cs4_section1

February 3, 2019

In [1]: print(3*"Welcome to section!")
Welcome to section!Welcome to section!Welcome to section!

In [58]: \#Try these exercises out! Create the result strings below the prompt using the followin \#Statements as possible
str1 = 'go cs4!'
str2 = 'puppies'
str3 = 'babies'
str4 = 'cit'
\#bop-insert code below
bop =str3[0]+str1[1]+str2[0]
print (bop)
\#apps
apps= str3[1]+str2[::3]
print(apps)
\#sect- do this in two operations
sect $=\operatorname{str} 3[-1:-3:-1]+\operatorname{str} 4[:: 2]$
print(sect)
\#guppies 4 bb-This is hard!
long_string=str1[0] +str2[1:]+str1[2::3]+str1[2]+2*str3[2] print(long_string)
bop
apps
sect
guppies 4 bb

In [27]: \#Let's trace through a program!
def simple_program(a_list, $\mathrm{a}=$ None, $\mathrm{b}=$ None) :
"""Takes a slice of $a_{-} l i s t$ (containing integers) defined from [a:b] and adds the fr

```
    It then adds that new value to a and b and returns the product of these values. ""'
    spliced_list = a_list[a:b]
    print(spliced_list)
    c=spliced_list[0]
    new_element = a_list[0]+a_list[-1]
    if a==None:
        a=0
    a = a + new_element
    b = b + new_element
    final_product = a*b
    return final_product
```

In [28]: \#Let's do some examples
print(simple_program([1,2,3,4,5,6,7,8], 1, 4))
$[0,1]$
195
In [17]: print(simple_program([0,1,1,2,3,5,8,13], 2,5))
\#spliced_list=[1,2,3]
\#new_element=13
\#a=15
\#b=18
\#final_product=270
270
In []: print(simple_program([0,1,1,2,3,5,8,13], 4,5))
In []: print(simple_program([0,1,1,2,3,5,8,13], b=2))
In []: print(simple_program([0,1,1,2,3,5,8,13], a=2))

What's one easy way to trace the program while it's running? Printing! Printing lets the user or the programmer see the values of the program. Lets try an example.

```
In [59]: def reduced_mass_function(a,b):
    | | |
    Returns the reduced mass of two objects. a and b are integers.
    | | |
    #Calculate the numerator first
    numerator= a*b
    print(numerator)
    full_value = numerator/(a+b)
    print(full_value)
    return full_value
def reduced_weight_diatomic(compound_name, mass1, mass2):
    reduced_mass = reduced_mass_function(mass1, mass2)
    print('The reduced mass of', compound_name, 'is',reduced_mass)
```

In [60]: reduced_weight_diatomic('hydrogen', 1, 1)

1
0.5

The reduced mass of hydrogen is 0.5

In [61]: \#Let's write some basic functions now!
def reverse(string):
" ॥ "
Returns the string backwards. For instance, "Hello" becomes "olleH". Try writing th """
return string[::-1]
reverse("Hello")
Out [61]: 'olleH'

In [62]: def repeat(string, i): """ Given a string and a number, repeat the string that number of times. Print out your """ return string*i
repeat("CS4",4)

Out [62]: 'CS4CS4CS4CS4'

In [63]: def halfReverse(string):
"""
Take the first half of the string and reverse it. Then, return the reversed half ar Try using the reverse function we wrote earlier.
Example: "Hello" -> "eHllo"
"""
half_index = len(string)//2
half_string= string[half_index-1::-1]
return half_string + string[half_index:]
halfReverse("Hello")

Out [63]: 'eHllo'

