite Solutions
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Existence and Uniqueness

•Ax=b
•Existence: Having a solution means 

b in R(A)
•Having a unique solution means Az=0 iff z is an 
appropriately sized zero vector

•Otherwise x+z != x, and A(x+z)=Ax+Az = Ax = b
•Uniqueness: Having a unique solution requires
 N(A)={0}
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When do we need to compute N(A)?

For dim(A) m by n, 
dim(Null(A)) is m by n-rank(A).  

So when A is full rank (i.e. rank(A) = n), N(A) = {0}
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Finding the nullspace in MATLAB
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null(A) returns an orthonormal basis for the null space of A
null(A,’r’) returns a “rational” basis for the null space of A

For illustrative purposes, use the script initializeMatrices.m, which puts 4 
matrices of size 4 x 4 into the workspace:

A is of rank 4
B is of rank 3
C is of rank 2
D is or rank 1



Finding the null space in MATLAB
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Since A is of rank 4, the null space of A is reduced to zero.
 
The null space of the matrix B (of rank 3) is of dimension 1

The command null(A,’r’) will take the matrix 
A and return the set of vectors which belong 
to the null space of A. The ‘r’ is added so 
Matlab returns fractional vectors when 
possible.

Null space of A is empty, because the matrix 
is invertible

Null space of B is of dimension 1



Sanity checks
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Sanity checks
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Sanity checks
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Procedure to solve a linear system 
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rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Procedure to solve a linear system 
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rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Step: check if rank(A) = rank([A,y]) → no
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If rank(A) is not equal to 
rank([A,y]), y is not in the 
range of  A

i.e. There is no x such 
that Ax = y

System has no solution



Procedure to solve a linear system 
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rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Procedure to solve a linear system 

45

rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Step: rank(A) = number of unknowns? → yes
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If the rank of A is the same as 
the number of unknowns, the 
system can be inverted, and the 
system has a unique solution, 
which can be computed by A\y



Procedure to solve a linear system 
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rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Procedure to solve a linear system 
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rank(A)=rank([A,y])

number of 
unknowns is equal to

rank(A)

yes

yes

no

no

Infinite number of 
sols

Use rref and null 
to compute solutions

Single solution
Use A\y

to compute 
solution

There is no 
solution



Step: rank(A) = number of unknowns? → no
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In this case rank(A) < number of unknowns (i.e. it is smaller). 
An infinite number of solutions exist.

Imagine you can find a particular solution to this problem

Then if you take any vector in the null space, it is also a solution 
to this problem:  

Because 



Step: rank(A) = number of unknowns? → no
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The rank of A is not equal to the number of unknowns (i.e. it is 
smaller).

An infinite number of solutions exist. Now you might have to 
construct this infinite amount of solutions: 



Step: rank(A) = number of unknowns? → no
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The rank of A is not equal to the number of unknowns (i.e. it is 
smaller).

An infinite number of solutions exist. Now you might have to 
construct this infinite amount of solutions: 



Step: rank(A) = number of unknowns? → no
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The rank of A is not equal to the number of unknowns (i.e. it is 
smaller).

An infinite number of solutions exist. Now you might have to 
construct this infinite amount of solutions: 



Step: rank(A) = number of unknowns? → no
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The rank of A is not equal to the number of unknowns (i.e. it is 
smaller).

An infinite number of solutions exist. Now you might have to 
construct this infinite amount of solutions: 

How far can you go?

You can go as far as the null space permits, i.e.  pick v’s from columns of 
null spaces. Their linear combinations span the null space.



Step: rank(A) = number of unknowns? → no
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How to do this with matlab?

Use the command rref 

y is in the range of A. 
There is an infinity of 
solutions

How to compute them

For this, you need to use

B = rref([A,y])



Step: rank(A) = number of unknowns? → no
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Find a solution of this system (Gauss elimination has already been 
done for you)

Gauss form of A Particular solution



Step: rank(A) = num. of unk.? → no
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Find a solution of this system (Gauss elimination has already been 
done for you)

Obvious solution: [-1;1;0]



Step: rank(A) = number of unknowns? → no
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How do I find all solutions? 

