
Using Objects and Images in Python

Look at little UTA Tiffany using objects! Learn from her!

based in part on notes from the CS-for-All curriculum developed at Harvey Mudd College

1

What Is An Object?

• An object is a construct that groups together:

• one or more data values (the object's attributes)

• one or more functions that operate on those data values
(known as the object's methods)

• Objects are typically nouns

• Attributes correspond to adjectives (i.e., properties of the
noun)

• Methods correspond to verbs that act on the noun

2

Strings Are Objects

• In Python, a string is an object.

• attributes:

• the characters in the string

• the length of the string

• methods: functions inside the string that we can use
to operate on the string

 upper() replace()
 lower() split()
 find() ...
 count()

contents 'h
'

'e
'

'l
'

'l
'

'o
'

length 5

 upper() replace()
 lower() split()
 find() ...
 count()

contents 'b
'

'y
'

'e
'

length 3

string object for 'hello' string object for 'bye'

3

Calling a Method

• An object's methods are inside the object,
so we use dot notation to call them.

• Example:

name = 'Perry'

allcaps = name.upper()

• Because a method is inside the object,
it is able to access the object's attributes.

the object's
variable the method

name

the dot

 upper() replace()
 lower() split()
 find() ...
 count()

contents 'P
'

'e
'

'r
'

'r
'

'y
'

length 5

string object for 'Perry'

4

String Methods (partial list)

• s.lower() return a copy of s with all lowercase characters

• s.upper() return a copy of s with all uppercase characters

• s.find(sub) return the index of the first occurrence of the
substring sub in the string s (-1 if not found)

• s.count(sub) return the number of occurrences of the
substring sub in the string s (0 if not found)

• s.replace(target, repl) replace all occurrences of the
substring target in s with the substring repl

5

Examples of Using String Methods

>>> weather = 'A snowy start to Spring!'

>>> weather.upper()
'A SNOWY START TO SPRING!'

>>> weather.lower()
'a snowy start to spring!'

>>> weather.replace('s', 'f')
'A fnowy ftart to Spring!'

>>> weather
'A snowy start to Spring!'

6

Splitting a String

• The split() method breaks a string into a list of substrings.

>>> name = 'Martin Luther King'
>>> name.split()
['Martin', 'Luther', 'King']
>>> components = name.split()
>>> components[0]
'Martin'

• By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

• You can specify a different separator:
>>> date = '11/10/2014'
>>> date.split('/')
['11', '10', '2014']

7

hw02: Image Objects

• Each Image object has:

• attributes:

• the name of the image

• the height of the image

• the width of the image

• the pixels in the image

• methods:

• img.get_height() – returns the height of the image img
• img.get_width() – returns the width of the image img

• img.get_pixel(r, c) – returns the list of RGB values for
the pixel at position (r, c) in the image img

• img.set_pixel(r, c, rgb) – changes the RGB values for
the pixel at position (r, c) in img to the list rgb

pixels a list of lists
 get_height
get_pixel
 get_width
set_pixel

width 338

name 'spam.png
'

an Image object

height 334

8

 image Image object

Different Image Objects for Different Images

9

• The color of each pixel is represented
by a list of 3 integers:

[red, green, blue]

• example: the pink pixel at right
has color
[240, 60, 225]

• known as RGB values

• each value is between 0-255

• Other examples:

• pure red: [255, 0, 0]
• pure green: [0, 255, 0]
• pure blue: [0, 0, 255]
• white: [255, 255, 255]
• black: [0, 0, 0]

Pixels in hw02

10

11

for r in range(h):
 for c in range(w):
 # process the pixel at (r, c)

Nested loops
and

 2D structure

11

12

Nested
loops ~ 2d
structure

for x in range(100):
 for y in range(100):
 f = pin_freq(x, y)
 c = freq_color(f)
 img.set_pixel(x,y,c)

Nested loops
and

 2D structure

12

The menu to implement:

(0) Input a new list of prices
(1) Print the current list
(2) Find the latest price
(3) Find the average price
(4) Find the standard deviation
(5) Find the min and its day
(6) Find the max and its day
(7) Test a threshold
(8) Your TTS investment plan
(9) Quit
Enter your choice:

hw02: T.T. Securities (TTS)

prices = [45, 80, 10, 30, 27, 50, 5, 15]
day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes a sequence of stock prices

Our starter code
def display_menu():
 """ prints a menu of options
 """
 print()
 print('(0) Input a new list of prices')
 print('(1) Print the current prices')
 print('(2) Find the latest price')

...
 print('(9) Quit')
 print()

...

Our starter code
def tts():
 prices = []
 while True:
 display_menu()
 choice = int(input('Enter your choice: '))
 print()
 if choice == 0:
 prices = get_new_prices()
 elif choice == 9:
 break
 elif choice == 1:
 print_prices(prices)
 elif choice == 2:
 latest = latest_price(prices)
 print('The latest price is', latest)
 ## add code to process the other choices here
 ...
 print('See you yesterday!')

