
Using Packages and the
Scipy Stack
Scientific Computing in Python

Slides adopted with permission from CS4670/5670 – Introduction to Computer Vision @ Cornell University
http://www.cs.cornell.edu/courses/cs4670/2018sp/

http://www.cs.cornell.edu/courses/cs4670/2018sp/

What are Packages?
• Packages (aka libraries) are independent pieces of

software that can be imported into Python
● Built-in packages come with Python: random, math, os, sys,

multiprocessing/multithreading, subprocess
● Outside packages are coded by developers outside of the

main python organization
● Scipy Stack: Numpy, Pandas, Scipy, Matplotlib, IPython, Sympy
● Astropy, Biopy, RDKit etc.
● Tensorflow, Keras, NLTK, scikit-learn etc.
● MPI, CUDA etc.

2

Why use Packages?
• As a programming

scientist/engineer etc., you
are not a computer scientist
● All you care is that code

works (accuracy) and it runs
in reasonable time

● DON’T REINVENT THE
WHEEL

3

Why learn programming?
• Extend the function of packages and outside

software
● This is why OOP is so important- inheritance and

abstraction
• Connect various packages together

● Rarely will a single package have what you need
specifically

• Occasionally, write completely novel code

4

Managing Packages
•Multiple types of package
managers
●Most common is pip, (i.e pip

install <some package>)
● Most usage, but also low level and

kind of tempermental
●Alternative solution: conda
● Less usage, but still has a majority of

packages that you are likely to use
● Straight forward, can separate

different packages into different
environments

● Install instructions generally on the
github page for the package

5

Using Packages
•After installing them, import them at the top of
your code
●Only import what you need- if you need 1 function from

a package, only import that single package
●You can shorten the names of packages using the as

keyword- this can be useful for names that are really
long
● Some common shorthand that you will see:

● import numpy as np
● from matplotlib import pyplot as plt
● import math.random as random

6

You’ll end up using A LOT of
packages
• Packages depend on other packages

● You won’t use many backend packages, but
they are necessary for running primary
packages

● Version control issues - some packages require
older versions of code, some require newer
versions - this is why you should use Anaconda
to make environments

7

Pros of Packages
• Most features are already built for you

● Faster and more accurate than what the
majority of people can code

• Wide development base means more
brains

• Generally extensible and can be combined
together in multiple packages

8

Cons of Packages
• Bugs are really hard to track down

● You did not write the code so you have no clue where
to look

● Many packages of scientific code are maintained by
generations of PhD students- nobody has any clue
which code does what after a while or the package
dies when the person graduates :(

• Version control can be tough- some packages
need some dependencies in very specific
versions

• Stuck with stupid developer decisions

9

Con Example

10

The SciPy Stack

11

NumPy- what makes Python useful
• NumPy is a numerical computation library for

Python
● Basically gives it the power of fast

vector/matrix-based computation- this is similar to
Matlab

● Syntax is also incredibly similar to Matlab (still 0
indexed like true CS!)

• Every single useful package in ML/ deep
learning/ most scientific computation will use
NumPy for numerical computation

12

NumPy- nuts and bolts
• Built upon C (this means it is fast)
• Standard data type- the ndarray

● Homogenous typing
● In general, preallocated memory

• 1000 x 1000 matrix multiply
● Python triple loop takes > 10 min.
● Numpy takes ~0.03 seconds

13

No One:
Absolutely No One:
Me: import numpy as np

Arrays
Structured lists of numbers.

•Vectors

•Matrices

•Images

•Tensors

•ConvNets

14

Arrays, creation
•np.ones, np.zeros

•np.arange

•np.concatenate

•np.astype

•np.zeros_like,
np.ones_like

•np.random.random

15

Shaping
a = np.array([1,2,3,4,5,6])

a = a.reshape(3,2)

a = a.reshape(2,-1)

a = a.ravel()

1. Total number of elements cannot change.

2. Use -1 to infer axis shape

3. Row-major by default (MATLAB is column-major)

16

Math, universal functions
Also called ufuncs

Element-wise

Examples:
●np.exp
●np.sqrt
●np.sin
●np.cos
●np.isnan

17

Math, universal functions
Also called ufuncs

Element-wise

Examples:
●np.exp
●np.sqrt
●np.sin
●np.cos
●np.isnan

18

Math, universal functions
Also called ufuncs

Element-wise

Examples:
●np.exp
●np.sqrt
●np.sin
●np.cos
●np.isnan

19

Indexing
x[0,0] # top-left element

x[0,-1] # first row, last column

x[0,:] # first row (many entries)

x[:,0] # first column (many entries)

