
CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

Project 4

Graph
Out: Tuesday, July 20

In: Wednesday, August 4, 11:59 pm ET
The final deadline will be the late deadline on Friday, August 6. We will not accept

any handins after.

1 Installing, Handing In, Demos

1. Click here to get the stencil code from GitHub (refer to the CS16 GitHub Guide
for help with GitHub and GitHub Classroom). Navigate to your repository, click
on the green Code button, and copy the project url. Then, go to your terminal in
IntelliJ, cd to the src inside your cs16 folder, and use the command:

git clone <project url>

Once you’ve cloned your personal repository from GitHub, you’ll need to rename the
folder from graph− <yourGitHubLogin> to just graph. You can do this by right-
clicking on the folder and going under Refactor → Rename. You will have issues
running your code until you make the change.

2. To hand in your project, upload your code to the Gradescope assignment through the
GitHub option (GradeScope Guide). Make sure your submit the code portion
to the Graph assignment and the written problems to the Graph Reflection
assignment. Remember that unlike for the homeworks, you will not be evaluating
your testing suite using Gradescope.

3. To run the demo, go to this Google Drive folder and download either the pkg (for
MacOS users) or exe (for Windows users) file. For Mac users, if you get an error
saying you cannot download from unidentified developer, go to System Preferences >
Privacy & Security > General > Open anyway.

2 Using IntelliJ

If you do not already have IntelliJ set up for CS16, follow the instructions here. Please
post on Ed or come to hours if you have any questions!

3 Introduction

In this assignment, you will implement a graph using an adjacency matrix as its underlying
data structure. You will also implement the Prim-Jarnik algorithm for finding minimum
spanning forests (MSFs) and the PageRank algorithm.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 1

https://classroom.github.com/a/eGmpbJW-
https://docs.google.com/document/d/1x4-iYjHz1dZcI77QZ2E2NzEBPUgEWj7hRq2shDczX5s/edit
https://docs.google.com/document/d/1ily-aLD0CXMjlsyghWv0QstQrh5kC-oXfj9ohdEnmrY/edit?usp=sharing
https://drive.google.com/drive/folders/15kzb459c7g0WtFf8J7fdqoqGTd0SIoCP?usp=sharing
https://docs.google.com/document/d/1dJhjoXFwemsXW-Uvt4K-2UMOrCG5rfqbTaLuiRsxOHk/edit

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

4 Overview of Your Tasks

We have provided stencil code for the following classes: AdjacencyMatrixGraph, MyPrimJarnik,
MyPageRank, and MyDecorator. You need to fill in these stencils. Feel free to add any helper
functions you think are necessary as well. We will provide a brief overview and specific in-
formation about these classes and their methods in Section 7 of this handout.

1. AdjacencyMatrixGraph: You will implement your graph here. Its underlying data
structure will be an adjacency-matrix.

2. MyPrimJarnik: Here, you will implement the Prim-Jarnik algorithm. You will use
decorations to mark vertices with specific information, and should return a collection
of edges that make up your MSF.

3. MyPageRank: Here, you will implement the PageRank algorithm. You should return
a Map mapping each Vertex to its rank.

4. MyDecorator: Here, you will define methods that allow you to “decorate” vertices of
your graph with specific information.

5 Reading

Refer to the slides from lecture and the help session to recall how Prim-Jarnik and PageRank
work. Chapter 5.1 of Dasgupta et al. and Volume 3 of Roughgarden also discuss this.

6 Visualizer

6.1 Using the Visualizer

You must implement vertices, insertVertex, edges, insertEdge, and endVertices
in AdjacencyMatrix before the visualizer will work. For the most part, using the
visualizer is intuitive: to create a vertex, left-click. To create two vertices with an edge
between them, click and drag, landing either on another pre-existing vertex or on nothing
to create a new one. Here are some less intuitive controls:

• select a vertex v as v1: left-click on the vertex

• select a vertex v as v2: shift + click on the vertex (or option-click for some com-
puters).

• remove a vertex and any incident edges: right-click on the vertex

• select an edge: left-click on the edge

• remove an edge: right-click on the edge

Project 4: Graph Wednesday, August 4, 11:59 pm ET 2

http://www.cs.berkeley.edu/~vazirani/algorithms/

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

• directedness: Prim-Jarnik only works on an undirected graph, while PageRank only
works on a directed graph.