User Input
• Getting a string value from the user:

 variable = input(prompt) where prompt is a string

• Getting an integer value:

 variable = int(input(prompt))

• Getting a floating-point value:

 variable = float(input(prompt))

• Getting an arbitrary non-string value (e.g., a list):

 variable = eval(input(prompt))
• eval treats a string as an expression to be evaluated

• Examples:
 name = input('name of assignment: ')
 count = int(input('possible points: '))
 scores = eval(input('list of scores: '))

User Input
• Getting a string value from the user:

 variable = input(prompt) where prompt is a string

• Getting an integer value:

 variable = int(input(prompt))

• Getting a floating-point value:

 variable = float(input(prompt))

• Examples:
 name = input('name of assignment: ‘)
 count = int(input('possible points: '))
 price = float(input('enter a price: '))

Our starter code
def get_new_prices():

new_list = eval(input('Enter new prices: '))
return new_list

def print_prices(prices):
 """ prints the current list of prices
 input: prices is a list of 1 or more numbers.
 """
 ## IMPORTANT: You will need to change this...
 print('current prices:', prices)

def latest_price(prices):
 return prices[-1]

Our starter code
def get_new_prices():
 """ gets a new list of prices from the user and returns it
 """
 try:
 new_price_list = input("Enter a new list of prices: ")
 new_price_list = [float(x) for x in \

new_price_list.split(' ')]
 return new_price_list
 except:
 print('\nInvalid input. System exiting...\n')
 exit()

def print_prices(prices):
 """ prints the current list of prices
 input: prices is a list of 1 or more numbers.
 """
 ## IMPORTANT: You will need to change this...
 print('current prices:', prices)

def latest_price(prices):
 return prices[-1]

Functions you'll write

All use loops…

def average(prices)Menu
def stdev(prices)

def minday(prices)

def maxday(prices)

plus others!

 (L[i] - Lav)
2Σ

len(L)
i

(0) Input a new list of prices
(1) Print the current list
(2) Find the latest price
(3) Find the average price
(4) Find the standard deviation
(5) Find the min and its day
(6) Find the max and its day
(7) Test a threshold
(8) Your TTS investment plan
(9) Quit
Enter your choice:

Min price

L = [45, 80, 10, 30, 27, 50, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

m =

track the value of the minimum so far as you loop over list

m is the "min so far"

What's the idea for finding the smallest (minimum) price?

def minprice(prices):
 m = prices[0]
 for x in prices:
 if x < m:
 m = x
 return m

L = [45, 80, 10, 30, 27, 50, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

m =
45

m =
10

m =
5

5 is
returned

Min price

Min price vs. min day

def minprice(prices):
 m = prices[0]
 for x in prices:
 if x < m:
 m = x
 return m

L = [45, 80, 10, 30, 27, 50, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

What about the
day of the

minimum price?

m =
45

m =
10

m =
5

5 is
returned

T.T. Securities
==

Time Travel
Securities!

(0) Input a new list of prices
(1) Print the current list
(2) Find the latest price
(3) Find the average price
(4) Find the standard deviation
(5) Find the min and its day
(6) Find the max and its day
(7) Test a threshold
(8) Your TTS investment plan
(9) Quit
Enter your choice:

Min price vs. min day

def minday(prices):
 ???
 for i in range(len(prices)): # index-based!
 if _________:

 return mi

L = [45, 80, 10, 30, 27, 50, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

6 should be
returned

The TTS Advantage!

Your stock's prices:

What is the
best TTS

investment
strategy here?

L = [45, 80, 10, 30, 27, 50, 5, 15]

Day Price
 0 45.00
 1 80.00
 2 10.00
 3 30.00
 4 27.00
 5 50.00
 6 5.00
 7 15.00

You may only sell after you buy.

The TTS Advantage!

Your stock's prices:

What is the
best TTS

investment
strategy here?

L = [45, 80, 10, 30, 27, 50, 5, 15]

Day Price
 0 45.00
 1 80.00
 2 10.00
 3 30.00
 4 27.00
 5 50.00
 6 5.00
 7 15.00

You may only sell after you buy.

def diff(l1, l2):

Hint! Track the min diff so far as you loop over l1 and l2…

diff should return the smallest
absolute diff. between any value
from l1 and any value from l2.

Hint! Use nested loops!

Finding a minimum difference

>>> diff([12,3,7], [6,0,5])
1

l1 l2

def diff(l1, l2):
mindiff = abs(l1[0]–l2[0])

 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 mindiff = d
 return mindiff

def diff(l1, l2):
mindiff = 0

 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 mindiff = d
 return mindiff

Which of these works?

def diff(l1, l2):
 mindiff = abs(l1[0]–l2[0])
 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 return d
 else:
 return mindiff

 more than one of them

A.

B.

C.

D.

def diff(l1, l2):
mindiff = abs(l1[0]–l2[0])

 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 mindiff = d
 return mindiff

def diff(l1, l2):
mindiff = 0

 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 mindiff = d
 return mindiff

Which of these works?

def diff(l1, l2):
 mindiff = abs(l1[0]–l2[0])
 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 return d
 else:
 return mindiff

 more than one of them

A.

B.

C.

D.

>>> diff_indices([12,3,7], [6,0,5])
position 2 in first list
position 0 in second list

l1 l2

What if we want the indices of the min-diff values?

def diff_indices(l1, l2): # what needs to change?
 mindiff = abs(l1[0] – l2[0])

 for x in l1:
 for y in l2:
 d = abs(x – y)
 if d < mindiff:
 mindiff = d

 return mindiff

should print
instead of returning

>>> diff_indices([12,3,7], [6,0,5])
position 2 in first list
position 0 in second list

l1 l2

What if we want the indices of the min-diff values?

def diff_indices(l1, l2):
 mindiff = abs(l1[0] – l2[0])
 pos1 = 0
 pos2 = 0

 for i in range(len(l1)):
 for j in range(len(l2)):
 d = abs(l1[i] – l2[j])
 if d < mindiff:
 mindiff = d
 pos1 = i
 pos2 = j
 print('position', pos1, 'in first list')
 print('position', pos2, 'in second list')

should print
instead of returning