Add all the vectors from 
the null space



Step: rank(A) = number of unknowns? → no
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How do I find all solutions? 

Add all the vectors from 
the null space



Gauss Elimination (non-singular A)

Want to solve Ax = b
• Forward elimination

• Starting with the first row, add or 
subtract multiples of that row to 
eliminate the first coefficient from the 
second row and beyond.

• Continue this process with the second 
row to remove the second coefficient 
from the third row and beyond.

• Stop when an upper triangular matrix 
remains.

• Back substitution
• Starting with the last row, solve for the 

unknown, then substitute that value into 
the next highest row.

• Because of the upper-triangular nature 
of the matrix, each row will contain only 
one more unknown.

1/22/18 59



Order of Elimination



Gaussian Elimination in 3D

•Using the first equation to eliminate x from the next two 
equations



Gaussian Elimination in 3D

•Using the second equation to eliminate y from the third 
equation



Gaussian Elimination in 3D

•Using the second equation to eliminate y from the third 
equation



Solving Triangular Systems

•We now have a triangular system which is easily solved 
using a technique called Backward-Substitution.



Solving Triangular Systems

• If A is upper triangular, we can solve 
Ax = b by:



Backward Substitution

•From the previous work, we have

•And substitute z in the first two equations



Backward Substitution

•We can solve y



Backward Substitution

•Substitute to the first equation



Gauss-Jordan Elimination
Keep going until augmented matrix is reduced row echelon form 
(rref):

The rows (if any) consisting entirely of zeros are grouped together 
at the bottom of the matrix.
In each row that does not consist entirely of zeros, the leftmost 
nonzero element is a 1 (called a leading 1 or a pivot).
Each column that contains a leading 1 has zeros in all other 
entries.
The leading 1 in any row is to the left of any leading 1’s in the 
rows below it.

Stop process in step 2 if you obtain a row whose elements are all 
zeros except the last one on the right. In that case, the system is 
inconsistent and has no solutions. Otherwise, finish step 2 and read 
the solutions of the system from the final matrix

1/22/18 69



Overdetermined systems
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Overdetermined systems
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The “Least Squares” Problem

If A is an n-by-m array, and b is an n-by-1 vector, let c* be the 
smallest possible (over all choices of m-by-1 vectors x) 
mismatch between Ax and b (ie., pick x to make Ax as much like 
b as possible).
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“is defined as”
“the minimum, over all 
m-by-1 vectors x”

“the length (ie., norm) of 
the difference/mismatch 
between Ax and b.”



Four cases for Least Squares

Recall least squares formulation

There are 4 scenarios
c* = 0: the equation Ax=b has at least one solution

• only one x vector achieves this minimum
• many different x vectors achieves the minimum 

c* > 0: the equation Ax=b has no solutions
• only one x vector achieves this minimum
• many different x vectors achieves the minimum
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Four cases:  x=A\b as solution of
No Mismatch:

c* = 0, and only one x vector achieves this minimum
Choose this x

c* = 0, and many different x vectors achieves the minimum
From all these minimizers, choose smallest x (ie., norm)

Mismatch:
c* > 0, and only one x vector achieves this minimum

Choose this x

c* > 0, and many different x vectors achieves the minimum
From all minimizers, choose an x with the smallest norm
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The backslash operator
If A is an n-by-m array, and b is an n-by-1 vector, then

>> x = A\b
solves the “least squares” problem.  Namely

• If there is an x which solves Ax=b, then this x is computed

• If there is no x which solves Ax=b, then an x which 
minimizes the mismatch between Ax and b is computed.

In the case where many x satisfy one of the criterion above, 
then a smallest (in terms of vector norm) such x is computed.

So, mismatch is handled first.  Among all equally suitable x 
vectors that minimize the mismatch, choose a smallest one.
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