– To account for this, the visualizer has a “toggle directedness” option. The visu-
alizer will always begin undirected, so make sure to toggle it to directed before
testing MyPageRank!

A note on adding edges: You can choose to add edges with a random weight, with the
distance between two vertices as the weight, or with custom weights that you give as input
to the visualizer.

The visualizer should run without any issues. If you are getting a RuntimeException, this
is an issue with your implementation.

• Your vertices may shift slightly after clicking PageRank. This is expected! You will
not be deducted for this shifting.

• Don’t worry if vertices expand to outside the white area representing the canvas of
the visualizer.

• Your visualizer should behave like the one in the demo. If you are wondering about
how something should behave, reference the visualizer.

6.2 Visualizer Methods

The following methods of AdjacencyMatrixGraph correspond to functionality in the visu-
alizer:

• areAdjacent(v1, v2): returns a boolean value describing whether there is an edge
starting on v1 and ending on v2. This is the same for both directed and undirected
graphs.

• connectingEdge(v1, v2): if the two selected vertices v1 and v2 are connected by
an edge, returns the edge. If the graph is directed, it should only return the edge if
there is an edge starting on v1 and ending on v2, or return null. Keep in mind that
this is different from areAdjacent(v1, v2)!

• endVertices(e): returns the two endpoints of an edge e. The order in which the
vertices are returned does not matter, regardless of whether the graph is directed or
undirected.

• opposite(v1, e): returns the second endpoint of an edge e (that is: if you select a
vertex and a connected edge - this will return the other vertex attached to that edge).
This method should be the same whether your graph is directed or undirected.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 3

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

• incomingEdges(v1): for an undirected graph, returns all edges attached to the se-
lected vertex v1. For a directed graph, it should return all edges that end on this
vertex.

• outgoingEdges(v1): for an undirected graph, returns all edges attached to the se-
lected vertex v1. For a directed graph, it should return all edges that start on this
vertex.

• toggleDirected(): should set the graph to be undirected if it is currently directed,
or directed if it is currently undirected. Your graph automatically starts undirected.
When you toggle the graph’s directedness, any existing vertices and edges are auto-
matically cleared.

Note that in order for the visualizer to work at all, you need to implement the following
methods: vertices(), insertVertex(), edges(), insertEdge(), and endVertices().

6.3 Debugging PageRank with the Visualizer

• The visualizer will represent the vertices with respect to their relative ranks.

– You can generally see which vertices should grow or shrink depending on how
many incoming and outgoing edges they have.

– It’s easier to visualize the expected results on smaller graphs!

• The Olympics graph is larger and more complicated than hand-drawn graphs so it
is a useful debugging tool. Make sure to run your PageRank on this graph before
handing in. It is also a great way to visualize how the PageRank algorithm works in
reality!

– To run Pagerank on the Olympics graph (and all other provided graphs), you
will have to load in the graphs using the ”Load Graph” button. The Olympics
graph is called olympics links.txt, and is provided for you in the stencil code.

– When loading in the Olympics graph, make sure you’re set in directed mode!
Otherwise, loading in the Olympic graph as an undirected graph will give you a
graph with all edge weights of 1.

• As always, refer to the demo if you have any questions about how your PageRank is
performing. If you enter the same graph into your program and the demo, the results
should be very similar.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 4

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

7 Your Code

7.1 Stencil

The stencil contains descriptions of the methods you’ll write, their run-time requirements,
parameters, and return values. Unless otherwise noted, all functions in the support
code are O(1).

7.2 AdjacencyMatrixGraph Class

7.2.1 Description

Your AdjacencyMatrixGraph should be able to represent either a directed or an undirected
graph. The underlying data structure for your graph will be an adjacency matrix. An
adjacency matrix is a 2D array. The ith column and ith row of this array represent the ith

vertex in the graph. Depending on if the graph is directed or undirected, the way edges are
stored within the adjacency matrix will vary.

In an undirected graph, if vertex 1 and 5 are connected by an edge, then entries (1, 5) and
(5, 1) in the adjacency matrix contain the edge that connects vertices i and j. Otherwise
they are null. Note that every edge is in two places in the array. For a directed graph,
each edge will only be stored once in the array. See the examples below.

