
cs4_section4

February 23, 2019

What is recursion?
Answer: Recursion is a problem solving strategy in which you solve a big problem using sub-

problems until you cannot break the problem down any further. A fun example of this in real
life is figuring out what row you’re sitting in during lecture; instead of having to count how many
rows there are in front of you, you can deduce that the row your sitting in is 1 + the row the person
in front of you is sitting in. So you can solve this problem by asking the person in front of you,
who will ask the person in front of them, and so on until you reach the person in the front row,
who knows where they’re sitting!

What does this look like in code?
Let’s try out a different example. Below is a function called powerOf2 which takes in an int n,

where n ≥ 0 and recursively computes 2n. Note that we could just write 2**n but then we’d never
learn recursion!

def powerOfTwo(n):
return the nth power of 2 for n >= 0
Base case
if n == 0:

return 1
Recursive Case
return 2 * powerOfTwo(n - 1)

There are 2 primary components of this code:

1. The Recursive case: return 2 * powerOfTwo(n - 1) This step is the meat of the recur-
sion. What it does is calls the same function, but on a smaller subset of the data. Without
this line of code, we haven’t really done anything recursive. Without making the problem
smaller, our code will never finish execution.

2. The Base case: if n == 0: return 1 Making a problem smaller is great! But you cant make
it smaller forever and ever. At some point, you should reach a point where your problem
cannot be broken down any further; this point is your base case. In your base case, you
should be returning some constant value. Be careful here! Just because you know how to
compute something doesn’t mean it is the simplest a problem can be; n == 1 cannot be your
base case because 0 is a valid input to your program!

What is map?
Answer: map is a higher order python function that takes in a function and a list and applies

that function to every element of the list. It’s super cool and very useful for simplifying code, and
you’re going to write your own implementation of it for hw04

You can play around with python’s implementation to see how it works below:

1

In []: # Lets try it out with our powerOfTwo code
def powerOfTwo(n):

return the nth power of 2 for n >= 0
Base case
if n == 0:

return 1
Recursive Case
return 2 * powerOfTwo(n - 1)

test_list = [] #fill this in with a list of ints of your choosing

Note that map returns a map object! We need to cast that to a list
awesome_result = list(map(powerOfTwo, test_list))

Feel free to try it out with a different function or list!
print(awesome_result)

What is Abstract Testing?
Not every piece of code/functions is easily testable with assert statements. For instance, a

function that approximates the square root of a number may use toy tests of perfect squares be-
cause you can’t figure out what the output necessarily may be for more complex numbers. you
can get lucky based on how complicated your toy test is i.e. for perfect squares your square root
function might work great but for other numbers it might not work at all.

How do you test for these complex values? Sanity checks! Sanity checks basically tell you if
your output makes sense- for instance, in the square root example, the square root of 40 should
fall between 6 and 7. So you don’t have to actually know the value of square root of 40. You can
test if your output is between 6 and 7 and use that as a proxy to know if your value is correct.

This is very useful for functions that won’t give the same output every time - random func-
tions. Use the generate_text method: we can write a toy output that will give us the same thing
every time- look at our solution to understand this.

We don’t know what the output will be every time, but we know a couple of things about
the text that will be generated- for every preceding word, the current word should be in its list
in the dictionary. So what can we do? We can iterate through the generated text and check if the
next word is in the current word’s dictionary. If it is, we update a variable that keeps track of
how many words are correct- the total number of correct words should equal the total number of
words present in the passage.

Here’s some pseudocde

def test_gentext(generated_text, dict):
true_count=0

for each index in generated_text:
if word(index) is in dict[word(index-1)]

true_count += 1
assert(true_count == len(generated_text))

While this won’t necessarily tell us if our method truly worked, it at least gives us some idea
or a sanity check that our solution is plausible.

In []:

2

