CS 16, Summer 2021

Homework 9
Due Friday, July 30 at 12:59 PM

Fun Sea Creature Fact: A shrimp’s heart is in its head!

Installing and Handing In

Accept the GitHub assignment herel Homework is handed in through Grade-
scope. For written portion, submit a PDF and match the questions accordingly.
For the coding portion, submit ALL of the .py files.

Written Problems

Problem 9.1

Negative weights

Purpose: Critically thinking about Dijkstra’s algorithm
Resources: Shortest Paths Lecture (June 24)

The proof of Dijkstra’s algorithm relies on all the weights being non-negative.
However, you’ve heard rumors that there’s a new version of Dijkstra’s algorithm
that computes the shortest path and accounts for negative weights.

This new algorithms calls the weight of the most negative (i.e. smallest)
edge, m. The algorithm then begins by adding |m/| (absolute value of m) to
the weight of each edge, thus making all weights non-negative. It then uses the
original Dijkstra’s algorithm to find the shortest path.

Does this algorithm still find the shortest path of the original graph (before
|m| is added)? Why or why not? (Note: if you conclude the new algorithm
doesn’t work, instead of explaining why not, you may give a counterexample).

Problem 9.2

Connecting Aquariums

Purpose: Critically thinking about graphical representations
Resources: Intro to Graphs Lecture (June 22), Shortest Paths Lec-
ture (June 24), MSTs Lecture (June 29), and More MSTs Lecture
(July 1)

The New National Aquarium’s location is referred to as location Q. All of the
other aquariums need to be reachable from this starting point, @. The aquarium
locations are a set of points P; (i = 1...n). Note: @ is not included in the set
of points P;. An aquarium’s location can be connected to the starting point
directly by a single path or by a chain of paths. This means location 5 could be

https://classroom.github.com/a/HZTUjoft

CS 16, Summer 2021

connected by a path to location 2, which could then be connected by a path to
the starting point @); now locations 2 and 5 are both connected to the starting
point as required. Each path is a distance, so it will always be positive. Also
note that if a path directly connects two aquarium locations the path will be a
straight line.

Assume that you’re given the locations of the points P; and the starting
point, @, and that d(A, B) is a constant-time function that gives the straight-
line distance between A and B, (straight-line distance means that if one were
to draw a line between A and B, without regarding paths, the length of this
line would be d(A, B)). Your goal is to find the sequence of paths that cover
the least total distance and connect all aquariums to the starting point.

Describe how to model this problem as a graph problem, and then give a brief
paragraph description of your solution. If your solution uses an algorithm from
class (this is not required), no need to explain the intricacies of the algorithm,
instead focus on why this algorithm solves this problem. Also be sure to include
what the running time of your algorithm is in terms of n.

Python Problems
Problem 9.3

Functional Programming Practice

Purpose: Brief practice with functional programming to prep you for
upper-level courses
Resources: Functional Programming Lecture (July 20) and Section 8

Overview

In functional.py fill in the corresponding stencil functions to solve each of the
below problems using ONLY python’s built in map or reduce (it is up to you
to decide which one is appropriate for the problem).

Details

e You should not be using any other function calls, and you should also not
need to use any for loops.

e The functions you pass into map or reduce must be anonymous functions.
e The solution to each one is a single line of code (besides the error handling).

e If you want to return a list of what map returns, you cannot call
return map(blah blah...) because map returns a map object (which is
an iterator). Instead, you must cast this to a list by calling
return list(map(blah blah...))

CS 16, Summer 2021

Input/Output

Each problems’ input and output are outlined below. Remember that you can
assume your function will be tested on anything that fits within the below
definition for Input, but will not be tested on inputs that don’t fit within the
below input definition.

Testing

Write your test cases in functional_test.py. A few examples have already
been filled in for you. DO NOT write your tests within the example test
functions we provide! Our scripts will skip the test functions we provide, so
write your own functions to test your code thoroughly.