Suppose we have an undirected graph containing vertices v1, v2, and v3, and that
edge e1 connects v1 and v2, and that edge e2 connects vertices v1 and v3. Here’s the
corresponding adjacency matrix:

v1 v2 v3

v1 null e1 e2

v2 e1 null null
v3 e2 null null

Now suppose we have a directed graph containing vertices v1, v2, and v3, and that there
is an edge e1 pointing from v1 to v3, and an edge e2 pointing from v3 to v2. Here’s the
corresponding adjacency matrix:

v1 v2 v3

v1 null null e1

v2 null null null
v3 null e2 null

Note that the adjacency matrix should be able to toggle between representing a directed
and undirected graph. Keep in mind that there should not be separate methods to handle
directed and undirected graphs, but that you should be able to handle both implementations
within the same methods.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 5

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

7.2.2 Implementing the Adjacency Matrix

Since we are using an adjacency matrix as our graph implementation, each vertex must
have a “number,” so that it can represent an index of a row and column in the array. This
assignment is not as trivial as it may appear. Arrays have a fixed size, so you cannot in-
definitely increase the number for each new vertex because you will exceed the size of your
array. Note that the number associated with a given vertex must be unique - it must not
be associated with any other vertex.

Your array should be able to hold up to MAX VERTICES vertices, which is a constant defined
in the support code.

7.3 Vertex and Edge Attributes

You will need to keep track of some information about the vertices and edges of your graph.
To that end, the support code classes GraphVertex and GraphEdge have some methods that
you may find helpful. View the Javadocs.

Note: In the support code, you’ll notice there are references to CS16Vertex and GraphVertex.
CS16Vertex is an interface that the class GraphVertex implements. You should be declaring
vertices of type CS16Vertex but instantiating new instances of GraphVertex.

7.4 MyPrimJarnik Class

This class implements a slightly modified version of the Prim-Jarnik MST algorithm. The
Prim-Jarnik algorithm has been extended to calculate an MSF (the collection of MSTs of
each connected subgraph of your graph). This algorithm is required to run in O(|V |2 log |V |)
time.1 Use CS16AdaptableHeapPriorityQueue (don’t use the NDS4 one).

Here’s an outline of the algorithm (which is presented in more depth in the reading – see
Section 5).

1. First, decorate each vertex with a key: you can think of the key as the “cost” of
adding a given vertex to the MSF. At each iteration of the algorithm, you will want
to add the edge that connects to the cheapest vertex to the MSF. Initially, each node
starts with a value of “infinity.” (You can use the Integer.MAX VALUE constant to
represent infinity.)

2. Insert the vertices into a priority queue, using the keys that were assigned in the
previous step.

1It can be made more efficient— it would run with complexity O((|V | + |E|) log |V |) if we were to use a
binary heap and an adjacency list and with complexity O(|E| + |V | log |V |) if we were to use a Fibonacci
heap and an adjacency list. Our implementation uses a binary heap and an adjacency matrix, which gives
us runtime O(|V |2 log |V |).

Project 4: Graph Wednesday, August 4, 11:59 pm ET 6

https://cs.brown.edu/courses/csci0160/static/files/docs/doc/graph/index.html

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

3. Remove the minimum vertex (v) from the priority queue, and add the edge that most
recently updated it (if any) to the MSF.

4. Examine all (if any) of v’s incident edges e whose opposite vertex u remains unvisited.
If u has a key greater than the weight of e, update the key to become the weight of e
(and make sure this change is reflected in the priority queue—to do this, you’ll need
to know the Entry in the PQ associated with each vertex). Keep track of which edge
most recently updated the key of vertex u (you may find a decoration useful here).

5. Continue to remove vertices from the priority queue (adding edges to the MSF and
updating other vertices as you go along, as described in steps 3 and 4) until the PQ
is empty.

Note that in addition to decorating edges as you go along, you must ultimately return
a collection of the edges that are in the final MSF. You may add edges to the collection
as you go along, or you may complete the entire algorithm and then check to see which
edges you should add to the collection. Feel free to use any sensible implementation of the
java.util.Collection interface.

