

Project Compiler

CS031 – TA Help Session
November 28, 2011

Motivation
Generally, it’s easier to program in higher-level
languages than in assembly.

Our goal is to automate the conversion from a
higher-level language to assembly with a compiler.

In this project, we will code some techniques used
to create such compilers.

We will create a compiler for the made-up
language Blaise.

Blaise
Blaise is a small procedural language. While not
as complex as Java or C, Blaise is sufficiently
powerful to program many things.

It’s an LL(1) language, so at any given point, only
1 token is needed to determine which rule to
follow.

Except for global variable declarations, all code
goes inside procedures, and specific rules govern
the usage of these procedures.

Blaise Sample Code

Language features:
• Global variables (keyword var)
• Procedures, including main

(keyword procedure)

Support Code
We’ve provided lots of code. The only support
class that you may modify is MIPSCodeGenerator.

Support code includes:

• Many nodes (for building your parse tree)

• Classes to help with scoping and procedures
(including stack frames).

• A class to help with code generation

Compiler Stages
Scanning – Turn code into tokens (done for you!).

Parsing – Turn the tokens into the abstract syntax
tree. Make sure the grammar is followed.

Semantic analysis – Make sure the AST “makes
sense” (variable scope, type analysis, procedure
usage). Gather info for code gen (variables and
frames).

Code generation – Turn the AST into Assembly.

Parsing
Make sure you understand the tokens generated in
the scanning phase.

Given the grammar, look at tokens one at a time
(LL(1) grammar). Based on which rules you
follow, create nodes appropriately. If no rule fits,
throw a SyntaxException.

Use helper methods and consider recursion!

These nodes and their children form an abstract
syntax tree, rooted in a NodeProgram, which will
be traversed in the remaining steps.

Parsing - Example

Does x * 4 - 3 parse? How?

What about 6 + 3 * x?

Semantic Analysis
Even if code can be parsed into an AST, it may not
be correct.

Goals: Catch semantic errors by traversing the
tree, gather information about variables and
frames.

Errors may arise in scoping, type checking, or
procedure usage.
This step is more complicated if you choose to
implement extra credit.

Semantic Errors
Scoping errors occur when a variable is used “out
of scope,” meaning they haven't yet been declared
in the scope in which they're used. Scoping errors
also happen when a variable is declared twice in
the same scope (no variable shadowing in Blaise!)

Variables must be used as the same type as which
they were declared. ints must be used as ints and
not bools or arrays. 3 > true makes no sense; if
(1) doesn’t either (in Blaise, anyways).

A block, implicit or explicit, creates a scope in
Blaise. Consider using the provided Scope class
to track variables’ scopes.

Semantic Errors
Procedures can cause numerous semantic errors.
There must be a no-args procedure named main.
Arguments must be used correctly (right number
and right type). One can make procedure calls
only to procedures declared earlier in the code.

How do we check all of this?

For simplicity, no procedure overloading is
allowed. Additionally, return 0; is implicitly called
at the end of every procedure, so you don't need
to check for valid return statements. Be sure no
variable has the same name as a procedure!

Visitor Pattern
Visitor Pattern – a common design pattern for
compilers. We create a visitor for each task
(semantic analysis, code gen, printing the AST,
etc.) with a method for each node type. The node
passes itself to the visitor.

Ex: public void handleExprPlus(NodeExprPlus n)

Advantage: easy to add new operations (just
create 1 new class)

Disadvantage: harder to add new nodes (need to
edit many classes)

Semantic Analysis (cont.)
Information about variables must be collected.
Arguments and local variables for a procedure are
placed on the stack in a frame. Each of these
variables has an offset from the frame pointer that
allows us to access the variable. You have to
push and pop frames during procedure calls, but
we provide code to help you set them up.
Note that our frames are laid out differently than
those from lecture for simplicity. In particular,
arguments and local variables are put together.
(See HW09 for details!)

Code Generation
We want to turn our beautiful, error-free AST into
MIPS assembly code.
How? Visitor Pattern again.
We want to write code to a file for each node in the
AST.
We have provided a class that will generate MIPS
instructions for you (MIPSCodeGenerator).
You must write the visitor that calls
MIPSCodeGenerator’s methods (e.g. you may call
genPop, which writes the MIPS code needed to
pop something off of the stack.

Code Generation (cont.)
You are writing code for a stack-based machine.
The result of each operation is pushed onto the
stack, to be popped by other operations
The less than relational operator assumes that its
two arguments are on the stack and pushes its
result onto the stack.
What should we do if we calculate a sum for a
NodeExprPlus and the result is in $s1?

Code Generation (cont.)

Code Generation (cont.)
Our frame support code assumes that all $s
registers, plus $ra and $fp are pushed to the stack
each time a procedure is called, so your code
generator should do so.

Hints:

Remember to return 0 at the end of every
procedure. Also, be careful to restore your stack
pointer after procedure calls!

Global and local variables will be stored in different
places, so be sure to distinguish between them.

Testing
How do you know that your compiler works?
We have provided several functional Blaise
programs and several buggy Blaise programs.
You should write your own, more-exhaustive test
cases. Make sure you test valid and invalid Blaise
code.
Does your compiler generate arrays correctly?
Does it correctly identify semantic errors? Does
short-circuiting work correctly? Recursion?
Test your compiler thoroughly!

Extra Credit
Numerous extra credit options exist.
Only attempt these after your compiler is fully
functional.
If you attempt extra credit, hand in your regular
compiler in addition to the one with extra credit.
In general, you will be adding functionality to the
Blaise language and altering your compiler
appropriately.
If you have any questions, ask at the end of the
help session or e-mail the TAs.

Final Comments
Start soon – each part of the assignment may take
a while.
Make sure you understand scoping and frames, as
well as the visitor pattern before starting Semantic
Analysis.

Any questions about the assignment?

If you have any further questions, see a TA on
hours or e-mail the list. Good luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