Part 1: apply_all
Input

— A list of unary (one argument) functions and a number

— This list can be empty

— Both the list of functions, and the number, can also be None. Note:
the list’s items will not be None

Output

— If the input list is not None: A new list with each of those functions
applied to that number. In other words, if you pass in the list of
functions [f(x), g(x), h(x)] and the number n, apply_all should
produce [f(n), g(n), h(n)].

— If the input list is None: raise an InvalidInputException.
Example

apply_all([lambda x: x+1, lambda x: x+2, lambda x: x+3], 4) —
(5, 6, 7]

Part 2: compose
Input
— A list of unary (one argument) functions and a number

— This list can be empty

— Both the list of functions, and the number, can also be None. Note:
the list’s items will not be None

Output

— Input A list of unary (one argument) functions and a number. Both
the list of functions, and the number, can also be None. Note: the
list items will not be None

CS 16, Summer 2021

— If the input list is not None: a single number that is the composition
of all of the functions in the list applied to n. The inner-most function
in the composition will be the first function in the input list, and the
outer-most function in the composition will be the last function in
the input list. In other words, if you pass in the list of fuctions
[f(x), g(x), h(x)] and the number n, compose should produce
h(g(f(n)))).

— If the input list is None: raise an InvalidInputException.

Example
compose([lambda x: x+1, lambda x: x+2, lambda x: x+3], 4) — 10.

Part 3: list_compose_steps
Input

— A list of unary (one argument) functions and a number
— This list can be empty

— Both the list of functions, and the number, can also be None. Note:
the list’s items will not be None

Output

— Input A list of unary (one argument) functions and a number. Both
the list of functions, and the number, can also be None. Note: the
list items will not be None

— If the input list is not None: a list with each of the intermediate values
produced by compose In other words, if you pass in the list of func-
tions [f(x), g(x), h(x)] and the number n, 1ist_compose_steps
should produce [n, £(n), g(f(@)), hig(f(n)))]

— If the input list is None: raise an InvalidInputException.

Example
list_compose_steps([lambda x: x+1, lambda x: x+2, lambda x: x+3], 4)
— [4, 5, 7, 10].

Additional Details Please note that using append will not work in
your lambda expression because append doesn’t return anything. To
append some number x to a list, you should write 1ist+[x] instead of
list.append(x).

CS 16, Summer 2021

Problem 9.4
Dijkstra’s Algorithm

Purpose: Implementing Dijkstra’s algorithm
Resources: Shortest Paths Lecture (June 24)

Overview

In the file dijkstra.py implement dijkstra’s algorithm so that your function
finds the shortest paths from a given vertex to all other vertices.

Input/Output

You can assume your function will be tested on anything that fits within the
below definition for Input, but will not be tested on inputs that don’t fit within
the below input definition.

Input:

e g and src.

g is a connected, undirected, graph with positive (0 included) edge
weights. You can assume that there will be no two edges between the same
vertices. This graph will be an instance of MyGraph, which is declared in

mygraph.py.
src is a vertex. Note that src is not guaranteed to exist within g.

e g or src, or both can be None
Output:

e A tree that contains the shortest paths from src to all other vertices.
This tree will be an instance of MyGraph, which is declared in mygraph. py.
Note, since the output should have the properties of a tree, your output
must not contain any cycles.

e If either g or src are None throw an InvalidInputException

e If src is the only node in the graph, meaning there are no shortest paths,
return just the src node.

e If src is not contained within g, throw an InvalidInputException

Details

e You may not manipulate or destroy the graph. Decorations are okay, but
do not add or remove vertices or edges.

o To get the weight between two edges call MyEdge . element (), where MyEdge
is the edge in question.

CS 16, Summer 2021

e To figure out how to make your own tree/graph, look in mygraph.py.
Within the MyGraph class are all the methods you can call on an instance
of MyGraph.

e We have imported heappriorityqueue in case you decide this data struc-
ture would be useful. If you intend to create a heappriorityqueue you
would initialize it by calling q = HeapPriorityQueue().

Testing

Write your tests in dijkstra_test.py. Remember to think about how to test
an implementation if there are multiple shortest paths.