7.5 MyDecorator Class

The CS16Decorator interface represents “decorations” that you will use to label vertices
and edges with specific information. The MyDecorator class is the implementation of this
interface that you will write and use. You may want to use this class to note that a specific
edge is part of your minimum spanning forest. Think about what type of data structure
you want to use in this class; it should be a data structure that you can quickly use (i.e.,
constant-time association and lookup) to associate edges and vertices with some type of
information.

7.6 MyPageRank Class

This class implements the PageRank algorithm. The algorithm takes in a directed Graph<V>,
where each vertex represents a page and each directed edge represents a link from one page
to another. The algorithm outputs a mapping from each vertex to its pagerank. You can
think of a page’s pagerank as some amount of fluid which represents the importance of
that page. If a page has many incoming links then that page will have a higher amount of
pagerank.

Even though the algorithm takes in anything that implements the Graph<V> interface,
we will only be testing MyPageRank on the MyAdjacencyMatrix class. The algorithm will
output each page’s pagerank. Remember that the sum of all the pageranks should equal
1. Also, note that the pagerank of a single page should be between 0 and 1 (inclusive).
Refer to the slides from lecture and from the help session to recall how the algorithm works.

Here is an outline of how you should implement the algorithm:

Project 4: Graph Wednesday, August 4, 11:59 pm ET 7

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

1. The algorithm relies on two important constants which must be stored and used
throughout your implementation. These are set for you and should not be changed:

(a) error: the algorithm needs to stop running when either of the following condi-
tions hold (whichever one comes first): (1) for each vertex v, the absolute value
of the difference between v’s pagerank in the previous round and v’s pagerank in
the current round is less than or equal to error; or (2) the algorithm has run
for 100 iterations.

(b) dampingFactor: is a constant that the algorithm uses to make sure that pages
don’t pass the entirety of their pagerank to their neighbors. Without this, for
certain graphs, all of the pagerank can accumulate in certain parts of the graph.
Also, pages that are disconnected from other pages would never get any pager-
ank. For this project, the damping factor is set to 0.85.

2. Store the vertices of the graph in an ArrayList so you can access them easily by index.
You can then use a second array to store, for each vertex, its number of outgoing edges.
Finally, you can use two more arrays: one that stores the amount of pagerank of each
vertex from the previous round and one that will store the amount of pagerank of
each vertex for the current round. Hint: It will be very helpful if the indexing among
these arrays is consistent; that is, the information you need for a page (e.g., its vertex,
its number of outgoing edges or its previous or current pageranks) is stored at the
same index across all these arrays. For example, if a vertex v is stored at index 0 in
your vertices array, then v’s number of outgoing edges would be stored at index 0 in
your outgoing edges array.

3. Initialize every vertex’s pagerank to be 1/N , where N is the total number of vertices
in the graph.

4. The PageRank algorithm runs in rounds and, as mentioned above, your implementa-
tion should run until the difference in pageranks between the current round and the
previous round is less than or equal to error or until it has executed 100 iterations.
In each round your implementation should:

(a) Decide how to handle sinks. See the lecture slides for a refresher on why sinks
cause problems and different ways to address them. See the help session slides
for two possible approaches.

(b) Depending on your approach, update the ranks produced from the previous
iteration by accounting for pages that are sinks (pages with no outgoing edges).
Look at the help slides for pseudocode.

(c) Use the pagerank values from the previous iteration of the algorithm to compute
the current pagerank values of every vertex and store them in your current
pagerank array. Hint: remember how directed edges are stored in an adjacency
matrix: if there is an edge from vertex 3 to vertex 2, then there is an entry at

Project 4: Graph Wednesday, August 4, 11:59 pm ET 8

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

location (3, 2) in the adjacency matrix (i.e., row 3 and column 2), but not at
location (2, 3). Make sure to keep this in mind when you compute the updated
pagerank of a vertex.

8 Conceptual Question

There may be cases where, due to ethical considerations, we do not want to display the
‘true’ rank of all webpages and instead want to alter the search results to prevent the
spread of false information. Suppose that, when someone searches ‘global warming’, we
want to ensure that a website that claims global warming to be a hoax has the lowest rank
of any page. (You can see more examples of this by loading other graphs; we give you the
following three graphs in the stencil: flatearth links.txt, global warming links.txt,
vaccines links.txt, which represent the webpage results when a user searches, “Is the
earth flat?,” “Is global warming real?,” and “Do vaccines cause autism?,” respectively).
However, we do not want to censor the page (i.e. delete the vertex from our graph). How
could you go about ensuring a page has the lowest rank of any vertex without simply
deleting it from the graph? Please outline your strategy and describe an algorithm that
could do this. We are looking for an algorithm that impacts how pagerank looks at a
vertex; as such, manually setting the final rank of a blacklisted site to be 0 at the end of the
algorithm is not a valid solution (it would also make your ranks not add up to 1!). Please
write your answer to this question in your README.

