
CS 16, Spring 2020 1 WRITTEN PROBLEMS

Homework 5

OPTIONAL PROBLEMS
(No due date)

1 Written Problems

First Common Ancestor

Design an algorithm and write code to find the first (farthest from the root)
common ancestor of two nodes in a binary tree. Avoid storing additional nodes
in a data structure.
Note: This is not necessarily a binary search tree.

Solution:

/* We know we have found the first (farthest from the root)

common ancestor when p and q are not "related" on the same

side of the tree from a given ancestor (curr) */

commonAncestor(Node curr, Node p, Node q):

"""commonAncestor: root node (curr) and p, q nodes -> node

Purpose: Find the first ancestor of the p and q nodes in the tree

"""

if (related(curr.left, p) && related(curr.left, q))

return commonAncestor(curr.left, p, q)

if (related(curr.right, p) && related(curr.right, q))

return commonAncestor(curr.right, p, q)

return curr

/* Determines if two inputted nodes are related.

Traverses down the tree from ancestor until the

descendant is found (returns true) or there are no

more nodes to be checked (returns false) */

related(Node ancestor, Node descendant):

if (ancestor == null)

return false

if (ancestor == descendant)

return true

return related(ancestor.left, descendant) || related(ancestor.right, descendant)

1

CS 16, Spring 2020 1 WRITTEN PROBLEMS

Next Node

Write an algorithm to find the ‘next’ node (e.g., in-order successor) of a given
node in a binary search tree where each node has a link to its parent.

Solution:

findNext(Node n):

"""findNext: node -> node

Purpose: find the n’s ’next’ node in a binary search tree

"""

if (n != null):

Node p

if (n.parent == null || n.right != null):

p = leftMostChild(n.right)

else:

while ((p = n.parent) != null):

if (p.left == n):

break

n = p

return p

return null;

leftMostChild(Node n):

if (n == null) return null

while (n.left != null):

n = n.left

return n

External Nodes

An extended binary tree is a tree, such as the one pictured below, in which each
missing child is replaced with an external node (labled with an E). Prove by
strong induction that an extended binary tree with n internal nodes has n+1
external nodes.

2

CS 16, Spring 2020 1 WRITTEN PROBLEMS

I

I

I

I

E E E

E E

Solution:

Proof. By induction on n the number of internal nodes in a tree. Let P(n)
represent the statement that “for all such binary trees with n internal nodes,
the number of leaves is always one more than the number of internal nodes”.
Base case: P(0) is the case in which there is only one node in a tree necessitating
that it is a leaf. P(0)= 1 = n + 1.
Induction step: for n ≥ 1 and k = n+1, prove P (n) implies P (k)
Goal: for n ≥ 1, for all k < n, P(k) implies P(n). Given a binary tree with n ≥

1 internal nodes, we know it has two subtrees with numbers of internal nodes
given by l and r such that l + r + 1 = n (all of the internal nodes of the given
tree are distributed between the left subtree, the right subtree, and the root).
By our inductive hypothesis, P (l) and P (r) tell us that the number of leaves
in the left and right subtrees (which are smaller than the given tree) are l + 1
and r + 1 respectively. The total number of leaves in the given tree is then their
sum l + r + 2. By our definition, the number of internal nodes in the given tree
is l + r + 1. The total number of leaves is (l + r + 1) + 1, exactly one more
than the number of internal nodes. Thus P (n) holds.
By induction, the original claim is proven for any tree of the given structure.

3

CS 16, Spring 2020 1 WRITTEN PROBLEMS

Reverse Leaves

Write an algorithm to reverse the order of the leaves in a given binary tree. The
tree can be manipulated and changed, so long as the leaves are reversed. For
example:

B

A

C C V

A

Solution:

reverseLeaves(Node curr):

"""reverseLeaves: root node (curr) -> root node

Purpose: reverse the leaves of the tree and return its root

"""

//if curr in null, return null

if (curr == null):

return null

//if curr has a left and right child, switch them

if (curr.left != null && curr.right != null):

temp = curr.left

curr.left = curr.right

curr.right = temp

//reverse the leaves of the subtrees with the left and right child as roots

reverseLeaves(curr.left)

reverseLeaves(curr.right)

//the leaves have been reversed since the whole tree is reversed, so return the root

return curr

4

	Written Problems