Notes:
●Zero-indexing
●Multi-dimensional indices are comma-separated (i.e., a

tuple)

20

Indexing, slices and arrays
I[1:-1,1:-1] # select all but one-pixel border

I = I[:,:,::-1] # swap channel order

I[I<10] = 0 # set dark pixels to black

I[[1,3], :] # select 2nd and 4th row

1. Slices are views. Writing to a slice overwrites the original
array.

2. Can also index by a list or boolean array.

21

Python Slicing
Syntax: start:stop:step

a = list(range(10))

a[:3] # indices 0, 1, 2

a[-3:] # indices 7, 8, 9

a[3:8:2] # indices 3, 5, 7

a[4:1:-1] # indices 4, 3, 2 (this one is tricky)

22

Axes
a.sum() # sum all entries

a.sum(axis=0) # sum over rows

a.sum(axis=1) # sum over columns

a.sum(axis=1, keepdims=True)

1. Use the axis parameter to control which axis
NumPy operates on

2. Typically, the axis specified will disappear,
keepdims keeps all dimensions

23

SciPy
• SciPy furthers many of the elements of NumPy

● Built on top of the array structure in NumPy
● Includes features like:

● FFT
● Clustering Algorithms
● Linear Algebra routines beyond NumPy
● Useful tools for engineers

24

Pandas
• Pandas makes tables

● Great for manipulating labeled data and time series
data

● As opposed to numerical indexing, use a combination
of numerical and labeled indexing

• Generally, used for data pre-processing as
opposed to actual processing
● Heavily used in the fields of finance and public

health
● Basically, spreadsheets in python

25

More Pandas
• The generic data type in Pandas is called

dataframes
● Load in data directly from CSV files
● Indexing is a little weird, so always brush up on

syntax
• Just like NumPy, very fast and very optimized

● Back-end for critical code written in C (do you see
the trend?)

26

Matplotlib- make pretty plots
• Matplotlib adds significant plotting

functionality to Python
● Heavily based on the Matlab coding environment
● Two ways to use plotting:

● Object-oriented based- more control but this can be super
confusing at times

● Command-based- less control, but easy to use interface that
is similar to Matlab

● All types of plots are accessible: heat maps, scatter
plots, histograms, pie charts, 3D plots

● Works well with NumPy and Pandas

27

Other Plotting Tools
• Bokeh adds the ability to make interactive plots

● Javascript front end allows embedding in website
and other documents

• Seaborn- built on top of Matplotlib
● Make your plots even prettier! (And add trend lines)

• Plotly

28

Workflow Tools
• Generally, most significant coding should

happen in an IDE
● This is what PyCharm is- important tools like code

autocompletion, refactoring, and automatic usage of
Version Control Software (VCS) like Github

● If you need to code more than 200 lines, especially
for classes, you should use an IDE

• If you need to run/test code, or do data analysis,
other types of tools that you should be using.

29

Workflow Tools-IPython
• Enhancement to the basic Python shell

● Supports code autocompletion, which is a game
changer

● Test out code that you write here, especially
fragment or snippets or when you’re not sure what to
write

● Memory recall - saves outputs of previous lines,
really nice when trying to debug code

● Through extensions, supports automatic reloading of
code- this is a great tool to use of test driven design.

● So are there any cons?
● Not really- you should 99.9% of the time be using this

instead of the normal Python shell

30

Workflow Tools- Jupyter Notebooks
• Combines IPython with the power of an IDE

● Write complicated code AND be able to run small
snippets

● Useful for data analysis scripts and visualization
● Supports plotting within the interface

● Segment code into blocks- only run what you need to
run

● Runs through your browser
● Biggest issue- you still need to use a GUI to work with this

program
● Use this tool frequently

31

More Resources
• scipy.org
• Documentation, documentation, documentation
• Github pages for various packages
• Read people’s blogs

● People LOVE to brag about the code they wrote or
how they used it

32