9 Written Questions

In a separate document, please answer the following questions thoroughly. Each answer
should contain 3-5 sentences and will be graded on thoughtfulness.

These optional readings may help you formulate your answers to the questions.

• How Google Interferes With Its Search Algorithms and Changes Your
Results – Wall Street Journal

• Google Search Upgrades Make It Harder for Websites to Win Traffic –
Bloomberg

Submit your file as a PDF onto GradeScope. Make sure you are submitting to the Graph
Reflection assignment.

1. Aside from the three searches given in the provided text files (regarding vaccines,
global warming, and the earth being flat), what are some other searches where it
may be beneficial to modify the search results? Please give at least 2 examples and
explain why the results should be altered OR explain why search results should never
be modified.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 9

https://www.wsj.com/articles/how-google-interferes-with-its-search-algorithms-and-changes-your-results-11573823753
https://www.wsj.com/articles/how-google-interferes-with-its-search-algorithms-and-changes-your-results-11573823753
https://outline.com/E6tjC4
https://outline.com/E6tjC4

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

2. Who currently has the ability to alter the search results? What are their incentives
or reasons for altering search results? Who should be responsible for the moderation
of search results and why?

10 Just for Fun

Please only attempt this when you have a fully-functional page rank algorithm.
In MyPageRank.java, implement the algorithm you describe in the conceptual question.
We have provided a list of all of the websites from the three search results that we pro-
vided that have been flagged for providing misinformation that you can access by calling
PageRank.blacklist in MyPageRank.java.

Please implement this in a helper method called removeBlacklist.

11 Testing

As usual, we require a well thought-out set of tests. We won’t give you too many hints
– you’ve come a long way in CS16, so you’re a pro at this by now! You will write
these test functions in the stencil files provided: GraphTest.java, MsfTest.java, and
MyPageRankTest.java.

In MyPageRankTest.java, we have provided two sample tests. The results of your PageR-
ank algorithm should be within 0.03 of the values specified in the sample tests. In addition
to these sample tests, you should write your own tests. While you don’t know the exact
pageranks of different pages in different graphs, you should still test relative pager-
anks (i.e. from the demo, you know that the pagerank of page X is greater/less than the
pagerank of page Y, so you should check to make sure this holds true for the values returned
by your own algorithm).

As always, please comment each testing function extensively. If there’s anything particu-
larly notable about your tests, include an explanation in your README.

12 What to Hand In

1. Code for the four classes, AdjacencyMatrixGraph, MyPageRank, MyPrimJarnik, and
MyDecorator.

2. Code for the three testing classes, GraphTest, MsfTest, and MyPageRankTest.

3. A README pointing out any bugs in your code, any significant design choices (talk
about the types of decorations you used, and how/why you used them), descriptions of

Project 4: Graph Wednesday, August 4, 11:59 pm ET 10

CS 16
Project 4: Graph

Intro to Algorithms and Data Structures
Wednesday, August 4, 11:59 pm ET

your test functions and your answer to the conceptual question. For more information,
see the README guide on the course website.

4. A separate PDF file containing your answers to the written questions, handed in to
Graph Reflection.

Project 4: Graph Wednesday, August 4, 11:59 pm ET 11

	Installing, Handing In, Demos
	Using IntelliJ
	Introduction
	Overview of Your Tasks
	Reading
	Visualizer
	Using the Visualizer
	Visualizer Methods
	Debugging PageRank with the Visualizer

	Your Code
	Stencil
	AdjacencyMatrixGraph Class
	Description
	Implementing the Adjacency Matrix

	Vertex and Edge Attributes
	MyPrimJarnik Class
	MyDecorator Class
	MyPageRank Class

	Conceptual Question
	Written Questions
	Just for Fun
	Testing
	What to Hand In

